
120060027

SAMET TONYALI

What is an HMM?
 An HMM is a statistical Markov Model in which the

system being modeled is assumed to be a Markov

process with unobserved(hidden) states.

 We know only outputs of process sequence, but not

the states.

What is difference from regular MM?

 In a regular Markov Model, the state is directly visible

to the observer, and therefore the state transition

probabilities are the only parameters.

 In an HMM, the state is not directly visible, but output

which is dependent on the state, is visible.

An Illustrative Figure

X: state a: transition probability y: output b: output probabilities

Hidden States

Outputs

Parameters of an HMM

 The parameters of an HMM are of two types:

 Transition Probabilities

 Emission Probabilities(Output Probabilities)

A Simple Example

 Alice and Bob live apart from each other and talk together

daily over telephone about what did they do that day.

 Bob is only interested in three activities:

 Walking in the park

 Shopping

 Cleaning his apartment

 His activities are dependent on the weather on a given day.

 Alice has no knowledge about how the weather is in

where Bob lives. She tries to guess what the weather

must have been like.

 There are two states: “Rainy” or “Sunny”, but Alice

cannot observe them directly, that is, they are hidden

from her.

 Since Bob tells Alice about his activities, those are the

observations. The entire system is that of an HMM.

 Alice knows the general weather trends in the area,

and what Bob likes to do on average. In other words,

the parameters of the HMM are known.

 They can be written down in the Python

programming language:

 states = ('Rainy', 'Sunny')

 observations = ('walk', 'shop', 'clean')

 start_probability = {'Rainy': 0.6, 'Sunny': 0.4}

 transition_probability= {

 'Rainy' : {'Rainy': 0.7,'Sunny‘:0.3},

 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},

 }

 emission_probability = {

 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},

 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},

 }

 start_probability: Alice’s belief about which state the

HMM is in when Bob first calls her.

 transition_probability: The change of the weather in

the underlying Markov chain.

 emission_probability: How likely Bob to perform a

certain activity on each day.

Probability Distribution

Three Basic Problems of HMMs
 Given a model, we would like to evaluate the probability of any

given observation sequence, O = {O1O2 … OT}

 Given a model and an observation sequence O, we would like to

find out state sequence Q = {q1 q2 …qT}, which has the highest

probability of generating O, namely, we want to find Q* (Optimal

result).

 Given a training set of observation sequences, X = {Ok}k , we would

like to learn the model that maximizes the probability of generating

X.

Viterbi Algorithm

 The Viterbi algorithm is a dynamic programming

algorithm for finding the most likely sequence of

hidden states – called the Viterbi path – that results in

a sequence of observed events, generally in HMMs.

 The algorithm makes a number of assumptions:

 Both the observed events and hidden states must be in a

sequence. This sequence often corresponds to time.

 These two sequences need to be aligned, and an instance of

an observed event needs to correspond to exactly one

instance of a hidden state.

 Computing the most likely hidden sequence up to a certain

point t, and the most likely sequence at point t-1

These assumptions are all satisfied in a first-order hidden

Markov model.

Algorithm
 Suppose we are given a Hidden Markov Model (HMM)

with states Y, initial probabilities πi of being in

state i and transition probabilities ai,j of transitioning

from state i to state j.

 Say we observe outputs x0,…, xT.

 The state sequence y0,…,yT most likely to have

produced the observations is given by the recurrence

relations:

 Here Vt,k is the probability of the most probable state

sequence responsible for the first t + 1 observations

(we add one because indexing started at 0) that

has k as its final state.

 The Viterbi path can be retrieved by saving back

pointers which remember which state y was used in

the second equation.

 Let Ptr(k,t) be the function that returns the value

of y used to compute Vt,k if t > 0, or k if t = 0. Then:

Complexity
 The complexity of this algorithm is O(T x |Y|2).

References
 http://en.wikipedia.org/wiki/Viterbi_algorithm

 http://en.wikipedia.org/wiki/Hidden_Markov_model

 Alpaydin, Ethem, Chapter 13 – Hidden Markov Models

p.305-326

http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model

Questions?

