
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 2, Number 3, 1995
Mary Ann Liebert, Inc.
Pp. 409-416

Analysis of tRNA Gene Sequences
by Neural Network

JIAN SUN1, WEN-YUAN SONG2, LI-HUANG ZHU2, and RUN-SHENG CHEN1

ABSTRACT

The quantitative similarity among tRNA gene sequences was acquired by analysis with an
artificial neural network. The evolutionary relationship derived from our results was consis-
tent with those from other methods. A new sequence was recognized to be a tRNA-like gene
by a neural network on the analysis of similarity. All of our results showed the efficiency of
the artificial neural network method in the sequence analysis for biological molecules.
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INTRODUCTION

An artificial neural network is a parallel, distributed information procession system consisting of
nonlinear processing elements. In recent years, the surge of research on neural networks gave rise

to its extensive application in fields such as associative memory, combinatorial optimization, and pattern
recognition.

In 1988, Qian and Sejnowski used the neural network method to predict the secondary structure of
global proteins and obtained better results than those from other methods. This shows that as a powerful
nonlinear analysis tool, the neural network has its advantage in the application on associative memory.
From then on, neural networks were increasingly used in the field of biology.

Since 1989, we have conducted research on the use of neural network for structure prediction and
sequence analysis of biomacromolecules. These include (Wang, et al., 1989, 1991; Chen et al, 1990;
Sun, 1992; Sun et al, 1991a,b, 1993) two modified ways to train the neural network in prediction of the
secondary structure of global proteins, secondary structure prediction of membrane proteins, analysis of
the dihedral angles' distribution of proteins, and solution of distance constrains between distant residues
in primary sequence of homologous proteins. We also predicted the secondary structure of tRNA, and
recognized the splicing sites of pre-mRNA.

There have been many computer methods for identification of the tRNA coding gene. Most of them are
based on secondary structure prediction, and the occurrence of invariant or semivariant bases at particular
positions, such as Staden (1980), Shortridge et al (1986), and Marvel (1986). Recently, Pavesi et al (1994)
described a linear method to search for eukaryotic nuclear tRNA genes in DNA databases; they used a

modified weight matrix to recognize two intragenic control regions. Here we use a neural network to study
the whole sequences of tRNA genes of viruses, archaebacteria, eubacteria, chloroplasts, mitochondria, and
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eukaryotes, to compare the sequence similarities among these species and to acquire quantitative rela-
tions of similarity. Basing on these similarities, we then recognize a new sequence as a tRNA-like gene
sequence.

MATERIALS AND METHODS

The feedforward network is used extensively for structure prediction and sequence analysis in the fields
of biology; the algorithm for this network is usually the error backpropagation algorithm (Rumelhart and
McClelland, 1986), and details about the application of this network and algorithm can be found in Qian
and Sejnowski (1988).

During training, the neural network can build up the correct mapping between the input and the output.
Bohr et al (1988) analyzed the homology of proteins by a neural network. Here we use a similar method
to analyze similarities among tRNA genes. We take a piece of gene sequence (window) as the input of the
neural network, hide the base in the middle position, and train the neural network to predict out this omitted
base. By measuring the predictive ability on other sequences, we can compare the similarity between the
testing and the trained sequence on the basis of success rate, which is defined as the ratio of the correctly
predicted base number to the length of the tested sequence.

According to the size of the trained set, we choose the window length to be 15 bases and the number
of the units in the hidden layer is 10, 20, and 60, respectively.

The total sequences used here are all from the tRNA gene sequence compilation by Sprinzl et al (1989).
Table 1 gives the constitution of the compilation. According to the number given by Sprinzl, we divide
these sequences into the following classes: 0, viruses; 1, archaebacteria; 2, eubacteria; 3, chloroplasts; 4,
mitochondria (4-0, single cell organisms and fungi; 4-1, plants; 4-2, animals); 5, single cell organisms
and fungi; 6, plants; 7-9, animals (7, Caenorhabditis elegans, Bombyx mori, and Drosophila melanogaster;
8, Xenopus laevis and chicken; 9, mouse, rat, and human).

