
Statistical signals in bioinformatics
Samuel Karlin†

Department of Mathematics, Stanford University, Stanford, CA 94305-2125

Contributed by Samuel Karlin, July 7, 2005

The Arthur M. Sackler Colloquium of the National Academy of Sciences, ‘‘Frontiers in Bioinformatics: Unsolved Problems and Chal-
lenges,’’ organized by David Eisenberg, Russ Altman, and myself, was held October 15–17, 2004, to provide a forum for discussing
concepts and methods in bioinformatics serving the biological and medical sciences. The deluge of genomic and proteomic data in
the last two decades has driven the creation of tools that search and analyze biomolecular sequences and structures. Bioinformatics
is highly interdisciplinary, using knowledge from mathematics, statistics, computer science, biology, medicine, physics, chemistry, and
engineering.

BLAST � repeat sequences � r-scan statistics � frequent and rare oligonucleotides and peptides

M
ore than 200 bacterial, 20
archaeal, and 20 eukaryotic
genomes as well as 1,600
viral genomes have been

completely sequenced. Moreover, several
hundred mitochondrial chromosomal sets
and at least 30 chromosomal plastids have
been sequenced. A deeper understanding
of basic biology can be gained from a
comparison of organisms in different evo-
lutionary lineages, and this understanding
is the aim of the currently intense se-
quencing efforts. New species thriving in
environments throughout the earth and
oceans reveal microbes in geothermal ar-
eas, in arctic ice, in acidic springs, in toxic
waste sites, in assorted air currents, and in
subterranean habitats (1, 2). Unique mixes
of microbes that thrive in different ecosys-
tems have been described (3). For exam-
ple, a new type of bacterial rhodopsin was
discovered by genomic analysis of natu-
rally occurring marine bacterioplankton
(4). Prokaryote genomic samples from the
human oral cavity and the intestinal tract,
and their changes in time, are progres-
sively being followed (5). The diversity of
microbes in cutaneous wounds of humans
is of great practical importance. Sequenc-
ing efforts facilitate health research and
understanding of pathogenesis and may
have commercial, industrial, and agricul-
tural benefits as well. It is clear that lack
of data is not a problem today; rather, the
challenge will be the analysis of the vast
quantity of information already available.

Bioinformatic methods underlie most of
computational biology. Current emphasis
is on computationally efficient and wide-
ranging algorithms that have been imple-
mented and tested on real and simulated
data sets. Exact and empirical algorithms
have been applied to genomics, proteom-
ics, gene networks, structure prediction,
and drug design. Bioinformatic tools are
used daily, including the generalized
BLAST programs (sequence similarity eval-
uations) (6–9); GENSCAN and GENIE (gene
discovery) (10, 11); SAPS (statistical analy-
sis of protein sequences) (12); CLUSTAL
and ITERALIGN (multiple sequence align-

ment) (13, 14); r-scan statistics (15) (de-
tecting anomalous spacing of specific
markers distributed along a sequence);
and ‘‘frequent’’ and ‘‘rare’’ oligonucleo-
tides and peptides (sequence words
that occur statistically more or less fre-
quently than would be expected by
chance) (16–18).

The standard BLAST protocol compares
a query sequence with a large database of
protein sequences to uncover significant
similarities that help to circumscribe func-
tion and structure of the query sequence.
BLAST-like programs are extended to
searches using multiple alignments (13, 14,
19); to single-sequence analyses (20), e.g.,
to identify DNA-binding peptides and
transmembrane tracts; and to three-di-
mensional analyses, e.g., to identify charge
clusters in protein structures and cysteine
knots (21, 22). The BLAST programs cur-
rently serve �250,000 queries per day at
the National Center for Biotechnology
Information (NCBI) in Washington, DC.
The theory relies on fundamental proper-
ties of extremal statistical distributions and
the stochastic theory of large deviations
(23–25). There are natural relationships
between these analyses and studies on the
maximum service time among customers
in queuing systems, as well as in applica-
tions to insurance risk and traffic flow
models (see refs. 26 and 27 and below)

DNA microarrays (DNA chips) aim to
dissect gene expression under varied phys-
iological, clinical, and environmental con-
ditions. Microarrays are used to monitor
well characterized genes in different situa-
tions; to discover disease genes; to assess
gene expression during treatment with
drugs, chemicals, or toxins; to discover
genes that compensate for knockout mu-
tations; and to profile gene expression in
temporal and in tissue-specific localiza-
tions (28–30). Experimental evaluations of
protein abundances under different cellu-
lar conditions can be assayed by two-di-
mensional gel electrophoresis (31) and
supplemented by mass spectrometry, anti-
body associations, and biochemical tests.
Codon usage analysis offers another way

to evaluate gene expression with a differ-
ent set of limitations (32–34). Ribosomal
protein (RP) codon frequencies deviate
strongly from average codon frequencies
in many bacteria, especially during rapid
growth. By contrast, the expression levels
for RPs in archaea are variable; 15–30%
of archaeal genes have average codon
usage (35, 36). The most biased codon
usages are found for genes generally
involved in general processes of transcrip-
tion�translation, chaperone�degradation,
and energy metabolism (33, 34).

Highlights of the Sackler Colloquium
Discussions at the Colloquium focused on
the following topics: sequence patterns
(12, 18, 20), comparative genomics and
proteomics, modeling of molecular inter-
actions and gene regulatory networks,
management and interpretation of protein
expression data (33, 34), microarrays (29),
over- and underrepresentations of words
in genomes and proteomes, molecular
evolution (37–39), alternative splicing (40–
43), polymorphisms and SNPs (44),
genomic haplotypes (HAP-MAP) (45),
and three-dimensional macromolecular
taxonomy (46). In this article, I will sum-
marize results and perspectives issuing
from Colloquium talks and then review
some general concepts and methods of
bioinformatics.

