
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 8, Number 3, 2001
Mary Ann Liebert, Inc.
Pp. 201–219

On Combinatorial DNA Word Design

AMIT MARATHE,1 ANNE E. CONDON,3 and ROBERT M. CORN2

ABSTRACT

We consider the problem of designing DNA codes, namely sets of equi-length words over
the alphabet A, C , G, T that satisfy certain combinatorial constraints. This problem is
motivated by the task of reliably storing and retrieving information in synthetic DNA strands
for use in DNA computing or as molecular bar codes in chemical libraries. The primary
constraints that we consider, de� ned with respect to a parameter d, are as follows: for every
pair of words w , x in a code, there are at least d mismatches between w and x if w x and
also between the reverse of w and the Watson–Crick complement of x. Extending classical
results from coding theory, we present several upper and lower bounds on the maximum size
of such DNA codes and give methods for constructing such codes. An additional constraint
that is relevant to the design of DNA codes is that the free energies and enthalpies of the code
words, and thus the melting temperatures, be similar. We describe dynamic programming
algorithms that can (a) calculate the total number of words of length n whose free energy
value, as approximated by a formula of Breslauer et al. (1986) falls in a given range, and (b)
output a random such word. These algorithms are intended for use in heuristic algorithms
for constructing DNA codes.

Key words: DNA computation, word design, molecular bar-codes, coding theory.

1. INTRODUCTION

The design of codes that satisfy combinatorial constraints has long been studied, motivated by
the problem of sending information reliably over a noisy channel (MacWilliams and Sloane, 1997).

In this paper, we study code design problems that are motivated by the task of storing and retrieving
information in short DNA strands, which we refer to as DNA code words. A (single) DNA strand is a
sequence of nucleotides; there are four possible nucleotides, denoted A, C, G, and T , at each position
of the sequence, which has chemically distinct ends known as the 50 and 30 ends. Since a DNA strand
of length n can be used to represent one of up to 4n possible values, and since short DNA strands can
be quickly and cheaply synthesized, DNA code words can be used to store information at the molecular
level, thus providing a basis for biomolecular computation (Adleman, 1994). DNA code words are also
used as molecular bar codes, or tags, for the purpose of manipulating and identifying individual molecules

1Computer Sciences Department, University of Wisconsin, Madison, WI 53706.
2Chemistry Department, University of Wisconsin, Madison, WI 53706.
3The Department of Computer Science, University of British Columbia, Vancouver, B.C. V6T 174.

201

202 MARATHE ET AL.

in complex chemical libraries (Brenner, 1997; Brenner and Lerner, 1992; Shoemaker et al., 1996; Smith
and Schweitzer, 1995).

These applications require success in achieving speci� c hybridization between a DNA code word and its
Watson–Crick complement, while minimizing false positive and false negative signals, as we now explain.
The Watson–Crick complement of a DNA strand is the strand obtained by replacing each A by a T and
vice versa, each C by a G and vice versa, and switching the 50 and 30 ends. For example, the Watson–Crick
complement of 50 ¡ AACATG ¡ 30 is 30 ¡ TTGTAC ¡ 50. Speci� c hybridization is the process whereby a
strand and its Watson–Crick complement bond to form a double helix. Speci� c hybridization can be used
(along with other methods) to identify and retrieve target DNA code words from a set of such code words.
A false positive results when nonspeci� c hybridization occurs, such as between a DNA strand and the
Watson–Crick complement of a distinct DNA strand, in which case there are mismatches. For example,
there are two mismatches between 50 ¡ AACATG ¡ 30 and 30 ¡ TAATAC ¡ 50, in the second and third
positions from the 50 end of the � rst strand. Nonspeci� c hybridization may also occur between a DNA
strand and the reverse of a distinct strand. A false negative occurs when hybridization between a DNA
strand and its complement does not take place as intended.

Several papers have proposed the use of combinatorial constraints on the composition of a set of DNA
code words in order to limit false positives and false negatives in speci� c applications (Adleman, 1994;
Baum, 1999; Brenner, 1997; Brenner and Lerner, 1992; Cuckrus et al., 1998; Deaton et al., 1999; Garzon
et al., 1997a; Deaton et al., 1996; Frutos et al., 1997; Garzon et al., 1997b; Garzon et al., 1998; Mir, 1999;
Roweis et al., 1999; Shoemaker et al., 1996). Our premise is that a theoretical framework for designing
sets of DNA code words should be useful for scalable use of DNA code words.

We focus on sets of words satisfying one or more of four constraints, which we next de� ne and motivate.
In our study, we represent a DNA code word simply as a string over the alphabet {A, C, G, T } and assume
that the leftmost (or low order) end of the string corresponds to the 50 end of the associated DNA code
word. Thus, CCGAT represents 50 ¡ CCGAT ¡ 30, for example. It is useful to de� ne a word to be a string
over a � nite alphabet, where the alphabets of most interest to us are of size 2 or 4 (such as {A, C, G, T }).
Let x D x1x2 : : : xn be a word. The reverse of x , denoted by xR , is the word xnxn¡1 : : : x1. If x is over the
alphabet {A, C, G, T }, then the complement of x , denoted by xC , is the word obtained by replacing each
A in x by T and vice versa, and by replacing each C in x by G and vice versa. If x is over the binary
alphabet {0, 1}, then xC is obtained by replacing each 0 in x by 1 and vice versa. Finally, the Hamming
distance H.x; w/ between x and word w D w1w2 : : : wn is the number of indices i for which wi 6D xi .
The following constraints pertain to a set of words, each of length n.

² The Hamming constraint with distance parameter d is that for all pairs of distinct words w, x in the
set, H.w; x/ ¸ d . A set of words of size M satisfying the Hamming constraint is called a (n, M , d)
code, or when the parameters are implied, simply a code. We let Aq.n; d/ denote the maximum size of
a code with words of length n over alphabet size q . In most reports on the use of DNA codes, a high
Hamming distance is enforced between pairs of code words (see for example Brenner, 1997; Cuckrus
et al., 1998; Deaton et al., 1999; Frutos et al., 1997; Roweis et al., 1999; Shoemaker et al., 1996; Smith
and Schweitzer, 1995; Zhang and Shin, 1998), in order to limit nonspeci� c hybridization whereby the
Watson–Crick complement of a code word x anneals to a distinct word w.

² The reverse-complement constraint with parameter d is that, for all pairs of words w; x in the set
(where w may equal x), H .wC ; xR/ ¸ d . In DNA code applications, the reverse-complement constraint
is intended to limit hybridization between a code word and the reverse of another code word (Cuckrus
et al., 1998; Deaton et al., 1999; Frutos et al., 1997; Roweis et al., 1999; Smith and Schweitzer, 1995;
Zhang and Shin, 1998). We call a code that also satis� es the reverse-complement constraint a reverse-
complement code. We let ARC

q .n; d/ denote the maximum size of a reverse-complement code over
alphabet size q, with parameters n; d de� ned as for codes. For example, the code words ACG and CGG
(representing strands 50 ¡ ACG ¡ 30 and 50 ¡ CGG ¡ 30, respectively) can be part of an ARC

4 .3; 1/

code but not an ARC
4 .3; 2/ code.

² The reverse constraint with parameter d is that, for all pairs of words w; x in the code (including
the case when w D x), H.W; xR/ ¸ d. We call a code that also satis� es the reverse constraint a
reverse code. We let AR

q .n; d/ denote the maximum size of a reverse code. Our study of this con-
straint is not motivated directly by the goal of limiting false positives or false negatives in the use of

ON COMBINATORIAL DNA WORD DESIGN 203

DNA code words, but indirectly by a close relationship (presented in Section 4) between ARC
q .n; d/

and AR
q .n; d/. For example, when n is even, one can obtain a reverse complement code from a re-

verse code simply by complementing the symbols in the second half of each word in the code. Thus,
constructions of reverse codes can easily be adapted to obtain constructions of reverse complement
codes. We consider the reverse constraint to be simpler than the reverse-complement constraint and so
focus on this.

