HIDDEN MARKOV MODELS(HMMs)

120060027 SAMET TONYALI

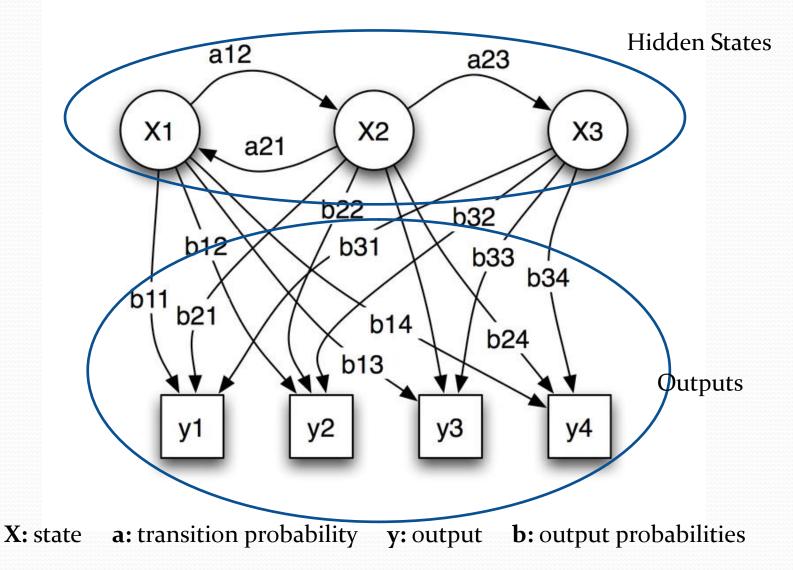
What is an HMM?

- An HMM is a statistical Markov Model in which the system being modeled is assumed to be a Markov process with unobserved(hidden) states.
- We know only outputs of process sequence, but not the states.

What is difference from regular MM?

- In a regular Markov Model, the state is directly visible to the observer, and therefore the state transition probabilities are the only parameters.
- In an HMM, the state is not directly visible, but output which is dependent on the state, is visible.

An Illustrative Figure



Parameters of an HMM

- The parameters of an HMM are of two types:
 - Transition Probabilities
 - Emission Probabilities(Output Probabilities)

A Simple Example

- Alice and Bob live apart from each other and talk together daily over telephone about what did they do that day.
- Bob is only interested in three activities:
 - Walking in the park
 - Shopping
 - Cleaning his apartment
- His activities are dependent on the weather on a given day.

- Alice has no knowledge about how the weather is in where Bob lives. She tries to guess what the weather must have been like.
- There are two states: "Rainy" or "Sunny", but Alice cannot observe them directly, that is, they are hidden from her.
- Since Bob tells Alice about his activities, those are the observations. The entire system is that of an HMM.

- Alice knows the general weather trends in the area, and what Bob likes to do on average. In other words, the parameters of the HMM are known.
- They can be written down in the Python programming language:

- states = ('Rainy', 'Sunny')
- observations = ('walk', 'shop', 'clean')
- start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
- transition_probability= {
 - 'Rainy' : {'Rainy': 0.7,'Sunny':0.3},
 - 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},

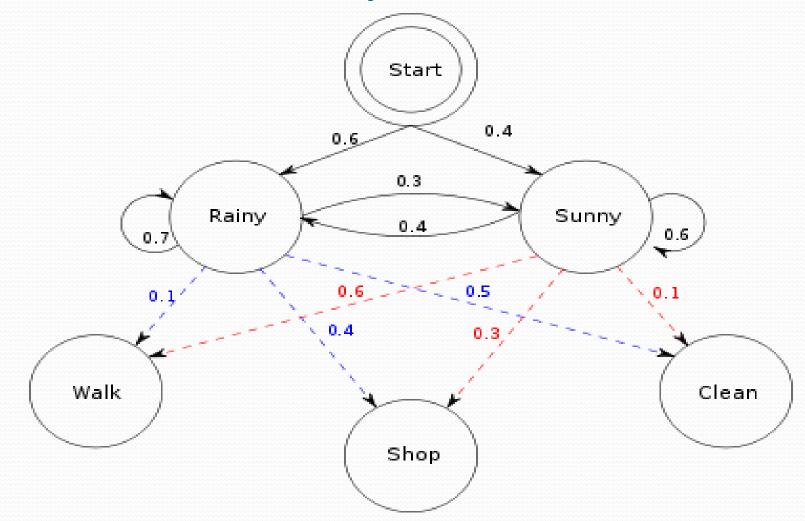
emission_probability = {

• }

- 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
- 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},

- **start_probability:** Alice's belief about which state the HMM is in when Bob first calls her.
- transition_probability: The change of the weather in the underlying Markov chain.
- emission_probability: How likely Bob to perform a certain activity on each day.