George Miklos called attention to diffi-
culties arising from noise in microarray
data sets. Conflicts in the clinical applica-
tion of microarray data to cancers and
complex diseases are exposed in refs. 47
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and 48. Marc Gerstein reviewed data on
the numbers and distribution of pseudo-
genes (called fossil records) over several
complete eukaryotic genomes, especially
the human genome. Ribosomal protein
genes predominate among pseudogenes in
human sequences counting more than
2,000 cases (49, 50). In chromosomes 21
and 22 (see ref. 51), the median length of
processed pseudogenes is approximately
the same median length as that of single-
exon (intronless) genes. The median
length of single-exon genes is approxi-
mately congruent to the median internal
exon length times the average number of
exons per gene. These observations sup-
port the proposition that many single-exon
genes derive from processed multiexon
genes transposed into the genome (51).
David Haussler identified the most con-
served (called ultraconserved) intergenic
regions across several higher eukaryotic
genomes (human, chimpanzee, mouse, rat,
dog, and chicken) and attributes this con-
servation to purifying selection (52). Pavel
Pezner described synteny (genome rear-
rangements) and characterizations of
breakpoints in mammalian genomes (53).

Several Colloquium talks focused on
the regulatory role of RNA selection
pressure and aspects of splicing. Chris
Burge used the specificity of splicing to
identify exons in the proximity of exon-
splice enhancer sequences and exon-
splice silencer sequences (54, 55). Chris
Lee pointed out that alternative splicing
(AS) in humans is found at levels from
60% to 80%, according to tissue, devel-
opmental stage, and disease contingen-
cies. Some AS exons can be related to
protein domains. On human chromo-
some 22, at least 25% of gene structures
have 5� and 3� untranslated exons
(UTEs) (51). These UTEs may play an
important role in AS, as in the case of
G protein-coupled receptor proteins.
These analyses were carried out on al-
ternatively spliced exons in comparing
human–chimp, mouse–rat, and human–
mouse sequences. Amino acid mutation
differences and synonymous mutation
differences could be interpreted in
terms of AS. Synonymous mutations are
known to disrupt existing splicing signals
as they introduce new splicing signals
leading to potential human diseases. Lee
proposed that AS is adaptive and posi-
tively selected during evolution and hy-
pothesized the creation of new exons by
means of an AS mechanism (56). He
emphasized RNA-level selection pres-
sures distinguished from protein-level
selection. Shawn Eddy discussed RNA
genes and RNA-based regulatory cir-
cuits that control gene function (57).

Two sessions focused on proteomic in-
teractions, networks of molecular interac-
tions, and chromosomal adjacency of the

interacting genes. Per Bork described gene
control in metazoans and how it influ-
ences genome evolution. He proffered a
gene neighborhood on predicting gene
function (43). Hanah Margalit reported
how gene regulation and the arrangement
of protein pairs participate in protein–
protein interactions in Escherichia coli and
Saccharomyces cerevisiae. She displayed
situations of chromosomal adjacency
among these genes (58). Shoshana Wodak
also dealt with protein–protein interaction
and the structural problem of docking
(59). David Eisenberg reviewed several
programs relevant to the study of protein
interactions comparing multiple bacterial
genomes. The information can be applied
in structural genomics to determine pro-
tein partners and predict protein interac-
tions (60, 61). An interesting family of
proteins featured in Eisenberg’s talk are
the PGRS (polymorphic GC-rich repeti-
tive sequences) of Mycobacterium tuber-
culosis. There are genes for �70 such
proteins in the M. tuberculosis genome
that have many glycine–glycine doublets,
have few charged, aliphatic, or aromatic
residues, and are virtually devoid of cys-
teine residues. Their composition pre-
cludes electrostatic, hydrophobic, or disul-
fide-bridge interactions. M. tuberculosis
pathogenicity islands contain putative
PGRS genes (62), and there is evidence
to suggest that the proteins encoded by
these genes are surface-exposed and can
obstruct the host immune system. Some
experimental evidence suggests that sev-
eral PGRS genes contribute virulence and
persistence of M. tuberculosis in macro-
phage environments (63).

Michael Levitt compared a hierarchy of
programs useful for structural protein
alignment (64). Helen Berman reviewed
the tools available for probing the Protein
Data Bank (PDB) crystallographic data-
base (65). Volker Brendel and Terry
Gaasterland discussed the functional plant
genomics of Arabidopsis thaliana and
maize. The challenges of building data-
bases that associate genotype with pheno-
type were discussed by Russ Altman (66).
My focus was on the subject of a charac-
terization of the highly expressed genes in
archaeal genomes (35).

Context-dependent mutational pro-
cesses (mutations that depend on flanking
nucleotide content) in mammalian species
were considered by Phil Green (67) who
emphasized the methylation–deamina-
tion–mutation scenario associated with the
low frequency of the CpG dinucleotide.
Green proposed that mutational asymme-
try results from transcription-coupled re-
pair. He also discussed a generation time
effect of mutations that occur in conjunc-
tion with DNA replication (68). CpG mu-
tations have been reported to have a re-
duced generation time effect (67).

CpG Dinucleotide Suppression
The role of CpG dinucleotides, particu-
larly in the context of CpG methylation, is
of considerable interest (e.g., see ref. 69).
In addition to causing increased mutation
rates, CpG methylation alters the shape of
the major groove of DNA, leading to
modified chromatin structure, and thus it
is capable of altering patterns and rates of
gene transcription (70). Recent studies in
humans have shown that the nonpromoter
CpG islands are targets for de novo meth-
ylation, playing a role in cancer and aging
(71). As a mechanism for modifying gene
expression levels and tissue-specific ex-
pression, it offers regulatory possibilities
that are exploited in genomic imprinting,
X chromosome inactivation, transposon
inactivation, and developmental processes
(71–73). It has been suggested that meth-
ylation is partly a defense against the up-
take and integration of foreign DNA (74).
CpG islands have also been suggested to
be origins of replication (75). However,
CpG suppression can be strong even in
the absence of CpG methylation (76).