² The free energy constraint, which is the � nal constraint that we consider, has a somewhat different
� avor. It is motivated by the goal that all code words in the set have similar melting temperatures,
allowing hybridization of multiple words to proceed simultaneously (Shoemaker et al., 1996). The
melting temperature of a short DNA strand can be accurately estimated using a formula of Wetmur
(Wetmur, 1991), which in turn uses estimates of two further parameters of a DNA strand, namely its
free energy and enthalpy. We use 1G to denote the Breslauer estimate of the free energy of a DNA
word (Breslauer et al., 1986). As explained in Section 5, the free energy estimate (measured in kcal/mol)
is essentially the sum of “nearest neighbor” weights associated with substrings of length 2 in a word.
The free energy constraint with parameters g, ² is that, for all words in the code, g ¡ ² · 1G · g C ² .
A closely related constraint, also de� ned precisely in Section 5, is that the enthalpy of all words in the
code lies within a small range.

We are interested in constructing DNA codes that satisfy one or more of these constraints. It is desirable
that the codes are as large as possible, for the following reasons. A code designer typically may choose
a � xed n and d , based on chemical considerations. The designer would like as many words as possible
(satisfying the Hamming, reverse complement, and possibly other constraints) because the number of bits
that can be stored grows with the size of the code. For example, Frutos et al. (1997) designed a code
of size 108 that satis� es the Hamming and reverse complement constraints with n D 8 and d D 4, plus
one additional constraint (see Section 2). In their computations, information is organized into words of
information, just as in a computer memory. Roughly, the code words are used to represent the bits stored
in a memory word, and additional word labels represent the word address. With 108 words, less than 7
bits of information can be stored per word. If a code of size 256 could be designed that satis� es the same
constraints, 8 bits could be stored in each word, increasing the density of information stored in a strand.
Alternatively, a code designer may choose a � xed n and need a � xed number of words, but would like
the word set to satisfy the Hamming and reverse complement constraints for as large a parameter d as
possible. Intuitively, the larger d is, the greater the chance of avoiding errors.

Section 3 summarizes some well known results on codes. Our new results, presented in Section 4, focus
on reverse and reverse-complement codes. Following is a summary of these results.

We � rst show a close relationship between the maximum sizes of reverse codes and reverse-complement
codes. Speci� cally,

ARC
4 .n; d/ D AR

4 .n; d/ when n is even, and

AR
4 .n; d C 1/ · ARC

4 .n; d/ · AR
4 .n; d ¡ 1/ when n is odd.

We then show several methods for obtaining upper and lower bounds on the size of reverse codes with
alphabet sizes 2 and 4, including the following.

² Halving bound: AR
q .n; d/ · Aq.n; d/=2. This bound follows from the fact that if S is a .n; jSj; d/

reverse code then S [SR is a .n; 2jSj; d/ code.
² Cai’s lower bound: AR

q .2n; 2d/ ¸ bAq.n; d/=2c. This result, which constructs a .2n; 2d/ reverse code
from an optimal .n; d/ code, is due to Jin-Yi Cai.

² Construction for d 2: We give a simple inductive construction of a reverse code that is optimal for
even n and close to optimal for odd n. For q D 2 or 4,

AR
q .n; 2/ D qn¡1=2 when n is even, and

.qn¡1 ¡ qbn=2c/=2 · AR
q .n; 2/ · qn¡1=2 when n is odd

204 MARATHE ET AL.

² Product bound: AR
4 .n; d/ ¸ AR

2 .n; d/A2.n; d/. In particular, reverse codes over an alphabet of size 4
can be obtained by taking the “product” of a reverse code and a code, both over an alphabet of size 2.

² Doubling construction: We show how to construct .2n; 2n; 2n¡1/ binary reverse codes, which are
optimal, i.e., AR

2 .2n; 2n¡1/ D 2n.

We apply these results to obtain explicit bounds for AR
2 .n; d/ and AR

4 .n; d/ for 2 · n · 16 and 2 · d · 8.
These are presented in tables.

In Section 5, we turn to the free energy constraint. Since this is more complex combinatorially than the
Hamming or reverse constraints, we are interested in an ef� cient algorithm for generating code words that
satisfy the free energy constraint. Our main contribution in Section 5 is a dynamic programming algorithm
that calculates the total number of words of a speci� ed length n whose free energy value (as estimated
by a formula of Breslauer) equals a given speci� ed value. The running time of the algorithm is O.n2/,
where the hidden constant depends on the values in the Breslauer formula (details are given in Section 5).
Variations of the algorithm can calculate the total number of words of length n whose free energy value
or enthalpy falls in a given range or can output a random such word. These algorithms could be used by a
program for generating DNA codes, based for example on simulated annealing, which has proved valuable
in the construction of binary codes (Gamal et al., 1987).

2. RELATED WORK

Deaton et al. (1996, 1999) observe that the well-known sphere-packing bound (see Section 3) can be used
to set an upper bound on the size of DNA codes (i.e., sets of words that satisfy the Hamming constraint).
They describe genetic algorithms for � nding DNA codes that satisfy several constraints, including the
Hamming and reverse complement constraints. Heuristic methods for � nding good DNA encodings have
also been described by Garzon et al. (1999) and by Zhang and Shin (1998).

In his patent on methods for sorting polynucleotides using DNA tags, Brenner (1997) gives a greedy
algorithm for generation of DNA codes. Brenner also considers sets of words over an alphabet of size 3,
where one of the 4 possible nucleotides A, C , G, or T is absent. Mir (1999) proposed a word design for
use in DNA computing over an alphabet representing just 3 of the 4 possible nucleotides; similarly Cukras
et al. (1998) use a three-letter alphabet in designing a library of RNA strands for encoding bits.

For prototype experiments of the Wisconsin DNA computing project, a DNA word design with words
of length 16 was developed (Frutos et al., 1997). The internal 8 bases of a word are constrained to satisfy
exactly the Hamming and reverse complement constraints with d D 4. In addition, the words also satisfy
the constraint that 4 out of the 8 bases are from the set {C, G}. A set of words of size 108 satisfying
these constraints was found. Cukras et al. (1998) design a library of RNA strands which incorporate equi-
length “bit encodings” that have pairwise high Hamming distance and have similar melting temperatures,
along with other constraints. They use a computer program to � nd a library with the desired combinatorial
properties.

Shoemaker et al. (1996) used an algorithm to generate a set of 9,105 20-mers that satisfy the Hamming
constraint with d D 5 and are predicted to have similar melting temperatures (61 § 5±C). In addition, the
words in the set are predicted to have no secondary structure. They give no details on their algorithm.