RESULTS AND DISCUSSION

We use each class of sequences as the training group of the neural network, and the rest of the classes
as test groups. Table 2 gives the results of the training and test; in this table each column refers to a

network trained by the corresponding class of sequence; the values in it are the test results for the rest of
the classes.

Table 1. The Source of the tRNA Genes"

Name Range Sequence Base

Viruses
Archaebacteria
Eubacteria
Chloroplasts
Mitochondria

Fungi
Plants
Animals

Eukaryotes
Fungi
Plants
Animals

000-099
100-199
200-299
300-399
400-499
400-429
430-449
450-499
500-999
500-599
600-699
700-999

23
44

145
188
422
100
27

295
159
52
11
96

1809
3327

13119
14184
29343

6879
1850

20614
8116
3887

806
3423

"The second column is the range of the index number given by
Sprinzl et al. (1989), the third column is the number of sequences
in the respective class, and the fourth column is the number of
bases.
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Table 2. Success Rate of Testing of tRNA Genes'1

Vir Ar Eu Chi Mit Fungi Plants lnv Vet- Mam

Vir
Ar
Eu
Chi
Mit
Funti
Plants
lnv
Ver
Mam
rand
short
long

63.8
35.2
41.3
41.1
31.4
35.1
38.1
33.6
34.0
34.3
24.5
20.2
22.2

37.6
71.2
42.5
40.6
26.5
38.6
43.8
43.0
41.3
42.8
26.2
28.4
27.8

45.0
48.1
67.0
48.6
30.0
40.3
45.7
43.2
45.6
42.9
25.9
34.8
30.3

39.5
44.5
48.0
68.7
32.5
39.1
46.5
40.7
44.1
41.3
25.4
27.6
24.6

39.4
37.7
41.5
47.0
61.4
40.4
39.0
39.6
41.2
37.7
28.4
24.3
26.9

35.7
40.5
38.2
38.8
28.8
60.2
44.5
43.5
43.7
44.7
26.5
30.1
26.7

35.4
39.8
37.6
38.6
27.9
37.4
86.7
42.9
43.7
42.4
25.9
20.2
23.9

35.5
44.8
40.6
39.2
26.5
42.8
48.6
67.9
52.6
53.5
27.6
30.8
27.2

33.2
40.3
40.2
38.5
27.8
38.7
46.7
46.4
79.8
51.3
24.3
21.4
21.8

36.4
42.3
39.0
39.3
27.2
41.4
50.6
52.8
58.2
73.0
27.3
25.4
26.5

aEach column gives the success rate of testing for differernt tRNA genes when trained by the respective
class in this column. Here the window is 15 bases; the hidden layer has 60 neural units for mitochondria, 20
neural units for eubacteria and chloroplasts, and 10 units for the rest of the classes. In the first column, rand is
the random sequences obtained by shuffling the respective training group sequences, long is the new sequence,
and short is the sequence that deletes the intron from long according to Baldi et al. (1992). Vir, viruses; Ar,
archaebacteria; Eu, eubacteria; Chi, chloroplasts; Mit, mitochondria; lnv, invertebrates; Ver, vertebrates; Mam,
mammals.

From Table 2, we can see that the success rate between any two kinds is almost about 35-55% (in
contrast, the random sequences give a success rate of about 25%). This indicates that there are actually
similarities and conservation among the tRNA genes. At the same time, we notice that the deviation is
always about 4-8%, sometimes even 10%, so there are also differences among classes and within every
class. Figure 1 gives the typical results of the success rate for the training group and testing groups, as

well as the random sequences. Here we randomly shuffle the sequences in the training group to get the
testing random sequences.