A natural measure of dinucleotide bias
is the symmetrized dinucleotide relative
abundance values �XpY � fXpY�fXfY, where
fX, fY, and fXpY are the frequencies of the
bases X and Y and the dinucleotide XpY,
respectively, calculated over a DNA strand
concatenated with its inverted comple-
ment. � can be computed for complete
genomes or sequence ‘‘windows.’’ Statisti-
cally, the dinucleotide XpY is said to be
underrepresented if �XpY � 0.78 and to be
overrepresented if �XpY � 1.23 (18). Early
biochemical experiments measuring near-
est-neighbor frequencies established that
the set of dinucleotide biases is a remark-
ably stable property of the DNA of an
organism (77–79). From this perspective,
the set of dinucleotide biases constitutes a
‘‘genomic signature’’ that can discriminate
sequences from different organisms. The
dinucleotide biases appear to reflect spe-
cies-specific properties of the enzymes of
DNA modification, replication, and repair.
In addition, the genomic signature is use-
ful for detecting pathogenicity islands and
horizontal gene transfer between bacterial
genomes (62).

Human nuclear DNA and that of other
mammals is significantly CpG-suppressed,
but generally nonvertebrate DNA does
not have this property. Animal mtDNA is
not methylated, apparently because meth-
yltransferases cannot gain access to the
mitochondrion, yet almost all metazoan
mitochondria are CpG-suppressed (80).
CpG has the highest free energy (stacking
stability) of all dinucleotides, 16% higher
than GpC (81). Accordingly, reduced
CpG helps local strand separation, with
the potential for higher replication and
transcription rates, and easier access for
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host factors. Differences between species
in their DNA replication, repair, and tran-
scription machinery might favor different
dinucleotide abundances; for example,
through variations in processing efficiency
and accuracy depending on local DNA
structure (base-step configuration) and
DNA curvature, DNA modifications, and
generation of context-dependent mutation
rates. DNA topology is determined princi-
pally by the base-step configuration, spe-
cifically through dinucleotide stacking en-
ergies and charge interactions (82).
Further, many protein–DNA interactions
involve DNA bending as well as sequence-
specific interactions. DNA repair enzymes
recognize lesions in DNA by their shape
(83). Hence, the dinucleotide biases that
characterize different genomes might re-
sult from coevolution of genome dinucle-
otides with genome maintenance pro-
cesses (84–88).

Some Methods for Sequence Analysis
(i) Score-Based Sequence and Structure
Analysis. The theory of score-based meth-
ods has been developed in three contexts:
(i) analysis of a single sequence to identify
distinctive sequence features (e.g., mem-
brane tracts, proline concentrations, etc.),
often reflected in motifs of appropriate
high score (20, 23); (ii) comparisons
among multiple sequences to identify seg-
ments having high similarity score (13,
14); and (iii) patterns that can be investi-
gated in protein structures (e.g., charge
clusters, cysteine knots, etc.) (21, 22).

(ii) r-scan Statistics. r-scan statistics pro-
vide means for characterizing nonran-
domness in the distribution of a specific
marker array in DNA and amino acid
sequence data. r-scan methodology can
also be used to discern significant peaks
in the analysis of counts in sliding win-
dows. In particular, r-scan statistics char-
acterize clustering, overdispersion, or
excessive evenness in the distribution of
specific markers in a sequence. By vary-
ing r, sequence organization on different
scales can be analyzed (15).

(iii) The Identity of Frequent (Abundant) and
Rare (Avoided) Oligonucleotides and Pep-
tides, Including General Analysis of Compo-
sitional Extremes. For example, the Chi
sequence CGTGGTGG, abundant in the
E. coli genome, is important in promoting
recombination events. Over- and under-
representation measures in evaluating
compositional biases in short oligonucleo-
tides include the examples of CpG dinu-
cleotide suppression in vertebrates and the
CTAG tetranucleotide underrepresenta-
tion in many proteobacterial and archaeal
genomes.

(iv) Repeat Patterns. These occur at three
levels: (i) microsatellites and minisatellites,
e.g., the triplet repeats in neurological
diseases; (ii) motifs, highly frequent occur-
rences of words of moderate length; and
(iii) two or more occurrences of very long
words that tolerate a few short mis-
matches and�or indels (89–91).

(v) Molecular Evolution. This method com-
prises prokaryotes compared to eu-
karyotes (36, 92), issues of horizontal
gene transfer (93, 94), phylogenetic re-
constructions (37, 38, 95–97), and the
existence of three domains of life (98,
99). Conflicting results often accompany
phylogenetic inference with respect to
RNA, DNA, or protein sequences across
diverse organisms (37). Causes contrib-
uting to these conflicts relate to ambigu-
ities in identifying homologous charac-
ters in alignments, sensitivity of tree-
making methods to unequal
evolutionary rates (e.g., fast evolution),
biases in species sampling, unrecognized
paralogy, functional differentiation, and
difficulties with the assumptions and
approximations used to infer phylogeny.
Attempts to surmount these difficulties
by averaging over many proteins and
gene order considerations are problem-
atic because of inherent biases of se-
lected families, lack of signal in others,
and lateral transfer events, fusion,
and�or chimerism. Assessing reliability
by using the bootstrap protocol is strewn
with obstacles because of lack of inde-
pendence and inhomogeneity in the mo-
lecular data. Several recent methods
with limitations of their own include the
signature of Gupta (98), the genomic
signature introduced by Karlin and col-
leagues (87), discrimination by protein
domain Pfam content (100), and struc-
tural folds (38, 46).

Score-Based Methods
Probabilities of High-Scoring Segments. The
simplest model is as follows (20). Let {X1,
X2, . . . , Xn} be independent identically
distributed (i.i.d.) letters drawn from a
finite alphabet {ai} with associated scores
{si} such that Prob{X � si} � pi, i � 1,
2, . . . , r, pi � 0, �pi � 1. Let

S0 � 0, Sm � �
i�1

m

Xi, m � 1, 2, . . . ,

be the cumulative score process. The
quantity

Mn � max
0�k�l�n

�Sl � Sk�

corresponds to a segment of the se-
quence {Sm}0

n with maximal aggregate
score. The essential assumptions are

that {Sm} entails a negative mean score
and one or more si is positive. A quan-
tity fundamental to the asymptotic (n 3
�) distribution of Mn is the unique posi-
tive root �* of the equation E[exp(�*X)]
� 1 that is

�
i�1

r

pie�*si � 1,

where E signifies expectation. It has
been proven (24) for n large that

Pr�Mn �
ln n
�*

� x�
� 1 � exp	
K*e
�*x� ,

[1]

with accessible computation for K* and �*
(6, 20). The formula in Eq. 1 can be used
to establish benchmarks of statistical sig-
nificance. For example, we set the right
side of Eq. 1 to some significance level,
for example, p* � 0.01, and solve for x*
� x(p*). A maximal segment score ex-
ceeding (ln n��*) � x* is significant at the
p* level.