Finally, we list other combinatorial constraints that are relevant to DNA code design but which we
do not study in this paper. a) The � rst arises, for example, in Brenner and Lerner’s work (1992), where
DNA tags and the polymers to be tagged are chemically synthesized in an alternating parallel fashion.
Thus each code word (or tag) is the concatenation of “units,” one per monomeric chemical unit in the
polymer. The units are designed to have the comma free or frame-shift constraint: no unit x occurs as a
substring in the concatenation of two other distinct units yz. The purpose of imposing this constraint is
to limit the possibility of “frame shift errors” in the hybridization process. Roweis et al. (1999) propose
such a frame shift constraint in their proposal for a sticker-based model for DNA computation and point
to useful references in the applied mathematics literature on comma free codes and DeBruijn sequences.
Smith and Schweitzer (1995) consider a “modi� ed DeBruijn problem,” namely, given k, design a DNA
strand as long as possible, so that if S is any k-letter substrand of this DNA strand, then S occurs exactly
once in the DNA strand and also the reverse of S and its complement do not occur in the strand. A greedy

ON COMBINATORIAL DNA WORD DESIGN 205

algorithm for generating words satisfying a similar frame shift constraint is given by Garzon et al. (1997,
1998). b) Baum (1999) developed bounds on the size of DNA word sets satisfying several combinatorial
constraints, key among them being the subword constraint that for some parameter d, for any pair of
distinct words w and x, no subword of w of length d equals a subword of x of length d . c) In designing
words for surface-based DNA computing, Frutos et al. (1997) enforced the GC content constraint that the
fraction of G’s and C’s in each code word be 1/2. The motivation for this is to limit the range of melting
temperatures of the code words. d) Seeman (1990) developed algorithms to design DNA sequences for use
in construction of stable DNA structures with branched helix axes, “with the goal of minimizing sequence
similarities between segments of molecules.” The end product can be thought of as a set of words with
similar GC content, such that if s is any string of some given length d (such strings are referred to as
“critons”) over {A, C, G, T }, then s and its reverse complement sRC occur at most once in any word
in the set. (Additional constraints are imposed on the sequences, for example at junction points in the
branched structures.) e) The important forbidden subwords constraint, already mentioned in relation to the
work of Shoemaker et al. (1996) above, is that no word in the code set contains as a subword a speci� ed
set of undesirable words, such as DNA strands with secondary structure, strands that are to be used as
PCR primers, or strands that are recognized by restriction enzymes.

Finally, Smith and Schweitzer (1995) propose encoding methods that allow for error correction even
when mismatches are assigned weights. A different measure of error potential in DNA code words has
been proposed by Rose et al. (1999).

3. BOUNDS ON THE SIZE OF A CODE

In this section, we brie� y review previous results on codes that will be extended or applied in Section 4 to
obtain bounds on reverse codes. The text by MacWilliams and Sloane (1977) provides a good introduction
to the subject.

Theorem 3.1 (sphere-packing upper bound).

Aq.n; d/ ·
jSj

V .b.d ¡ 1/=2c/
D

qn

Pb.d¡1/=2c
iD0

¡
n
i

¢
.q ¡ 1/i

The sphere-packing bound holds because the “spheres” of radius b.d ¡ 1/=2c around each code word s

in a code, namely the sets of V .b.d ¡ 1/=2c/ for all words s in the code, cannot overlap.

Theorem 3.2 (Gilbert–Varshamov lower bound).

Aq.n; d/ ¸
jSj

V .d ¡ 1/
D

qn

Pd¡1
iD0

¡
n
i

¢
.q ¡ 1/i

A simple greedy algorithm for constructing a code yields the Gilbert–Varshamov lower bound: repeatedly
select a word w from S to be in the code and remove from S all words that are of distance less than d

from w. At each selection, at most V .d ¡ 1/ words are removed from S and so the selection step can be
repeated at least jSj

V .d¡1/ times.

Theorem 3.3 (singleton upper bound).

Aq .n; d/ · qn¡dC1

To see why the Singleton bound holds, let k be the largest number such that qk¡1 < Aq.n; d/. We will
show that k · n ¡ d C 1, which implies the bound. Let C be a code of size Aq.n; d/ over an alphabet
of size q . Choose any k ¡ 1 coordinates of the code words in C. Since qk¡1 < Aq.n; d/, there must be
two code words in C, say x and y, which agree at the k ¡ 1 chosen coordinates. Hence, it must be that
d · n ¡ k C 1, and so k · n ¡ d C 1.

206 MARATHE ET AL.

Theorem 3.4 (Plotkin upper bound). For d >
q¡1

q n,

Aq.n; d/ ·
qd

qd ¡ .q ¡ 1/n
:

We describe brie� y why the Plotkin bound holds when q D 2 and A2.n; d/ is even; the more general
case is a straightforward extension of this special case. Let C be a code of (maximum) size A2.n; d/. The
proof proceeds by calculating

P
w;x2C H .w; x/ in two ways. First, since H.w; x/ ¸ d if w 6D x, the sum

is at least A2.n; d/.A2.n; d/ ¡ 1/d . Next, let A be the A2.n; d/ £ n matrix whose rows are the words
of C in bits. Suppose that the ith column of A contains ui 0’s and A2.n; d/ ¡ ui 1’s. Then this column
contributes 2ui.A2.n; d/ ¡ ui/ to the sum, so that the sum is equal to

nX

iD1

2ui.A2.n; d/ ¡ ui/ · nA2.n; d/2=2:

The last inequality follows from the fact that A2.n; d/ is even, and so the sum is maximized when
ui D A2.n; d/=2 for all i . Comparing both sums, we have that

A2.n; d/.A2.n; d/ ¡ 1/d · nA2.n; d/2=2:

Thus, A2.n; d/ · 2d=.2d ¡ n/, as claimed.
The following basic relationships are also useful.

Theorem 3.5.

1. Aq.n; n/ D q,
2. Aq.n; d/ ¸ Aq.n C 1; d C 1/; and

3. Aq.n; d/ ¸ Aq.n C 1; d/=q:

Proof.

1. The code consisting of q words of length n, each containing a different letter repeated n times, is an
example of a .n; q; n/-code. The Singleton upper bound shows that the size of this code is the best
possible.

2. An .n; Aq.n C 1; d C 1/; d/-code can be obtained from a .n C 1; Aq.n C 1; d C 1/; d C 1/-code by
removing the � rst letter of each code word.

3. If we partition all of the words in a .nC1; Aq.nC1; d/; d/ code into q subsets according to the starting
letter, one of the subsets has size at least Aq.n C 1; d/=q and thus is a .n C 1; Aq.n C 1; d/=q; d/ code.
By removing the (common) starting letter from all words in this largest subset, a .n; Aq.nC 1; d/=q; d/

code is obtained.

Most of the lower bounds on A4.n; q/ listed in Table 1 are obtained from tables of cyclic codes of
Kschischang and Pasupathy (1992). We note that some of the underlying cyclic codes contain palindromic
code words. If the coef� cient vector for the generator polynomial for a cyclic code is palindromic, then
the code contains palindromic words. For example, the codes of Kschischang and Pasupathy with n D 8,
12, 16, or 30 and d D 3, or n D 10 and d D 4, are generated by palindromic generator polynomials.

Brouwer et al. (1999) give a table of upper and lower bounds for A2.n; d/ which we use in obtaining
some of our bounds on reverse codes. These bounds are obtained using a wide range of methods, and we
do not comment on them further here.

4. BOUNDS ON THE SIZE OF REVERSE AND REVERSE-COMPLEMENT CODES

We now present new bounds on the maximum size of reverse codes and reverse complement codes, as
de� ned in the introduction. Recall that for q 2 f2; 4g, ARC

q .n; d/ denotes the maximum size of a code

ON COMBINATORIAL DNA WORD DESIGN 207

of length n over an alphabet of size q that satis� es the Hamming and reverse-complement constraints.
Similarly, AR

q .n; d/ denotes the maximum size of a code satisfying the reverse (and Hamming) constraint.
There is a close relationship between the size of reverse and reverse-complement codes for the alphabet

{A, C , G, T }.

Theorem 4.1.
ARC

4 .n; d/ D AR
4 .n; d/; for n even, and

AR
4 .n; d C 1/ · ARC

4 .n; d/ · AR
4 .n; d ¡ 1/; for n odd.

Proof. First, suppose that n is even. Let {xi} be a .n; AR.n; d/; d/ reverse code. Write each xi D aibi ,
where the lengths of ai and bi are equal. Then {yi D aib

C
i } is a .n; AR.n; d/; d/ reverse complement

code. To see this, note that for any pair of strings r , s, H.r; s/ D H .rC; sC/. Hence for all 1 · i; j · n,

H .yC
i ; yR

j / D H.aC
i bi ; bRC

j aR
j / D h.aibi; bR

j aR
j / D H .xi ; xR

j / ¸ d:

A similar argument shows that for i 6D j , H .yi ; yj / D H .xi ; xj / ¸ d . Therefore, AR
4 .n; d/ · ARC

4 .n; d/.
The proof that AR

4 .n; d/ ¸ ARC
4 .n; d/ is symmetric.

