
GL transformations-models

• x' = x+tx

• y' = y+ty

• z' = z+tz

• 1 0 0 tx

• 0 1 0 ty sx=sy=sz

• 0 0 1 tz uniform
• 0 0 0 1 nonuniform?!!??

• x' = x·sx

• y' = y·sy -sx

• z' = z·sz

• x = R·cos(b)

• y = R·sin(b)

• z = z

• x' = R·cos(a+b)

• x' =R·cos(b)·cos(a)-R·sin(b)·sin(a) = x·cos(a) - y·sin(a)

• y' = R·sin(a+b)

• y' = R·cos(b)·sin(a)+R·sin(b)·cos(a)= x·sin(a) + y·cos(a)
• cos (a) -sin (a) 0 0

• sin (a) cos (a) 0 0

• 0 0 1 0

• 0 0 0 1

• Around z axis
• cos (a) -sin (a) 0 0

• sin (a) cos (a) 0 0

• 0 0 1 0

• 0 0 0 1

• Around x axis
• 1 0 0 0

• 0 cos (a) -sin (a) 0

• 0 sin (a) cos (a) 0

• 0 0 1 1

• Around y axis
• cos (a) 0 -sin (a) 0

• 0 1 0 0
• sin (a) 0 cos (a) 0

• 0 0 0 1

•

• Shear

• x' = x+y·b+z· c

• y' = e·x+y+g· z

• z' = i·x+j·y+z

• 1 b c 0

• e 1 g 0

• i j 1 0

• 0 0 0 1

•

Object Transformations in OpenGL

• Multiplies the current matrix by a matrix that moves/rotates an
object

• glTranslate (x, y, z):

• glRotate (angle, x, y, z):counterclockwise direction in degrees.

• glScale (x, y, z): by the corresponding argument x, y, or z.

• glTranslatef(0.0, 0.0, -5.0). 5 units of distance between the
viewpoint and the objects by moving the viewpoint

• gluLookAt

• OpenGL is a graphics API, the computational model behind this API,
called the Graphics Pipeline Model, used for producing images of
geometric models. The API provides geometric primitives and
programming constructs for defining the models. The model is then
rendered via a sequence of pipeline stages:

• Subject these models to several 3D transformations,
• Followed by clipping, then
• Projection to the plane.
• Followed by planar (2D) transformations, and
• Finally rasterization: converting to pixels.

• World (or Scene) Coordinates

• Window Coordinates

• View (or Eye or Camera) Coordinates

• Projection Coordinates

• OpenGL primitive number type. similar types in C/C++. GLint,
GLfloat and GLdouble:

• Vertices: the atoms for geometric modeling. Vertex is the most
basic geometric object. This is a point, in 2 or 3d, the types of the
coordinates might be int or float.

• Specifying in a program..
• Vertex(int x, int y); // 2-dimensional
• Vertex(float x, float y, float z); // 3-dimensional
• Specifying in gl, (OpenGl syntax)
• glVertex2i(GLint x, GLint y);
• glVertex3f(GLfloat x, GLfloat y, GLfloat z);
•

Object Transformations in OpenGL

• The transformation process to produce the desired scene for
viewing is analogous to taking picture with a camera.

• The steps with a camera (or a computer):
A. Modeling transformation: Arranging the scene to be

photographed into the desired composition.
B. Viewing transformation: Setting up your tripod and pointing

the camera at the scene .
C. Projection transformation: Choosing a camera lens or

adjusting the zoom.
D. Viewport transformation:Determining how large you want the

final photograph to be for example, you might want it enlarged.

Not necessarily the order in your code should follow this order, but
the viewing transformations must precede the modeling
transformations in your code, but you can specify the
projection and viewport transformations at any point before
drawing occurs.

The order in which these operations occur on your computer ???.

Construct a 4×4 matrix M to specify viewing, modeling, and projection
transformations, which is then multiplied by the coordinates of each vertex v.

v'=Mv

Note that viewing and modeling transformations are automatically applied to
surface normal vectors to form modelview matrix, which is applied to the
incoming object coordinates to yield eye coordinates, , (Normal vectors are
used only in eye coordinates.) This ensures that the normal vector's relationship
to the vertex data is properly preserved. Next, if you've specified arbitrary
clipping planes to remove certain objects from the scene or to provide cutaway
views of objects, these clipping planes are applied.