The analysis also provides information
on the composition of high-scoring seg-
ments and related variables (6, 20, 23, 24,
101). For each level y � 0, let L(y) � T(y)

 K(y) be the length extending from K(y)
� 1 to T(y) as the first segment of aggre-
gate score exceeding y (20). Let Um be a
sequence of vector random variables
where Um is independent of Xk, k 
 m.
Form

W�y� � �
K�y��1

T�y�

Uk

so that W(y) cumulates Uk samples in a
high-scoring segment. Then W(y)�L(y) 3
u* as y 3 �, u* � E[U1e�*X1]. Taking Xk

� A equal to 1 and 0 otherwise, then
W(y)�L(y) is the fraction of samples in A
that lie in a high-scoring segment. Thus,
over high-scoring segments, the relative
frequency of score si is approximately qi

� piexp{�*si} (6, 20). It follows that
scores defined by si � ln(qi�pi) (a positive
multiplicative scaling of si will not change
any of the theory or its applications) iden-
tify high-scoring segments of target fre-
quencies qi. These log ratio scores auto-
matically satisfy the assumptions of
negative mean score with some si positive.

Examples of Natural Scoring Assignments.

(i) Amino acid scores emphasizing posi-
tive charge. For Lys (K) and Arg (R)
set s � �2; for Asp (D) and Glu (E)
set s � 
2; and for other amino ac-
ids set s � 
1.
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(ii) Scoring applied to gene finding (10,
18, 23). A 61 letter alphabet (codons)
	 � 1, . . . , 61; q	 � observed fre-
quency in coding; p	 � observed fre-
quency of triplet nucleotides gener-
ally; and s	 � ln(q	�p	).

(iii) Scores for hydrophobic proflies can
be based on the Kyte–Doolittle scale
or any of the many other scales for
measuring hydrophobicity (102).

(iv) Scores derived from target frequen-
cies. Letters in a high-scoring seg-
ment have an intrinsic biased compo-
sition such that letter ai occurs in
these segments with frequency qi �
pie�*si. This result can be used as the
basis for defining the scoring system.
Suppose the overall letter frequencies
are {p1, p2, . . . , pr}. Let {q1, q2, . . . ,
qr} be a set of target frequencies that
corresponds to the composition in
representative segments of the type
we wish to identify. The scores si �
ln(qi�pi), i � 1, 2, . . . , r are appropri-
ate because in a high-scoring segment
letter ai occurs approximately with
the frequency qi � piexp(�*si).

(v) High-scoring assignments that iden-
tify transmembrane protein segments
(see Fig. 1). qi � frequencies over A
segments (where A equals experi-
mentally established transmembrane
tracts) and pi � overall letter fre-
quencies. The scores for high-scoring
segments with si � log(qi�pi) gener-
ally identify transmembrane seg-
ments. Combining experimental data
also can be adapted to identify DNA-
binding proteins, signal peptides, and
amphipathic helices (20).

Connections to Queuing Models. The stan-
dard G�G�1, one server queue, involves
(i.i.d.) service times U1, U2, . . . and (i.i.d.)
interarrival times T1, T2, . . . of successive
customers (103). A stable queue results if
E[Ui 
 Ti] � 0 (the queue line does not
become infinite). Let Ui 
 Ti � Xi. The
maximal waiting time among the first n
customer is the same as the maximal seg-

ment score of the sequence {X1, X2, . . . ,}.
The analysis also applies with Markov
dependence among the {Ui} and sepa-
rately among the {Ti}. Define Ua,b(x) � 1,
a � x �b; 0 otherwise. During high-scor-
ing intervals

#	a � Xi � b�K�y� � i � T�y��

� �1�L�y��3 E�Ua,b�X�e�*X�

as y 3 � .

In particular, during long waiting times
among the first n customers, the fraction
of interarrival times between a and b is
E[Ua,be�*X].

Multiple High-Scoring Segments. Applica-
tions of the scoring method often concern
the sum of the t highest segment scores
(23, 104). This assessment is relevant
when there may be several distinct seg-
ments within the sequence of a given type
(e.g., several transmembrane segments,
multiple charge clusters, etc.). For se-
quence comparisons, insertions or dele-
tions can break an alignment into several
pieces. Denote the t highest-scoring seg-
ments of the model of Eq. 1 as Mn

(1),
Mn

(2), . . . , Mn
(t). It is convenient to deal

with the centered segment scores Vn
(i) �

Mn
(i) 
 (ln nK*)(1��*), i � 1, 2, . . . , t.

The limiting density of {Vn
(i)}i�1

t is f(x1,
. . . , xt) � (�*)t

exp{
e
�*xt}e
�*�x1�x2�. . .�xt� defined on
the domain xt � xt
1 � . . . � x1.

The number of high-scoring segments
of level �(log n)��* � x closely adheres
to a Poisson distribution with parameter
K* exp{
�*x}.

Maximal Score for Sequence Matching (23,
24). In DNA and protein sequences,
matching segment scores are of the form
F(ai, a�j), where ai is the ith letter in the
first sequence, a�j is the jth letter in the
second sequence, and F(x, y) is the score
for the letter pair (x, y). The maximal seg-
ment score allowing shifts is

Mn � max
0�i, j�n
�

��0

� �
l�1

�

F�Xi�l, Yj�l�� .