We next consider the case when n is odd. Note that if we truncate a .n; AR
4 .n; d C 1/; d C 1/ reverse

code by removing the middle letter of each code word, we obtain a .n ¡ 1; AR
4 .n; d C 1/; d/ reverse code.

Therefore, AR
4 .n; dC1/ · AR

4 .n¡1; d/. Since n¡1 is even, we know from the theorem statement for even n

that AR.n¡1; d/ D ARC
4 .n¡1; d/. Combining these two inequalities, we see that AR

4 .n; dC1/ · ARC
4 .n¡

1; d/. In addition, since ARC
4 .n ¡ 1; d/ · ARC

4 .n; d/ for odd n, we have that AR
4 .n; d C 1/ · ARC

4 .n; d/,
as stated.

Similarly, if we truncate a .n; ARC
4 .n; d/; d/ reverse-complement code by removing the middle letter of

each code word, we obtain a .n ¡ 1; ARC
4 .n; d/; d ¡ 1/ reverse-complement code. Therefore, ARC

4 .n; d/ ·
ARC

4 .n ¡ 1; d ¡ 1/. Since n ¡ 1 is even, we know from the theorem statement for even n that ARC .n ¡
1; d ¡1/ D AR

4 .n¡1; d ¡1/. Combining these two inequalities, we see that ARC
4 .n; d/ · AR

4 .n¡1; d ¡1/.
In addition, since AR

4 .n ¡ 1; d ¡ 1/ · AR
4 .n ¡ 1; d/ for odd n, we have that ARC

4 .n; d/ · AR
4 .n; d ¡ 1/,

completing the proof.

The remaining results in this section pertain to reverse codes. Extending the proof of the sphere-packing
and Gilbert–Varshamov bounds, i.e., Theorems 3.1 and 3.2, we obtain the following bound for reverse
codes with d D 3. For the next theorem, we need one additional de� nition. Let S be the set of all words
x (length n, alphabet size q) such that H .x; xR/ ¸ d . Also, let V .s; d 0/ be the number of words of S that
have distance at most d 0 from word s 2 S. Then, we de� ne V ¡.d 0/ to be minfV .s; d0/g where the min is
taken over all s in S.

Theorem 4.2. For n ¸ 4,

AR
q .n; 3/ ·

qdn=2e Pbn=2c
iD2

±
bn=2c

i

²
.q ¡ 1/i

2.1 C 4.q ¡ 2/ C .n ¡ 4/.q ¡ 1//
:

Proof. Following the proof of the sphere-packing bound for codes, to obtain an upper bound on the
size of a code drawn from S we consider the set Dx , consisting of words which are disquali� ed when a
word x from S is chosen to belong to the code. A lower bound on Dx is given by 2V ¡.b.d ¡1/=2c/. This is
because for any word s in S, H .s; sR/ ¸ d and hence V .s; b.d¡1/=2c/ is disjoint from V .sR; b.d¡1/=2c/.
Therefore,

AR
q .n; d/ ·

jSj
2V ¡.b.d ¡ 1/=2c/

:

We � rst calculate the size of S. Note that if x D x1x2 : : : xn then xR
j D xn¡jC1. We say a mismatch

occurs at j if xj 6D xR
j , i.e., if xj 6D xn¡j C1. If a mismatch occurs at j then by symmetry a mismatch also

occurs at xn¡jC1. In fact, H.x; xR/ is always even.

208 MARATHE ET AL.

How many words x have H .x; xR/ D 2i? The number of such words is the number of words that have
i mismatches at indices j · bn=2c. There are

±
bn=2c

i

²
choices for these i indices. At each chosen index j ,

there are q choices for the letter xj , and once this is chosen, there are q ¡ 1 choices for the letter xn¡jC1.
Also, there are dn=2e ¡ i indices j of x at which xj D xn¡jC1. There are q choices for the value of xj at
each of these indices. In total, there are

³
bn=2c

i

´
.q.q ¡ 1//iqdn=2e¡i

words x such that H .x; xR/ D 2i. Therefore,

jSj D
bn=2cX

iDdd=2e

³
bn=2c

i

´
.q.q ¡ 1//iqdn=2e¡i D qdn=2e

bn=2cX

iDdd=2e

³
bn=2c

i

´
.q ¡ 1/i :

Next, consider a word x D x1x2 : : : xn in S. We claim that for d D 3 there are at least 4.q ¡ 2/ C .n ¡
4/.q ¡ 1/ words in S of distance exactly 1 from x , and therefore V ¡.1/ ¸ 1 C 4.q ¡ 2/ C .n ¡ 4/.q ¡ 1/.
To show the claim, let j and j 0 be such that 1 · j < j 0 · n=2, xj 6D xn¡jC1, and xj 0 6D xn¡j 0C1

(j; j 0 exist because H .x; xR/ is even and at least 3). For each of the four possible indices i with i 2
fj; j 0; n ¡ j C 1; n ¡ j 0 C 1g, there are q ¡ 2 ways to change xi to obtain a word x 0 of distance 1 from x

such that H.x0; .x0/R/ D H.x; xR/ ¸ 3. For each of the n ¡ 4 remaining indices i, there are q ¡ 1 ways
to change xi to obtain a word x 0 of distance 1 from x such that H.x0; .x0/R/ ¸ 3. Thus, there are at least
4.q ¡ 2/ C .n ¡ 4/.q ¡ 1/ words of distance exactly 1 from x, as required.

The upper bound of Theorem 4.2 can easily be generalized to d > 3 by lower bounding V ¡.b.d¡1/=2c/.
Generalizing the argument above, it is not hard to show that V ¡.d0/ ¸

Pd 0
iD0

¡
n
i

¢
.q ¡ 2/i . However, this

generalization was not useful in obtaining Tables 2 and 3.

Theorem 4.3.

AR
q .n; d/ ¸

jSj
2V C.d ¡ 1/

;

where V C.d/ D maxfV .s; d/js 2 Sg and S is as in Theorem 4.2.

Proof. As in Theorem 3.2, a greedy algorithm provides a reverse code of size jSj=2V C.d ¡ 1/.

Theorem 4.4 (halving bound).

AR
q .n; d/ ·

Aq.n; d/

2

Proof. Let S be a set that satis� es the Hamming and reverse constraints. The reverse constraint implies
that H.x; xR/ ¸ d for every word x in S. Also x 2 S) xR =2 S. Let S 0 be the set obtained by adding
to S the reversals of all words in it. The set S0 satis� es the Hamming constraint because the new words
added are at least distance d apart from each other and from the words of in S (this follows from the fact
that S satis� es the Hamming and reverse constraints). Also, the size of S 0 is twice that of S.

Theorem 4.5 (Cai’s lower bound).

AR
q .2n; 2d/ ¸

·
Aq.n; d/

2

¸

ON COMBINATORIAL DNA WORD DESIGN 209

Proof. Divide an optimal .n; d/ code into two equal parts (after dropping one word if Aq.n; d/ is
odd). Let these parts be X D fx1; : : : ; xt g and Y D fy1; : : : ; ytg, where t D bAq .n; d/=2c. Then fxiy

R
i ji D

1; : : : ; tg is a .2n; 2d/ reverse code.

Theorem 4.6 (d 2 construction).

AR
q .n; 2/ D

qn¡1

2
; for even n and q 2 f2; 4g; and

AR
q .n; 2/ ¸

qn¡1 ¡ qbn=2c

2
; for odd n and q 2 f2; 4g.

Proof. The proof builds on the following claim:

Claim 4.1. For even n and q 2 f2; 4g,
Pn can be partitioned into subsets, each containing qn¡1

words, such that

1. any two words from the same subset differ in at least two positions,
2. if a word belongs to a subset, its reversal is also in the same subset, and
3. all the qn=2 palindromes are in the same subset.

