
Introduce to Bioinformatics:
Distributed Suffix Trees

Instructor: Dr. M. Sakalli
Student: Piotr Jan Dendek

Marmara University, 13.12.2010

Agenda

 A Suffix Tree – what is it?

 What is bootleneck of a suffix tree

 What are workarounds

 The Distributted Sufix Tree (DST)

 Conceptual construction demonstration

 Suffix Tree vs DST

 Drawbacks

 Advanteges

 Conclusions

Suffix tree

 Evolution of Trie

 Construction time O(n) (where n is length of
input string)

 Good in many application
 Check if given word is in a text

 Check # of occurences

 Check possition of strings occurences

In fact construction time is O(n)
up to RAM exhaustage.

Bootleneck of a Suffix Tree

Bootleneck of a Suffix Tree

Workarounds

 Do we need workaround?
 Yes, e.g. Human Genom Project produced great amount of data

on which pople would like to navigate. Those data can not be
stored in singular RAM unit

 Name some workarounds
 On-disk Suffix Trees (rather slow)

 Distributed Suffix Trees

Tips of a day

 Suffix Tree gives us ...
 paths from its root to leafs ...
 which provides in t (or less then t) hops ...
 leaf representing t-long word.
 Especially for
 input text,
 input text without first letter (suffix with index 1),
 input text without first two letter (suffix with index 2),
 ... and so on

 So suffixes of all indexes from 0 to t, where t is
input text length, are covered

Distributed Suffix Tree

 Let's go back to Distributed Suffix Tree!

 Having a set <V>_{<z>} and input text <t>
 Where <z> is substring of original input string

 Where items in <V>_{<z>} are indexes of concatenations
of <z> and text after <z> in text <t>

 e.g. <t>=”aaabbaabab”, <z>=”aa”

 <t>_<z>=”12abb6abab”

 <V>_{aa}={1,2,6}

Distributed Suffix Tree

 e.g. <t>=”aaabbaabab”, <z>=”aa”

 <t>_<z>=”12abb6abab”

 <V>_{aa}={1,2,6}

 There are still unused suffixes: 3,4,5,7,8,9,10,11

 11 is for empty string better known as „$”

 Let's follow the exhaustive example from the beginning

 Starting letters of used suffixes are uppercase

Distributed Suffix Tree

 There are still unused suffixes: 1,2,3,4,5,6,7,8,9,10,11

 <t>=”aaabbaabab”, <z>=”aa”, <V>_{aa}={1,2,6}

 There are still unused suffixes: 3,4,5,7,8,9,10,11

 <t>=”AAabbAabab”, <z>=”ab”, <V>_{ab}={3,7,9}

 There are still unused suffixes: 4,5,8,10,11

 <t>=”AAAbbAAbAb”, <z>=”ba”, <V>_{ba}={5,8}

Distributed Suffix Tree

 There are still unused suffixes: 4,5,8,10,11

 <t>=”AAAbbAAbAb”, <z>=”ba”, <V>_{ba}={5,8}

 There are still unused suffixes: 4,10,11

 <t>=”AAAbBAABAb”, <z>=”bb”, <V>_{bb}={4}

 There are still unused suffixes: 10,11

 <t>=”AAABBAABAB”, <z>=”b$”, <V>_{b$}={10}

 There are still unused suffixes: 11

 <t>=”AAABBAABAB”, <z>=”$”, <V>_{$}={11}

Distributed Suffix Tree

 All suffixes of input text are covered!

 We can divide in similar way Suffix Tree using each <z>
as subroot

 Sadly – we must drop suffix tree links between nodes in
separate subtrees

 Luckily – this is not equal with losing of O(n) construction
time

Distributed Suffix Tree

 >>Sadly – we must drop suffix tree links between nodes
in separate subtrees<<...

 ... but how we'll construct a tree then?!

 With „proper” suffix

 E.g. „acacc”

 Normally there would be suffix tree link between „acac” and „cac”
and from „acacc” to „cacc”

 But because strings under „ac”-root starts with „ac”, the proper
suffix of „acac” is „ac” (insted of using „cac” we are using next
suffix)

 Similarly, proper suffix of „acacc” is „acc”

Time for a demonstration

 Let's take input string:
 aacacccacacaccacaaa$

 Let's point its lower mers (letters and 2-mers)
 1-mer(aacacccacacaccacaaa$)={a,c,$}
 2-mer(aacacccacacaccacaaa$)={aa,ac,ca,cc,a$}

 Now point out mers which are not covered by
others

 a_{1-mer} IN aa_{2-mer} or ac_{2-mer} or a$_{2-mer}
 c_{1-mer} IN cc_{2-mer} or ca_{2-mer} [[[or c$_{2-

mer}]]]
 $_{1-mer} NOT IN 2-mer

Time for a demonstration

 Now point out mers which are not covered by
others

 aa_{2-mer} ac_{2-mer} a$_{2-mer}
 cc_{2-mer} ca_{2-mer} c$_{2-mer}
 $_{1-mer}

 c$_{2-mer} have not occured but should be
mentioned to make division general for alphabet
{a,c,$}

Time for a demonstration

 Now point out mers which are not covered by
others

 aa
 ac
 a$
 cc
 ca
 c$
 $

Time for a demonstration

 Now point out mers which are not covered by
others (aa, ac, a$, cc, ca, c$, $)

 And make them sub-roots in Distributed Suffix
Tree

 If max # of digits in subroot is <N> and # of
alphabet letters without $ is <L> then # of
subroots <S> is

 <S> = <N>^<L-1>*<N+1> | regular roots
 +<N>^<L-2>*<1>+... | $-ended roots
 +<N>^<1> *<1> | till <digit>$
 +1 | and pure $

Time for a demonstration

 the distributed suffix tree:

Time for a demonstration

 the suffix tree:

Normal vs Distributed

 Clones of nodes in Distributed Suffix Tree
(DSF)

 Deletions of not proper arcs in DSF
 Look closer!

Look closer: Suffix Tree

Look closer: Distributed Suffix Tree

Drawbacks

 Dependency on hardware connection
 Wired structure
 Some statistical operations perform time is

much worse

Advanteges

 Realtime sublinear construction
 Chance to introduce grid calculations
 And again the plot from beginning of

presentation...

Advanteges

Advanteges

 ... which means that Distributed Suffix Tree
allow us to ...

 ... use more RAM (sum of RAM across all
involved computers) ...

 ... which preserve O(n) for longer time
 With 3 digit root it is extended to 780% of

base input text length
 You must say „WOW!”

Conclusions

 Till now topic of Distributed Suffix Trees has not
been enough good covered
(2 articles by the same authors from Imperial
College, UK)

 An idea of providing multicore implementation of
DST may be interesting

 Using arcs from DST in Suffix Trees concatenated
with de Brujin graph sounds interesting

References

 „Distributed Suffix Trees”, Raphaël Clifford, King’s
College, London, UK

 „Distributed and Paged Suffix Trees for Large Genetic
Databases”, Raphaël Clifford and Marek Sergot,
Imperial College London, UK

 „Distributed Suffix Tree Overlay for Peer-to-Peer
Search”, Hai Zhuge and Liang Feng (IEEE
Transactions on Knowledge and Data Engineering,
vol. 20, no. 2, February 2008)

 „Distributed Suffix Tree for Peer-to-Peer Search”, Hai
Zhuge and Liang Feng, Chinese Academy of
Sciences, Beijing, China

Thank you for your attention!

	Tytuł
	Cel długoterminowy
	Życzenia klientów
	Spełnienie życzeń klientów
	Analiza kosztów
	Walory i zalety
	Slajd 7
	Następne kroki
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30