Suppose the two sequences are indepen-
dent: X1, . . . , Xn i.i.d. following the distri-
bution law 
(x) and Y1, . . . , Yn i.i.d. �(y).
Of primary relevance is the case where
the expected score per pair is negative
and there is positive probability of attain-
ing some positive pair score. So we as-
sume E
(x)��(y)(F) � 0, (
 � �)(F � 0)
� 0, in which case Mn 3 � corresponds
to a rare event. Also, Mn�log n 3 �*
where 0 � �* � �. Determine �* � 0
to satisfy E{�*F} � 1. The conjugate
measure is defined to be 	*(x, y) �

(x)�(y)e�*F(x,y), which is the two-
dimensional analog of target frequencies.
The relative entropy for two probability
measures 
 and � is the quantity

H���
� � �
i

��ai�log���ai��
�ai�� .

H�	*�
 
 ��

� 2max�H�	*X�
� H�	*Y���� ,

Condition E

where 	*x is the marginal x distribution of
	 and 	*y corresponds to the y variable.
Condition E holds if F(x, y) � F(y, x), i.e.,
F is symmetric and 
 � � (i.e., 
 and �
are quite similar) (23–25).

Comparing Two Sequences (24). Let sij be
scores for the pairing ai 7 a�j that occur
with probabilities pip�j. Assuming
�pip�js(i, j) is negative, �* is the unique
positive solution of �pip�jexp(�*s(i, j))
� 1, and the sequence lengths N and M
grow roughly at similar rates, then the
maximal matching segment score S sat-
isfies the probability law Pr{S � y} � 1

 exp{
K*MNe
�*y}.

The Significant Segment Pair Alignment
(SSPA) Protocol (14). A pairwise amino acid
similarity matrix s(i, j) [e.g., BLOSUM, PAM
(105, 106)] is often used to assess amino
acid matching. Given two sequences to be
aligned, the global similarity between the
two protein sequences is scored as follows.
First, all high-scoring segment pairs
(HSSPs), significant at the 1% level, are
identified. Next, the HSSPs are combined
into a consistent alignment, labeled SSPA.
The alignment score is the maximal value
over all sets of sequence segments calcu-
lated by summing HSSP segment scores
and then normalizing to allow compari-
sons among proteins of different sizes and
quality (14). For the sequence pairing
with at least one segment having a signifi-
cantly high score match, additional seg-
ments are identified by using a lower

Fig. 1. High-scoring assignments to identify transmembrane protein segments. A, experimentally
established transmembrane tracts.
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threshold. The use of the reduced thresh-
old helps to fill in regions between the
more significant HSSPs. The SSPA scores
can be used to deduce groupings of se-
quences. A group is deemed coherent if
the SSPA score within the group invariably
exceeds the SSPA scores with sequences
not in the group and if the scores for all
members of the group are consistent. The
ITERALIGN multiple alignment method
uses a symmetric-iterated protocol that
combines a motif-finding procedure and a
local dynamic programming procedure.
The use of each sequence as a template to
which all sequences are aligned distin-
guishes ITERALIGN from methods of pro-
gressive pairwise alignments. Consensus
sequences are generated from each of the
alignments, and the procedure is iterated
leading to enhanced discrimination of
conserved blocks of alignment and vari-
able-length unaligned insertions. Each of
the aligned blocks can be independently
studied as a potential functional�structural
unit.

Charge Clusters in Protein Sequences. A
charge cluster indicates a nonrandom dis-
tribution of the charged residues in a pro-
tein sequence, producing high local con-
centrations of certain charge types. In
eukaryotes, charge clusters are often asso-
ciated with transcriptional activation, de-
velopmental control, and regulation of
membrane receptor activity, and they are
generally lacking in cytoplasmic enzymes
and housekeeping proteins. Clusters of
opposite charge in different proteins may
mediate the formation of multiprotein
complexes. Charge clusters of like sign
may help to keep certain protein assem-
blages apart. Charge clusters within one
protein could contribute to intramolecular
folding or cooperative protein–protein and
protein–nucleic acid interactions.

The percentage of proteins with signifi-
cant charge clusters averages �20% to
25% in most eukaryotic species but only
�7% in E. coli. Proteins with multiple
charge clusters are uncommon, �3.5% in
human, mouse, fly, and yeast, and ex-
tremely rare in E. coli (� 0.1%) (107).
Most developmental control proteins in
Drosophila (e.g., Antp, Bicoid, Ftz) carry
at least one charge cluster, commonly
proximal or overlapping a homeodomain
or a zinc-finger region. The homeodomain
is generally associated with a mixed-
charge cluster that mediates DNA bind-
ing, often in a cooperative dimeric confor-
mation. The homeoproteins Cut,
Deformed, Engrailed, and Paired carry
multiple charge clusters. The nervous sys-
tem embryogenetic protein Cut (2175 resi-
dues long) contains five separated charge
clusters, but a homeodomain ascribed to
positions 1743–1803 does not qualify as a
charge clusters by our statistical tests.

Regulatory proteins frequently interact
with DNA, RNA, or other proteins. Elec-
trostatic interactions that exert relatively
long-range, rapid, and localized effects
presumably mediate or facilitate processes
such as protein sorting, translocation,
docking, orientation, and binding to DNA
and to other protein molecules. It is im-
portant to distinguish the occurrence of a
charge cluster from a preponderant net
charge over the whole protein. For exam-
ple, the eukaryotic histones have a sub-
stantial net positive charge of at least
15%, but the charge distribution is with-
out clusters.