Proof of Claim 4.1. The partitions for the base case .n D 2/ can be S2
1 D fAA; CC; GG; TT g,

S2
2 D fAC; CA; GT ; TGg, S2

3 D fAG; GA; CT; TCg, S2
4 D fAT ; TA; CG; GCg for q D 4 and {00, 11}, {01,

10} for q D 2.
For the induction case, when q D 4, assume that we have a partition Sn

i of
Pn , i 2 {1, 2, 3, 4} with

the above properties and with Sn
1 containing all of the palindromes. Then SnC2

i for i 2 {1, 2, 3, 4} can be
de� ned as follows:

SnC2
1 D Sn

1 :S2
1 [Sn

2 :S2
2 [Sn

3 :S2
3 [Sn

4 :S2
4 ;

SnC2
2 D Sn

1 :S2
2 [Sn

2 :S2
3 [Sn

3 :S2
4 [Sn

4 :S2
1 ;

SnC2
3 D Sn

1 :S2
3 [Sn

2 :S2
4 [Sn

3 :S2
1 [Sn

4 :S2
2 ;

SnC2
4 D Sn

1 :S2
4 [Sn

2 :S2
1 [Sn

3 :S2
2 [Sn

4 :S2
3 ;

where A:B D fpwqjw 2 A; pq 2 B; jpj D jqj D 1g.
It is not dif� cult to verify that this is a partition of

PnC2 having all the three properties, with SnC2
1

containing the palindromes. The induction step for q D 2 utilizes a similar “product-of-sets” construction.
As an example, when q D 2, the two subsets S4

1 and S4
2 obtained by the above construction are as follows.

S4
1 S4

2

0000 0010
0110 0100
1001 1011
1111 1101
0011 0001
0101 0111
1010 1000
1100 1110

210 MARATHE ET AL.

Now, to complete the proof of Theorem 4.6 when n is even, note that if we take any of the subsets not
containing any palindromes and drop half of the words from it (either a word or its reversal), we get a
set satisfying the Hamming and reverse constraints (for d D 2). The identical upper bound follows from
Theorem 4.4 combined with Theorem 3.3.

The construction for odd n > 1 and q 2 f2; 4g uses the sets Sn¡1
i obtained above as follows:

Sn
1 D Sn¡1

1 :A [Sn¡1
2 :C [Sn¡1

3 :G [Sn¡1
4 :T ;

Sn
2 D Sn¡1

1 :C [Sn¡1
2 :G [Sn¡1

3 :T [Sn¡1
4 :A;

Sn
3 D Sn¡1

1 :G [Sn¡1
2 :T [Sn¡1

3 :A [Sn¡1
4 :C;

Sn
4 D Sn¡1

1 :T [Sn¡1
2 :A [Sn¡1

3 :C [Sn¡1
4 :G;

where B:X D fw1Xw2jw1w2 2 B , jw1j D jw2jg. With this construction, each of the four subsets Sn
i has

qbn=2c palindromes. By � rst removing these palindromes from each subset and then dropping half of the
remaining words (either a word or its reversal), we obtain four reverse codes with parameter d D 2, each
of size .qn¡1 ¡ qbn=2c/=2.

Theorem 4.7 (product bound).

AR
4 .n; d/ ¸ AR

2 .n; d/A2.n; d/

Proof. Let A be a reverse code and let B be a code, both over alphabet {0, 1}, with words of length
n. Then each element of the Cartesian product A £ B corresponds to a word over an alphabet of size 4,
where a bit in A determines whether A=T or G=C appears in that position, while the corresponding bit in
B makes a choice from the two remaining possibilities. Moreover, this map is one-to-one and so the set
C of words obtained has size jAjjB j.

We next show that each pair (w; x) of words in C satis� es the Hamming and reverse constraints. Let w

be obtained from the pair .aw; bw/ 2 A£B and x from .ax ; bx/. Since A is a reverse code, H.aw; aR
x / ¸ d

and so it must be the case that at d positions w has an A or T and xR has C or G or vice versa. Hence,
H .w; xR/ ¸ d .

To show that w 6D x) H .w; x/ ¸ d we consider two cases. First, suppose that aw 6D ax . Since A is
a code, H .aw; ax/ ¸ d and so it must be the case that at d positions w has A or T and x has C or G or
vice versa. Second, suppose that aw D ax but bw 6D bx . Then H.bw ; bx/ ¸ d . At each position k where
bw and bx differ, if the kth position of aw is 0, then either w has A and x has T or vice versa. Also, if the
kth position of aw is 1, then either w has C and x has G or vice versa. Therefore H .w; x/ ¸ d .

Figure 1 contains an example of the product construction.

Theorem 4.8 (doubling construction). For n ¸ 2,

AR
2 .2n; 2n¡1/ D 2n:

Proof. Let C be a code with words of length n. Call C a H RC .n; d/ code if it has the following
property: for all words x , y in C,

H .x; y/ ¸ d; if x 6D y

H.x; yR/ ¸ d;

H.x; yC / ¸ d; and

H .x; yRC / ¸ d:

ON COMBINATORIAL DNA WORD DESIGN 211

FIG. 1. Product set construction with n D 4 and d D 2. As indicated in bold, the element 1011 £ 1001 in the
Cartesian product A £ B corresponds to the word GACG in the product set.

Claim 4.2. Let C be a H RC .n; d/ code with d · n=2. Then the code C 0 D CC [CCC is a
H RC .2n; 2d/ code, where CC D fxxjx 2 Cg and CCC D fxxC jX 2 Cg. Moreover, the size of C’ is twice
that of C.

Proof of Claim 4.2. It is straightforward to check that, for all words x0, y0 2 C 0, the four conditions
of a H RC .2n; 2d/ code are met. (In some cases, a condition is met because there is a Hamming distance
of d between both halves of the words being compared; in other cases it is met because half of one
string is x, the corresponding half of the other is xC which differs in n positions, and d · n=2). The
size of C 0 is twice that of C because H.x; yC / ¸ d for all x , y in C, and so the words in CC and CCC

are disjoint.

Getting back to the proof of Theorem 4.8, we now show that for n ¸ 2 there is a H RC.2n; 2n¡1/ code of
size at least 2n¡1. If C is such a code, then C [CC satis� es the Hamming and reverse constraints and has
twice the size of C, and from this the lower bound of the theorem follows. For the upper bound, we have
that A2.4r; 2r/ D 8r from MacWilliams and Sloane (1997), which by the halving bound (Theorem 4.4)
implies that AR

2 .2n; 2n¡1/ · 2n for n ¸ 2.
Let n D 2. It is straightforward to verify that {0111, 0010} is a H RC (4, 2) code of size 2. The

construction of the claim then inductively yields a H RC .2n; 2n¡1/ code of size 2n¡1 for all n > 2, as
required.

Note: It is possible to carry out a “quadrupling” construction in the case q D 4 (similar to the doubling
construction for the binary case) and thus get a direct lower bound on AR

4 .n; d/ for special values of n; d .
However, this does not lead to improved results in our tables.

Finally, some useful basic relationships between the sizes of reverse codes are summarized in the
following theorem.

212 MARATHE ET AL.

Theorem 4.9.

1. AR
4 .n; n/ D

»
2 if n ¸ 2 is even, and
0 otherwise,

2. AR
q .n; d/ · AR

q .n; d ¡ 1/, and
3. AR

q .n; d/=q · AR
q .n ¡ 1; d/ · AR

q .n; d/, for odd n.

Proof.

1. When n D 2k, k ¸ 1, the code fAkT k; CkGkg clearly satis� es both constraints. Also, if w is a word in
such a code, then the � rst letter of w must be different from the � rst and last letters of all other words
in the code. Therefore, the code can contain at most two words. For odd n, the middle letter always
results in a match when any word is compared with its reversal. Hence no word can belong to the code.