Probability Distribution



Three Basic Problems of HMMs

- Given a model, we would like to evaluate the probability of any given observation sequence, $O = \{O_1 O_2 \dots O_T\}$
- Given a model and an observation sequence O, we would like to find out state sequence $Q = \{q_1 \ q_2 \ ... q_T\}$, which has the highest probability of generating O, namely, we want to find Q^* (Optimal result).
- Given a training set of observation sequences, X = {O^k}_k, we would like to learn the model that maximizes the probability of generating *X*.

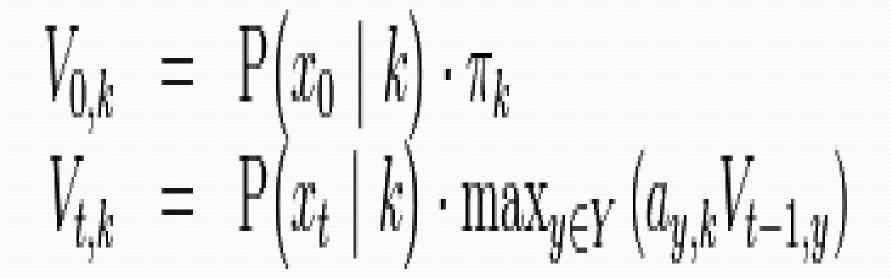
Viterbi Algorithm

 The Viterbi algorithm is a dynamic programming algorithm for finding the *most* likely sequence of hidden states – called the Viterbi path – that results in a sequence of observed events, generally in HMMs.

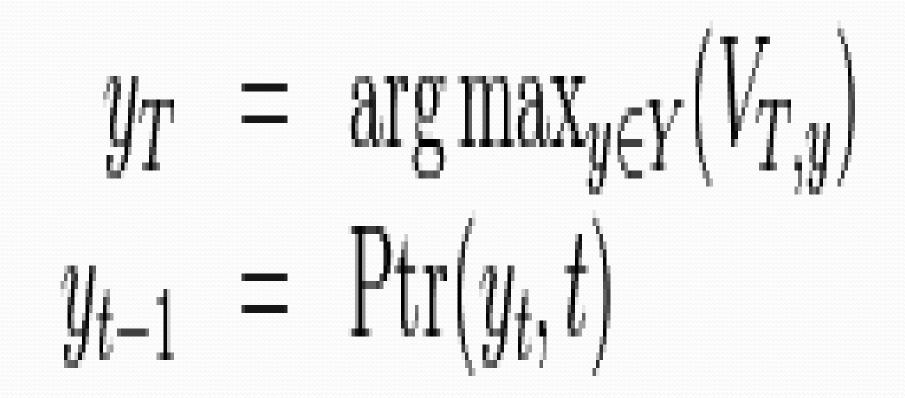
- The algorithm makes a number of assumptions:
 - Both the observed events and hidden states must be in a sequence. This sequence often corresponds to time.
 - These two sequences need to be aligned, and an instance of an observed event needs to correspond to exactly one instance of a hidden state.
 - Computing the most likely hidden sequence up to a certain point *t*, and the most likely sequence at point *t*-1
 - These assumptions are all satisfied in a first-order *hidden* Markov model.

Algorithm

- Suppose we are given a Hidden Markov Model (HMM) with states *Y*, initial probabilities π_i of being in state *i* and transition probabilities a_{i,j} of transitioning from state *i* to state *j*.
- Say we observe outputs *x*_o,..., *x*_T.
- The state sequence $y_o, ..., y_T$ most likely to have produced the observations is given by the recurrence relations:



- Here V_{t,k} is the probability of the most probable state sequence responsible for the first t + 1 observations (we add one because indexing started at o) that has k as its final state.
- The Viterbi path can be retrieved by saving back pointers which remember which state y was used in the second equation.
- Let Ptr(k,t) be the function that returns the value of y used to compute $V_{t,k}$ if t > 0, or k if t = 0. Then:



Complexity

• The complexity of this algorithm is $O(T \times |Y|^2)$.

References

- <u>http://en.wikipedia.org/wiki/Viterbi_algorithm</u>
- <u>http://en.wikipedia.org/wiki/Hidden_Markov_model</u>
- Alpaydin, Ethem, Chapter 13 Hidden Markov Models
 p.305-326

Questions?