Nonrandomness in a Marker Array Along
a Sequence
Particular markers (e.g., specific DNA
restriction sites, nucleosome placements,
gene locations) are distributed along chro-
mosomes. Let Xi be the gap (in DNA
units) between the ith and the (i � 1)th
markers. General issues of sequence het-
erogeneity lead to statistical consider-
ations of the r-scan process{Ri �
�j�i

i�r
1Xj}, the array of distances between
the ith and the (i � r)th markers, i � 1, 2,
3, . . . , where r is an integer parameter. It
is of interest to characterize r-scan lengths
harboring clusters or overdispersions of
the markers along the sequence. n �
number of markers. We form the order
statistics R1

* � R2
* � . . . � Rn
r�1

* . Let
mk

(r) � Rk
* (kth smallest), Mk

(r) � Rn
r
k�2
*

(kth largest), say k � 1, 2, 3; mk
(r) too

small indicates clustering; mk
(r) too large

and�or Mk
(r) too small indicates significant

evenness; and Mk
(r) too large indicates

overdispersion. The distribution of a
marker is evaluated by comparing the dis-
tribution of {Ri

*} calculated for a random
sequence to those actually observed. Let
the minimum and maximum r-scans be
m(r) � mini Ri

* and M(r) � maxi Ri
*, re-

spectively. The theoretical probabilities for
the extremal r-scan statistics of a marker
array of n points distributed randomly
(uniformly), are

Pr	m �r� �
x

n1�1/r
 � exp{
�}, � �
xr

r!
,

Pr	M �r� �
1
n

� ln n � �r � 1� ln ln n � x�

� exp	

� , 
 �

e
x

�r � 1�!

These equations allow criteria whether
minimum and maximum observed spac-
ings deviate significantly from random
expectations. For example, setting the
probability of the minimum to a required
significance (typically 0.01) yields the con-
dition exp(
xb

r �r!) � 0.01, which is solved
for xb, yielding the threshold br

* � xb�

n(1�1/r). For a sequence of length L, when
m(r) � br

*L, an r-scan cluster is asserted.
Similarly, a significantly even spacing is
indicated by m(r) � ar

*L, where ar
* is deter-

mined from the first equation by setting
the probability of m(r) to 0.99. For sam-
pling from a density f(x),

� �
xr

r! �
0

1

� f����r�1d�.

Distribution of the Tetranucleotide CTAG
Sites in Human Herpesviruses and Pro-
teobacterial Genomes. Human cytomegalo-
virus (229 kbp) contains 341 CTAG sites
(frequency � 0.0015). A 10-scan cluster at
position 91832 stretching 1,046 bp gives
the significant level (0.01), which overlaps
the orilyt region of human cytomegalovi-
rus (108). The Epstein–Barr virus (172
kbp) contains 342 CTAG sites (fre-
quency � 0.002). A significant 5-scan clus-
ter occurs at position 53082 stretching 255
bp, which again overlaps the orilyt region
of Epstein–Barr virus. The human herpes-
viruses herpes simplex virus 1 and varicella-
zoster virus show no significant 1-, 3-, 5-,
and 10-cluster scans; no significant 1-scan
clusters occurred in all genomes.

The frequency of CTAG is significantly
low in many proteobacterial and archaeal
genomes. Some possible contributing fac-
tors may be as follows. The DCM methyl-
ase (short-patch DNA repair system in
E. coli) targets the second C of the pen-
tanucleotide CCAGG, which can then
mutate by deamination to CTAGG. Gen-
erally, the repair system corrects T�G mis-
matches back to C�G. However, if the
repair system lacked perfect specificity
and sometimes corrected legitimate
CTAG tetranucleotides, this configuration
might operate to some extent in limiting
CTAG representations. The perfect dyad
symmetry ACTAGTT AACTAGT is the
consensus binding site for the E. coli trpR-
encoded repressor, and this regulatory
activity might impose sufficient rarity of
CTAG. There is some evidence from the
crystal structure of the trp-repressor�oper-
ator complex that the two CTAG tet-
ranucleotides ‘‘kink’’ when bound by trpR,
which may, under conditions of supercoil-
ing, be structurally deleterious (109). It
has been demonstrated experimentally
that CTAG promotes crosslinking be-
tween complementary DNA strands by
UV irradiation at a much greater rate
than any other tetranucleotides (110). Be-
cause crosslinking generally entails delete-
rious effects, avoidance of CTAG motifs
could be a natural consequence.

CTAG is missing in the left half of the
�-genome in a segment of 24,743 bp, and
occurrences concentrate in three clusters
in the right half. Eight are located in non-
coding regions or at stop codons, four in
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ORFs of undetermined expression, one in
the CI gene near the carboxyl end, and
one in gene S (affecting cell lysis). Thus,
the distribution of CTAG sites in � is rare
and nonrandom. In E. coli, CTAG occurs
relatively more frequently in the rRNA
operon than elsewhere. The low fre-
quency of CTAG persists in proteobacte-
rial genomes entailing clustering in the
16S and 23S ribosomal RNA genes. Is it
possible that CTAG sites are nucleation
or anchor points in the assembly of the
ribosomal complex?

Cluster of DAM Sites in the ori-C Region of
E. coli. DAM sites are important regula-
tory signals composed of the tetranucle-
otide GATC. These sequences serve in
part to distinguish the template strand
(fully methylated) from the newly synthe-
sized strand (unmethylated) during semi-
conservative replication and repair. These
sites also are associated with genes in-
volved in the SOS response, transposon
function, and bacteriophage infection. In
the 245-bp sequence that defines the mini-
mal ori-C region of E. coli, there are 8
DAM sites. In a 350-bp stretch flanking
the ori-C region, there are an additional
12 DAM sites. Do the 8 DAM methyl-
ation sites observed in a stretch of 245 bp
that includes the E. coli origin of replica-
tion or that are joined with the additional
12 DAM sites located in the flanking 350
bp or both represent a statistically signifi-
cant cluster? We apply the formula first in
the case of r � 7, where n is the number
of DAM sites over the E. coli genome. In
the E. coli genome, the GATC frequency
is 0.0044. There are 20,680 DAM sites
throughout the genome. Now, exp{
x7�
7!} � 96 bp when x � 1.75. Eight DAM
sites in a stretch of 245 bp somewhere in
the E. coli genome would occur with
probability �0.06. Thus, the concentration
of DAM sites in the ori-C region of E.
coli is not statistically significant. How-
ever, the calculation with r � 19 implies
that a segment of 1,068 bp in length or
less containing 20 DAM sites presents a
statistically significant cluster.