2. This is trivially true because a .n; M; d/ reverse code is also a .n; M; d ¡ 1/ reverse code.
3. The proof of the � rst inequality is similar to part 3 of Theorem 3.5, the only change being that we

now partition based on the middle letter instead of the � rst. To show the second inequality, let C be
a .n ¡ 1; AR

q .n ¡ 1; d/; d/ code. Let C 0 be obtained from C by inserting an arbitrary symbol in the
middle of each word in C . Then C 0 is a .n; AR

q .n ¡ 1; d/; d/ reverse code and so AR
q .n ¡ 1; d/ ·

AR
q .n; d/.

TABLES OF CODES

Table 1 gives some upper and lower bounds on A4.n; d/, or equivalently, on the maximum size of a
DNA code with code words of length n and distance parameter d. We use several of these upper bounds
on A4.n; d/ to obtain the upper bounds of Table 2 for reverse codes over an alphabet of size 4, via
application of our halving bound (Theorem 4.4). Table 3 only contains lower bounds, which are needed
to construct Table 2. In addition, we use known lower bounds on A2.n; d/ to construct reverse codes over
alphabet of size 4, via application of our product bound (Theorem 4.7). By extending known techniques
for construction of codes to handle reversals, we obtain further bounds on the size of reverse codes.

In the tables, superscripts on entries indicate the method by which the bound was obtained. The following
chart gives an overview of the superscripts used in the tables.

Relevant theorem
Superscript Name of bound or reference

s Sphere-Packing 3.1
pl Plotkin 3.4
h Halving 4.4
g Gilbert-Varshamov 3.2
p Product 4.7
d Doubling 4.8
b Basic 3.5, 4.9
x d D 2 construction 4.6
k Kschischang and Pasupathy [22]
c Cai 4.5

In Table 1 for A4.n; d/, very few entries have matching upper and lower bounds. In fact, none of the
entries for d D 3 match, and many of the upper and lower bounds differ by at least one order of magnitude.
In Table 2, for AR

4 .n; d/, for odd n, and d D 2, the upper and lower bounds are not matching, and overall,
upper and lower bounds can differ by 2–3 orders of magnitude. The tables show that there is much room
for improvement of the methods in this paper.

The following two bounds on Aq.n; d/ are described in terms of two quantities. Let S be the set from
which words in the code are drawn. Then the � rst quantity we need is jSj, which is clearly qn. Let

ON COMBINATORIAL DNA WORD DESIGN 213

T
ab

le
1.

L
ow

er
an

d
u

pp
er

bo
u

n
d

s
on

A
4
.n

;
d

/

n
;
d

3
4

5
6

7
8

4
16

k
¡

19
s

4p
l

1
1

1
1

5
64

k
¡

64
s

16
k

¡
16

p
l

4p
l

1
1

1
6

64
p

¡
21

5s
16

p
¡

.2
6
/b

4
¡

10
p

l
4p

l
1

1
7

25
6p

¡
74

4s
64

p
¡

.2
8
/b

16
k

¡
.5

£
23

/b
4

¡
8p

l
4p

l
1

8
.2

10
/k

¡
26

21
s

25
6p

¡
.2

10
/b

64
k

¡
.5

£
25

/b
16

k
¡

.2
5
/b

4
¡

7p
l

4p
l

9
.2

12
/k

¡
93

62
s

.2
10

/k
¡

.2
12

/b
.2

8 /
k

¡
.5

£
27

/b
.2

6
/k

¡
.2

7
/b

16
k

¡
28

p
l

4
¡

6p
l

10
.2

14
/k

¡
33

82
5s

.2
12

/k
¡

.2
14

/b
.2

10
/k

¡
.5

£
29

/b
.2

8
/k

¡
.2

9
/b

16
k

¡
.7

£
24

/b
16

k
¡

16
p

l

11
.2

16
/k

¡
12

33
61

s
.2

14
/k

¡
.2

16
/b

.2
12

/k
¡

.5
£

211
/b

.2
10

/k
¡

.2
11

/b
64

k
¡

.7
£

26
/b

16
k

¡
.2

6 /
b

12
.2

18
/k

¡
45

34
38

s
.2

16
/k

¡
.2

18
/b

.2
12

/k
¡

.5
£

213
/b

.2
10

/k
¡

.2
13

/b
.2

8
/k

¡
.7

£
28

/b
64

k
¡

.2
8 /

b

13
.2

20
/k

¡
16

77
72

1s
.2

18
/k

¡
.2

20
/b

.2
14

/k
¡

.5
£

215
/b

.2
12

/k
¡

.2
15

/b
.2

10
/k

¡
.7

£
210

/b
.2

8
/k

¡
.2

10
/b

14
.2

22
/k

¡
62

42
68

5s
.2

20
/k

¡
.2

22
/b

.2
16

/k
¡

.5
£

217
/b

.2
14

/k
¡

.2
17

/b
.2

12
/k

¡
25

11
0s

.2
10

/k
¡

.2
12

/b

15
.2

24
/k

¡
23

34
22

13
s

.2
22

/k
¡

.2
24

/b
.2

18
/k

¡
.5

£
219

/b
.2

16
/k

¡
.2

19
/b

.2
14

/k
¡

80
87

8s
.2

12
/k

¡
.2

14
/b

16
.2

26
/k

¡
87

65
23

93
s

.2
22

/k
¡

.2
26

/b
.2

18
/k

¡
.5

£
221

/b
.2

18
/k

¡
.2

21
/b

.2
16

/k
¡

26
43

21
s

.2
12

/k
¡

.2
16

/b

214 MARATHE ET AL.

Ta
bl

e
2.