-random testing training

100

success rate (%)
FIG. 1. The typical distribution of success rate on the training class (chloroplasts), testing class (eubacteria), and
random sequences. All these are near Gaussian distribution, and there are significant differences between them.
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FIG. 2. The similarity of eubacteria and mammals with other classes of sequences. All the data in this figure are

from Table 2. The thick lines show the values of the respective column in Table 2, the thin lines are the values of the
respective row in Table 2. The figure indicates the differences between prokaryotes and eukaryotes and also shows
some linear correlations between species and the similarity; this is obvious in the lines for mammals.

The difference between prokaryotes and eukaryotes
Figure 2 shows the similarity between the tRNA gene sequences of eubacteria (prokaryote) and mammals

(eukaryote) with other sequences. In Figure 2, the thick lines indicate the results tested on other sequences
while trained on eubacteria or mammals respectively; the thin lines are results tested on eubacteria or

mammals while trained on other sequences. We can see that the similarity within prokaryotes is a little
higher than that between the prokaryotes and the eukaryotes, and the similarity among the eukaryotes is
also higher than that of sequences between eukaryotes and prokaryotes. In Figure 2 the right part of the
curve for mammals is obviously higher than the left part. This indicates that there are some differences
between tRNA gene sequences of prokaryotes and eukaryotes.

The relation among archaebacteria, eubacteria, and eukaryotes
According to Woese and Fox's (1977) theory of three kingdoms, the prokaryotes are divided into

archaebacteria and eubacteria. From Table 2 and Figure 2, we find that the similarity between archaebacteria
and eukaryotes is greater than that between eubacteria and eukaryotes. This indicates that archaebacteria
are closer to eukaryotes in tRNA gene sequences, which is consistent with the conclusion of Iwabe
et al. by analyzing the duplicated genes (Iwabe et al, 1989). They concluded that the homology between
archaebacteria and eukaryotes is closer than that between archaebacteria and eubacteria, but we cannot
verify this from our data.

The origin of chloroplasts and mitochondria
According to the hypothesis of endosymbiosis, since the invasion of prokaryotes into eukaryotes, a

stable symbiosis formed; the invader then became an indispensable part of eukaryotes—chloroplasts and
mitochondria. As the prokaryotes divided into archaebacteria and eubacteria, we want to determine from
which the chloroplasts and mitochondria evolved. From Table 2, we find that chloroplasts and mitochon-
dria are closer to eubacteria than to archaebacteria. Maybe it is the eubacteria from which chloroplasts
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FIG. 3. The percent composition of A+T in every class of tRNA gene. The compositions in all classes are within
the range from 35 to 50% except for mitochondria, whose percentage of A+T is 63.8%, much higher than the others.
The figure explicitly shows the peculiarity of mitochondria.

and mitochondria evolved. Yang et al (1985) concluded by comparing the sequences of 16 S RNA that
the mitochondria and chloroplasts are derived from a group of purple bacteria and its relatives.

The peculiarity of mitochondria
From Table 2 we can see that when mitochondria are tested by other classes, the success rates are

very low, almost the same as the random sequences; while trained by mitochondria and testing on other
classes, the success rates are within the normal range. This shows that in addition to the common features
of tRNA genes, mitochondria tRNA gene sequences have their own peculiarities. Figure 3 shows the base
composition of every class of tRNA gene; it shows that the percentage of A+T in mitochondria is over

60%, much higher than that of other classes. The discrepancy of the tRNA genes in mitochondria re-

flects the extreme diversity of mitochondrial genetic systems.