Applications of scan-statistics analysis
for a fixed-length sliding window pertain
to phenomena such as clusters of disease
in time, generalized birthday proximities,
and rth nearest-neighbor problems. Early
work on scan statistics focused mainly on
exact formulae (111), exploiting calcula-
tions of coincidence probabilities in diffu-
sion stochastic processes. The asymptotic
results reported here are based on the
powerful Chen–Stein method of Poisson
approximations (112, 113).

Frequent Words (Oligonucleotides
and Peptides)
A classical approach for deciding whether
a given word is frequent is to count the

number of its occurrences N(L) in a se-
quence of length L and compare this
count with the expected count, postulating
independently or Markov-generated se-
quences. Let 
 be the mean and �2 the
variance of the length between successive
occurrences of the target word. For the
independence model, the quantity c(L) �

3/2(N(L) 
 L�
)�(��L) follows approx-
imately the standard normal distribution
for large L. The tails of the normal distri-
bution can be used as thresholds for rare
and frequent levels. However, this method
is difficult to implement, especially the
computation of � for each word (114).

Some problems concerning long repeats
in a random letter sequence are idealized
into a ball-in-urn model (urns correspond
to all DNA words of a given size, and
balls refer to the observed words in a
given sequence). Limit theorems for sev-
eral generalized occupancy problems are
germane. A sequence of n indistinguish-
able balls are allocated independently
equally likely into an array of m urns. Two
Poisson limit laws refer to the variable Nr,
the number of urns containing r balls:
with n, m3 �, Nr has a Poisson limit law
with parameter c�r! if n�m(r
1)/r3 c � 0;
and if n � m(lnm) � rm(lnlnm) � mx �
o(m), then Nr has a Poisson limit law with
parameter exp(
x�r!). Limiting distribu-
tions for the waiting times until some urn
first acquires r balls ensue through their
duality relations with the occupancy prob-
lems. A compendium of results of this
kind can be found in ref. 17.

As possible words (urns) and L (actually
L 
 s � 1) samples then, as L3 �,
As3 � and Pr{urn 1 contains � r
balls} � [L�As]r (1�r!) for moderate r and
As �� L. The expected number of such
frequent words is approximately (L�As)r
1

(L�r!) � �, and provided � is small, the
number of frequent words is approxi-
mately Poisson-distributed with parameter
� (115, 116). Guided by these formulas,
for a given sequence of length L, we de-
termine the word size s to satisfy s 
 1 �
(logL)�(logA) � s, and then we determine
the copy number r to satisfy (r 
 1)�r �
(logL�logAs) � (r�(r � 1)). Accordingly,
few s-words are expected to occur at least
r times in the sequence and can be consid-
ered ‘‘frequent words.’’

Rare words are characterized as fol-
lows. Set the word size s obeying the ine-
qualities As log As � L � As�1 log As�1

and then determine r satisfying As(log As

� rlog log as) � L � As(log As � (r �
1)log log As). Following these prescrip-
tions, s-words occurring at most r times
are deemed ‘‘rare words.’’

For DNA, rare words might be binding
sites for transcription control factors re-
stricted to specific locations. Alternatively,
rare words may be discriminated against
because of structural incompatibilities.

Frequent words often include repetitive,
structural, regulatory, and transposable
elements [e.g., uptake signal sequences
(USSs; see below) in Haemophilus influen-
zae], Chi sites in association with the
RecBCD recombination complex, and
REP elements (repeated extragenic palin-
drome) of unknown function, the latter
two in E. coli. In proteins, frequent oli-
gopeptides often reflect characteristic mo-
tifs shared in certain protein functional
families, e.g., the sequence environment of
the catalytic triad of serine proteases.

Frequent Oligonucleotides and Peptides of
the H. influenzae Genome. Two major
classes of frequent oligonucleotides in
the H. influenzae genome stand out: (i)
oligos related to the USSs AAGT-
GCGGT (USS�737 occurrences) and its
inverted complement (USS
 734) of al-
most equal counts and (ii) multiple tet-
ranucleotide iterations. The USS� and
USS
 as established by r-scan statistics
are remarkably evenly spaced around
the genome and appear predominantly
in the same coding frame. The above
findings suggest that USSs contribute to
global genomic functions.

A major hypothesis concerning H. influ-
enzae (and some other bacterial organ-
isms) is that natural genetic competence
(transformation) evolved and is main-
tained for the task of acquiring templates
mediating repair of DNA lesions. One
possibility is that the uptake of DNA fol-
lowed by the production of single-
stranded tails could induce higher levels
of RecA enzyme activities and concomi-
tantly increase the extent of DNA repair.
In fact, single-stranded DNA is known to
be an inducing signal of SOS repair and
RecA polymerization in binding single-
stranded DNA of E. coli. Other possible
roles of natural genetic competence have
been attributed to benefits for horizontal
gene transfer for the repair of damaged
chromosomes that are rescued by recom-
bination with exogenous homologous
DNA, for conversion of mutant alleles to
functional alleles, or simply as a good nu-
trient source. The uptake mechanisms are
largely unknown. Another bacterium with
corresponding directed uptake is Neisseria
gonorrhoeae. Generally, a small percent-
age (�10%) of a population of Bacillus
subtilis can become competent for uptake
of nonspecific DNA sequences. In B. sub-
tilis and Streptococcus pneumoniae, compe-
tence is genetic competence regulated by
cell density, cell–cell signaling, and nutri-
tional signaling dependence on growth
conditions. Although DNA uptake is
widespread in bacterial cells, nonspecific
integration into the chromosome seems to
be rare.

Many bacteria can develop the state of
physiological competence for natural
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DNA uptake that is consistent with a bac-
terial gene transfer of free DNA (117). H.
influenzae (and N. gonorrhoeae) can only
bind and take up double-stranded and
single-stranded DNA from the same or
closely related species. This finding is dif-
ferent from B. subtilis, where the DNA
uptake tends to be nonspecific and most
cells are not competent, whereas natural
genetic competence in H. influenzae and
Azotobacter vinelandii can be attained by
almost 100% of cells. As noted previously,
the degree of bacterial cell competence
seems to be correlated with the presence
of highly frequent words.