L
ow

er
an

d
u

pp
er

bo
u

n
d

s
on

A
R 4

.n
;
d

/

n
;
d

2
3

4
5

6
7

8

2
2

0
0

0
0

0
0

3
6x

¡
.2

3 /
h

0
0

0
0

0
0

4
.2

5
/x

;h
2p

¡
8s

2
0

0
0

0
5

12
0x

¡
.2

7 /
h

4p
¡

26
s

2p
¡

8h
0

0
0

0
6

.2
9
/x

;h
16

p
¡

10
7h

8p
¡

10
7h

2p
¡

5h
2

0
0

7
20

16
x

¡
.2

11
/h

33
g

¡
37

2h
16

p
¡

37
2h

2p
¡

34
s

2p
¡

4h
0

0
8

2.
13

/x
;h

16
0p

¡
13

10
h

12
8p

¡
13

10
h

8b
¡

11
8h

8c
¡

11
8h

2p
¡

3h
2

9
32

64
0x

¡
.2

15
/h

35
4g

¡
46

81
h

16
0p

¡
46

81
h

8g
¡

37
2h

8b
¡

37
2h

2p
¡

14
h

2p
¡

3h

10
.2

17
/x

;h
11

84
g

¡
16

91
2h

32
0p

¡
16

91
2h

32
b

¡
12

02
h

32
c

¡
12

02
h

8b
¡

14
2h

8c
¡

8h

11
52

37
76

x
¡

.2
19

/h
39

03
g

¡
61

68
0h

57
6p

¡
61

68
0h

60
g

¡
39

64
h

32
b

¡
39

64
h

8b
¡

42
0h

8b
¡

42
0h

12
.2

21
/x

;h
13

23
3g

¡
22

67
19

h
23

04
p

¡
22

67
19

h
17

3g
¡

13
29

4h
96

p
¡

13
29

4h
8p

¡
12

76
h

8p
¡

12
76

h

13
20

95
10

4x
¡

.2
23

/h
45

01
2g

¡
83

88
60

h
40

96
p

¡
83

88
60

h
48

7g
¡

45
22

1h
12

8p
¡

45
22

1h
18

g
¡

39
64

h
8p

¡
39

64
h

14
.2

25
/x

;h
15

54
96

g
¡

31
21

34
2h

12
53

9g
¡

31
21

34
2h

14
44

g
¡

15
57

05
h

51
2p

¡
15

57
05

h
64

p
¡

12
55

5h
32

p
¡

12
55

5h

15
13

42
09

53
6x

¡
.2

27
/h

54
10

20
g

¡
11

67
11

06
h

40
38

5g
¡

11
67

11
06

h
42

80
g

¡
54

17
46

h
10

24
p

¡
54

17
46

h
12

8p
¡

40
43

9h
64

p
¡

40
43

9h

16
.2

29
/x

;h
19

01
38

6g
¡

43
82

61
96

h
13

21
11

g
¡

43
82

61
96

h
13

06
6g

¡
19

02
11

1h
40

96
p

¡
19

02
11

1h
57

6p
¡

13
21

60
h

51
2p

¡
13

21
60

h

ON COMBINATORIAL DNA WORD DESIGN 215

Table 3. Lower bounds on AR
2 .n; d/

n; d 3 4 5 6 7 8

4 1g 1g 0g 0g 0g 0g

5 1g 1g 0g 0g 0g 0g

6 2b 2c 1g 1g 0g 0g

7 2b 2b 1g 1g 0g 0g

8 8b 8d 1g 1g 1g 1g

9 8b 8b 1g 1g 1g 1g

10 8b 8b 2b 2c 1g 1g

11 13g 8b 2b 2b 1g 1g

12 24g 16c 4b 4c 2b 2c

13 40g 16b 4b 4b 2b 2b

14 73g 32c 8b 8c 4b 4c

15 127g 32b 8b 8b 4b 4b

16 231g 64c 16b 16b 16b 16d

V .s; d 0/ be the number of words of S that have distance at most d 0 from word s, where s 2 S. V .s; d 0/

is independent of s; denote it by V .d 0/. Here, V .d 0/ D
Pd 0

iD0.n
i
/.q ¡ 1/i , where

¡
n
i

¢
D n.n¡1/:::.n¡iC1/

i.i¡1/:::21
denotes the number of ways to choose i distinct items from a set of size n. Proofs of the following four
bounds can be found in a survey article by Ericson (1989) or the text by MacWilliams and Sloane (1977).

5. THE FREE ENERGY CONSTRAINT

In this section, we present an algorithm to calculate the number of DNA strands (of a certain length)
whose free energy equals a given value. The algorithm relies on a heuristic proposed by Breslauer et al.
(1986) to approximate the free energy of any DNA strand. Using another heuristic from the same paper, it
is possible to modify the algorithm for the calculation of the number of DNA strands having a particular
enthalpy using the formula of Breslauer et al.

The data produced by the above algorithms can be used to ef� ciently generate a random strand with free
energy/enthalpy close to a given value. This data could be used, for example, by a simulated annealing
algorithm for � nding a set of DNA strands with similar melting temperatures.

5.1. Algorithm outline

The free energy of the DNA strand u1u2 : : : uL is approximated by the following formula from Breslauer
et al. (1986):

1Gtotal D correction factor C
L¡1X

iD1

w.ui ; uiC1/

where w.x; y/ is the observed free energy of the 2-mer xy. Thus, the free energy is hypothesized to
depend only on the nearest-neighbor interactions of nucleotides in the strand. The enthalpy 1Htotal is
approximated similarly.

Let N.l; u; e/ be the number of DNA strands of length l, beginning with nucleotide u, which have free
energy e. Then N.l; u; e/ can be calculated for l > 1 from “previous” values by the following equation:

N.l; u; e/ D
X

v2fA;C;G;T g
N.l ¡ 1; v; e ¡ w.u; v//

with the convention that strands of length 1 have free energy 0 and that N.l; u; e/ equals 0 when e < 0.

216 MARATHE ET AL.

The correctness of the above equation can be proved by making a case analysis on the second nucleotide
in the DNA strand; this nucleotide has to be A=C=G=T , and accordingly the free energy of the tail (the
strand comprising of the last l ¡ 1 nucleotides) is e ¡ w.u; A=C=G=T /.

5.2. Pseudocode

The following pseudocode elaborates on the algorithm outlined in the previous section. It sets entries
in the N-array (which is passed to the f ree_energy procedure as a reference parameter) to their correct
values.

procedure free_energy(integer L, integer S, array integer w[S][S],
reference array integer N[L][S][E])

local integer E;
// L D word length
// S D alphabet size
// w[S][S] D 10 ¤ free energies of all 2-mers
// E D 10 ¤ upper bound on the free energy of any strand of length L

begin
// � rst calculate M, the maximum free energy of a 2-mer, and
// use it to initialize E
M D ¡1;
for u D 1 to S

for v D 1 to S
if (M < w[u][v]) then M D w[u][v];

E D (L¡1) ¤ M;

for u D 1 to S
N[1][u][0] D 1; // base case for the dynamic programming algorithm

// all other entries are assumed initialized to 0

for 1 D 2 to L
for u D 1 to S

for e D 0 to E
begin

N[1][u][e] D 0;
for v D 1 to S
if (e ¡ w[u][v] >D 0) then

N[1][u][e] CD N[1 ¡ 1][v][e ¡ w[u][v]];
end

end

The running time of the above algorithm is O.L2S2M/ where M is the maximum entry in the w-array.
In this case M D 36 because the free energies in the Breslauer table are all expressed as rational numbers
of the form a:b with the maximum being 3.6; multiplying these free energies by 10 produces integers with
the maximum being 36. More generally, if the free energies are expressed using k degrees of accuracy,
that is, as rational numbers of the form a:b1b2 : : : bk with the maximum being m0:m1m2 : : : mk , then M

would be m0m1 : : : mk .
Once the N-array is initialized by this procedure, we can � nd the number of strands whose free energies

lie within the range [P , Q] in O.S.Q ¡ P // time. A plot showing the number of strands corresponding
to a free energy value/range can also be produced in O.LSM/ time.

5.3. Random generation algorithm

This section shows how the data obtained from the dynamic programming algorithm above can be used
to randomly select a strand from all strands of a given length and free energy. Let S D fw1; : : : ; wN g be

ON COMBINATORIAL DNA WORD DESIGN 217

the set of all strands of length L and free energy E. To randomly select a strand from S, we generate a
random number r in the range [1, N]. By the dynamic programming algorithm,

N D NA C NC C NG C NT

where Nj is the size of Sj , the set of strands of S which begin with nucleotide j . Since NA, NC , NG, NT are
known (they are entries in the N-array) we can � x the � rst nucleotide in the random strand to be generated,
depending on whether r is in the range [1; NA], [NA C 1; NA C NC], [NA C NC C 1; NA C NC C NG] or
[NA C NC C NG C 1; N].

Applying this process iteratively, we can generate the entire strand; i.e., if r is in the range [NA C
1; NA C NC] (say), we � x the � rst nucleotide to be C. We then consider the set SC and choose a strand at
random from this set by using the random number r ¡ NA, which will be uniformly distributed over the
range [1; NC].

This algorithm basically orders the strands in S using the N-array and then uniformly selects one by
generating a random number between 1 and N .

6. CONCLUSIONS

Design of good DNA codes is a hard and important problem for DNA computing and other biotech-
nology applications. Current approches focus on DNA codes that satisfy natural combinatorial constraints.
Theoretical work on this problem can build on classical results from coding theory, thereby providing
useful design tools, and also can provide limits on the attainable size of certain codes. The theoretical
results of this paper are a � rst step in this direction, focusing on two widely used constraints: the Hamming
and reverse complement constraints.