Table 3. Success Rate of Prediction of Secondary Structure of tRNAa

Vir Ar Eu Chl Mit Fungi Plants lnv Ver Mam

Vir
Ar
Eu
Chl
Mit
Fungi
Plants
lnv
Ver
Mam
Short
long

91.9
71.9
75.6
69.8
64.2
67.4
71.7
68.1
68.0
71.2
57.3
51.3

67.4
95.2
74.3
73.4
64.5
70.0
75.6
73.8
72.3
74.2
57.2
59.6

76.2
79.3
93.9
80.2
67.5
73.4
76.9
78.3
78.3
77.1
62.7
62.6

70.8
76.9
78.1
94.3
67.3
74.9
75.0
75.6
75.7
75.2
60.5
62.9

72.5
77.0
75.0
79.2
86.8
75.5
77.2
79.7
78.9
78.6
58.8
61.8

67.2
74.6
73.3
74.7
67.4
90.1
77.3
80.0
75.4
80.4
57.7
60.4

64.7
75.3
69.8
72.3
63.9
69.7
99.1
77.7
77.3
80.0
70.3
67.9

65.4
74.8
71.5
73.4
65.4
74.1
80.0
94.9
83.6
84.2
59.8
57.9

62.9
71.9
69.1
70.9
65.1
72.5
76.2
79.3
99.0
80.2
64.8
66.5

65.7
76.7
72.2
74.2
64.3
76.2
81.9
85.0
86.8
96.8
62.5
62.5

aThe window is 15 bases and there are 10 neural units in the hidden layer for every class. See footnote to
Table 2 for abbreviations.
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FIG. 4. Comparison of the random sequences with the new sequence. The data are from Table 2. We can see that
the new sequence is more similar to the eubacteria tRNA gene and much higher than the random sequences, so we

cannot simply regard it as a random sequence.
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FIG. 5. A tRNA-like structure in the sequence of IR36-L. (a) tRNA-like structure derived from the noncoding
strand of nucleotides 100-209 of IR36-L. Arrows indicate the sites for the processing of the anticodon loop-intron
according to the rule described by Baldi et al. (1992). (b) The tRNA-like structure without the anticodon loop-intron.
Circles indicate the conserved base positions. When the circled position is not occupied by the conserved base, the
conserved base is given outside the circle.



tRNA GENE SEQUENCES 415

The analysis of the secondary structure of tRNA genes
We also set up mapping from the primary to the secondary structure by the neural network. According

to the alignment of Sprinzl et al (1989), we define the secondary structure of the tRNA gene. The details
on the training and testing can be found in Sun (1992). Table 3 gives the results of training and testing.
The success rate can also be used as the basis for similarity. By analyzing the results, we can also obtain
the above conclusions. At the same time we can see that the secondary structure of tRNA is much more
conserved than its primary sequence.

The recognition of tRNA-like gene sequences
From the above we see that although the similarities among all the sequences are different, they always

fall into the range of 35-55%. So we can take the success rate of prediction by neural networks as an

objective criterion to recognize a tRNA-like sequence. Recently, we found a new sequence in the noncoding
strand of the internal transcribed spacer I (ITS1) of the ribosomal RNA gene (rDNA) in rice (Song et al,
1994), which had several characters shared by most tRNA gene sequences. Since tRNA gene sequences
have been found in the spacers between 16 S and 23 S rDNA in E. coli, chloroplasts, and mitochondria,
it is worth searching for the presence of the tRNA gene in rice ITS 1. We analyze this sequence by trained
neural networks, and give the results in Table 2 and Figure 4. There long denotes the new sequence,
and short denotes the sequence obtained by removing the intron from long according to Baldi, et al.
(1992). The similarity of this new sequence with eubacteria tRNA gene sequences is 34.8% and higher
than random sequences 24.9%, and it also has several invariant bases at the conserved sites of the tRNA
gene; furthermore we can set up its cloverleaf structure, as shown in Figure 5. We therefore believe this
is, indeed, a tRNA-like gene sequence.

CONCLUSION

Macromolecular sequence comparisons are the most accurate and reliable basis to infer phylogenetic
relationships. Sequence data are preferable to other molecular methods for assessing evolutionary related-
ness because they permit straightforward, quantitative interpretation and, importantly, because they form a

growing data base for subsequent reference. Now, as the sequence data on DNA and protein accumulate,
it is more important to set up an evolutionary tree with molecular phylogenetics by analyzing these se-

quences. Our results show that by using a nonlinear tool, the artificial neural network, we can analyze the
tRNA gene sequences and obtain results on the evolution that are compatible with other methods applied
on the 16 S-like and 23 S-like rRNA sequences. This provides a new method for molecular phylogenetics,
and we will continue to do research in this field.
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