The palindrome GGCGATCGCC la-
beled HIP1 (highly iterated palindrome) is
highly frequent in Synechocystis (118) and
in most cyanobacteria. The r-scan analysis
shows a significantly even distribution
where the observed minimal spacing be-
tween any two successive occurrences is
52 bp. Thus, the even spacing of the HIP1
in Synechocystis is considerably more dra-
matic than the even spacing of the USSs
in H. influenzae. Synechocystis, like H. in-
fluenzae, is known to be transformable.
Whether the HIP1 sequences serve as
recognition sites in this capacity is un-
known. The significance of its palindromic
character also is intriguing.

Mechanisms allowing changes in the
frequency of gene expression include
introduction of frameshifts that affect
transcription and�or translation. Moxon
et al. (119), for a number of pathogenic
bacterial populations, highlight non-
standard mutation mechanisms that oc-
cur at special loci, and they explicitly
discuss the case of the repeat tract,
(TCAA)16, present in H. influenzae at
the 5� end of the lic2 gene. The H. influ-
enzae genome contains 11 impressive
microsatellites in the form of tandem
tetranucleotide repeats each extending
at least 15 iterations. Generally, in tan-
dem repeats (in the coding region
and�or in gene regulatory regions) poly-
merase slippage, homologous recombi-
nation, or mismatch repair occurring
during chromosomal replication can
generate a heterogeneous population of
cells that can facilitate infection or can
counter host defense mechanisms. Other
examples of variable gene expression
putatively controlled by repeat sequence
tracts occur in Bordetella pertussis, Neis-
seria meningitides, and N. gonorrhoeae.

The example of (AGTC)32 in H. influ-
enzae that offers at least two alternatively
encoded genes is particularly interesting.

In frame 1, (AGTC) 32 is part of a 194-aa
ORF. In frame 2, the gene encodes Mod
(629 aa), similar to a type III restriction-
modification enzyme of E. coli. Frame 3 is
‘‘null,’’ flanked by multiple termination
codons. The sequence exhibits a rare ex-
ample of two genes encoded in the same
orientation in different reading frames
overlapping �40 aa. Is it possible that
their movement around the genome is
channeled through transposon activity?
Variation in the number of AGTC itera-
tions is a strategy that can alter the trans-
lational frame and�or intensity of DNA
supercoiling in regulation of gene expres-
sion and provide a repertoire of genetic
polymorphism. Mechanisms capable of
generating such nonstandard random vari-
ation putatively provide a solution to the
problem of enabling rapid and reversible
response to environmental changes that
are frequently encountered in the bacte-
rial habitat.

Frequent peptides are related to the
Walker A box motif GXXGXGK(S�
T)TL. Frequent peptides related to the
motif LLDEPTN are associated with the
ATP hydrolysis B site generally located
40–70 residues downstream of the A-site
(90) in the form ����D, representing
four successive unspecified aliphatic resi-
dues culminating with the essential aspar-
tate residue. As identified in x-ray crystal
structures, the Walker A and B boxes
mostly contribute to the ATP-binding
pocket of ATP-dependent transport pro-
teins. A third motif approximately of the
form LSGGQ(Q�R)Q �20 aa upstream
from the B site was identified in ref. 90.
There is considerable agreement of ATP
and GTP DNA-binding motifs in prokary-
otic and eukaryotic species.

The frequent motifs HVDHG,
VDHGK, and DHGKT, which combine
into HVDHGKT, are notable because
they occur in the elongation factor Tu, in
tufB-B, in selB (translation factor), in infB
(initiation factor 2), and in other transla-
tion factors.

Most of the frequent words in higher
eukaryotes have been characteristic of
zinc fingers, chymotrypsin proteases,
serine�threonine and tyrosine kinases, Ig
heavy and light chains, and homoebox
proteins among others. The active sites in
these classes of proteins generally have at
least one frequent word associated with
them. These include explicitly CGKAF,
CEECG in zing fingers, LTAAH, GDS-
GGP in chymotrypsin protease proteins,
and ADFGL, FGQGT in kinases are

highly conserved. Peptide words FQNRR
and HFNRY are frequent peptides in
homeobox proteins.

Rare Words in Human Herpesvirus Genomes.
Consider the genome of the major hu-
man herpesviruses herpes simplex virus
1, varicella-zoster virus, cytomegalovi-
rus, and Epstein–Barr virus. The DNA
totals 678,780 bp. The criterion for rare
words is size s � 7 and at most r � 12
copies. For these characteristics, 728
rare words qualify from a totality of 47

� 16,000. All 7-words occurred at least
once, and the bottom 11 of least occur-
rences are TCTAGTA (1 occurrence),
ACTAGGC (3 occurrences), CTA-
ACTC (3 occurrences), TCTAGTC (3
occurrences), AAGTTAG (4 occur-
rences), ACTTAGG (4 occurrences),
ATCACTC (4 occurrences), CTTAGCT
(4 occurrences), GACCTAA (4 occur-
rences), GGACTAG (4 occurrences),
and TACTAAG (4 occurrences). It is
notable that most of these words con-
tain stop codons and the tetranucleotide
CTAG.

Concluding Remarks
In my view, the role of statistics in se-
quence analysis is primarily exploratory
and interactive with the data, generating
new questions and lines of experimental
investigation. Rather than fitting models
to biomolecular sequences with the pur-
pose of statistical hypothesis testing, the
analysis of the extreme tails of distribu-
tions derived from random sequences
can provide benchmarks for the selec-
tion of sequences, part of sequences, or
sequence features to concentrate on for
further study. Essential in this approach
is the use of a mixture of different sta-
tistics and interaction with the data
and the experimenter. Here robustness
includes sensitivity of the statistics to
outliers due to sampling biases, concor-
dance among several different measures
that examine the data in different ways,
and consistency among independently
sampled data sets. There are also many
challenging problems related to classifi-
cation of protein and DNA sequences
with reference to function, structure,
subcellular localization, expression, phy-
logenetic relations, and other biological
and medical criteria. Statistical stratifi-
cation of the databases can also aid
these tasks as more sequences and
genomes become available.
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