From a practical point of view, improvement in our constructions would be valuable in guiding code
designs. As a case in point, we note that Frutos et al. (1997) designed a word set of size 108 that satis� es
the Hamming and reverse complement constraints with n D 8 and d D 4. In addition, their word set
satis� es the GC-content constraint with each word having four G/C positions and four A/T positions.
It would be interesting to understand the effect of the GC-content constraint on word set size, and this
requires tight bounds on AR.8; 4/. The best construction we provide in this paper for a word set with
n D 8 and d D 4 has size 128; if this is close to optimal, it would imply that adding the GC-content
constraint does not signi� cantly reduce the size of the word set. However, our upper bound on AR.n; d/

is 1,310, higher by more than a factor of 10 than the lower bound.
More generally, there is a wide gap between our upper and lower bounds even for very small values

of n. The halving bound appears to be a weak upper bound, and it would be interesting to know whether
AR.n; d/ D o.A.n; d//.

Additional combinatorial constraints need to be considered, particularly the frame shift constraint (see
Section 2). Codes that satisfy the frame shift constraint with Hamming distance equal to 1 have been
extensively studied (see for example Eastman [1965], Litsyn and Vardy [1994]), but to our knowledge
there is little known when the Hamming distance is greater than 1.

Perhaps more dif� cult theoretically, but well motivated from a practical point of view, would be to derive
good methods for generating codes that satisfy the free energy constraint in addition to one ore more other
constraints such as the Hamming, reverse complement, or frame shift constraints.

Finally, more experimental work is badly needed to validate the use of combinatorial constraints in
design of DNA codes in the � rst place. Related to this, it is desirable to have a method for predicting the
free energy of arbitrary duplexes—that is, a method that generalizes formulas based on “nearest neighbor”
interactions in the special case of a duplex formed from a strand and its Watson–Crick complement
(Breslauer et al., 1986; Wetmus, 1991).

ACKNOWLEDGMENTS

We thank Jin-Yi Cai for allowing us to include his result, Theorem 4.5, in this paper. We also thank
Lloyd Smith and the anonymous referees for their valuable comments.

218 MARATHE ET AL.

REFERENCES

Adleman, L.M. 1994. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024.
Baum, E.B. 1999. DNA Sequences Useful for Computation. Proc. DNA Based Computers II, DIMACS Workshop,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science 44, 235–242.
Brenner, S. 1997. Methods for sorting polynucleotides using oligonucleotide tags. U.S. Patent Number 5,604,097.
Brenner, S., and Lerner, R.A. 1992. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89, 5381–5383.
Breslauer, K., Frank, R., Blocker, H., and Marky, L. 1986. Predicting DNA duplex stability from the base sequence.

Proc. Natl. Acad. Sci. USA 83, 3746–3750.
Brouwer, A.E., Shearer, J.B., Sloane, N.J.A., and Smith, W.D. 1990. A new table of constant weight codes. IEEE

Trans. Inform. Theory 36, 6, 1334–1380.
Cukras, A.R., Faulhammer, D., Lipton, R.J., and Landweber, L.F. 1998. Chest games: A model for RNA based

computation. Preliminary Proc. 4th Int. DIMACS Meeting on DNA Based Computers, 27–37.
Deaton, R., Garzon, M., Murphy, R.C., Rose, J.A., Franceschetti, D.R., and Stevens Jr., S.E. 1996. Genetic search of

reliable encodings for DNA-based computation. Proc. 1st Ann. Conf. Genetic Programming 1996.
Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., and Stevens Jr., S.E. 1999. Good encodings for DNA-

based solutions to combinatorial problems. Proc. DNA Based Computers II, DIMACS Workshop, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 44, 247–258.

Garzon, M., Deaton, R., Neathery, P., Franceschetti, D.R., and Stevens Jr., S.E. 1997a. On the encoding problem for
DNA computing. Preliminary Proc. 3rd DIMACS Workshop on DNA Based Computers, 230–237.

Eastman, W.L. 1965. On the construction of comma-free codes. IEEE Trans. Inform. Theory, 11, 263–267.
El Gamal, A.A., Hemachandra, L.A., Shperling, L., and Wei, V.K. 1987. Using simulated annealing to design good

codes. IEEE Trans. Inform. Theory, IT-33, 1.
Ericson, T. 1989. Bounds on the size of a code. Topics in Coding Theory, Springer-Verlag.
Frutos, A.G., Liu, Q., Thiel, A.J., Sanner, A.M.W., Condon, A.E., Smith, L.M., and Corn, R.M. 1997. Demonstration

of a word design strategy for DNA computing on surfaces. Nucleic Acids Res. 25, 23, 1997, 4748–4757.
Garzon, M., Deaton, R., Neathery, P., Franceschetti, D.R., and Murphy, R.C. 1997b. A new metric for DNA computing,

Proc. 2nd Genetic Programming Conf., 472–478, Morgan Kaufman.
Garzon, M., Deaton, R., Nino, L.F., Stevens Jr., S.E., and Wittner, M. 1998. Encoding genomes for DNA computing.

Proc. 3rd Genet. Prog. Conf., Madison, WI.
Garzon, M., Deaton, R.J., Rose, J.A., and Franceschetti, D.R. 1999. Soft molecular computing. Preliminary Proc. 5th

Int. Meeting on DNA Based Computers, 89–98.
Golomb, S.W., Gordon, B., and Welch, L.R. 1958. Comma-free codes. Can. J. Math. 10, 202–209.
Koschnick, K.-U. 1991. Some new constant weight codes. IEEE Trans. Inform. Theory 37, 2, 370–371.
Klein, Y., Litsyn, S., and Vardy, A. 1995. Two new bounds on the size of binary codes with a minimum distance of

three. Designs, Codes and Cryptography 6, 219–227.
Kschischang, F.R., and Pasupathy, S. 1992. Some ternary and quarternary codes and associated sphere packings. IEEE

Trans. Inform. Theory 38, 2, 227–246.
Litsyn, S., and Vardy, A. 1994. The uniqueness of the best code. IEEE Trans. Inform. Theory 40, 5, 1693–1698.
MacWilliams, F.J., and Sloan, N.J.A. 1997. The Theory of Error-Correcting Codes, North-Holland.
Mir, K.U. 1999. A restricted genetic alphabet for DNA computing. Proc. DNA Based Computers II, DIMACS Workshop,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science 44, 243–246.
Rose, J.A., Deaton, R., Franceschetti, D.R., Garzon, M., and Stevens Jr., S.E. 1999. A statistical mechanical treatment

of error in the annealing biostep of DNA computation. Special Program in DNA and Molecular Computing at the
Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, FL, Morgan Kaufmann.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F., Rothemund, P.W.K., and Adleman, L.M.
1999. A sticker-based model for DNA computation. Proc. DNA Based Computers II, DIMACS Workshop, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 44, 1–29.

Seeman, N.C. 1990. DeNovo designs of sequences for nucleic acid structural engineering. J. Biomolecular Structure
and Dynamics 8, 573–581.

Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittman, M., and Davis, R.W. 1996. Quantitative phenotypic analysis
of yeast deletion mutants using a highly parallel molecular bar-cording strategy. Nature Genetics 16, 450–456.

Smith, W.D., and Schweitzer, A. 1995. DNA computers in vitro and in vivo. NECI Technical Report, March 20, 1995.
Wetmur, J.G. 1991. DNA probes: Applications of the principles of nucleic acid hybridization. Critical Reviews in

Biochemistry and Molecular Biology 26(3/4), 227–259, 227–259.
Winfree, E., Liu, F., Wenzler, L.A., and Seeman, N. 1992. Design and self-assembly of two-dimensional DNA crystals.

Nature 394, 6, 539–544.

ON COMBINATORIAL DNA WORD DESIGN 219

Zhang, B.T., and Shin, S.-Y. 1998. Molecular algorithms for ef� cient and reliable DNA computing. Proc. 3rd Ann.
Genetic Programming Conf., Morgan Kaufmann, 735–742.

Address correspondence to:
Anne E. Condon

The Department of Computer Science
2366 Main Mall

University of British Columbia
Vancouver, B.C.

V6T 174, Canada

E-mail: condon@cs.ubc.ca

