
band to match any load, and this letter is concerned with the
screw spacing to meet this criterion.

The frequency ranges used for most waveguide sizes cause
kg to vary by about 2, so that the screw spacing should be
less than kJ2 at the highest frequency for the tuner to be useful
at any frequency in the band. This can be seen from Fig. 1,
which illustrates at (a) a tuner with screws 1, 2 and 3 spaced
at kk% and shows at (6) the corresponding Smith3 chart. On
this, A represents the load presented to the plane of screw 3,
B to screw 2 and D to screw 1. Adjustment of screw 1 adds
sufficient susceptance to rotate the load point D round the
unit conductance circle (I) to the centre of the chart. This
requires that screw 2 has been adjusted to add sufficient
susceptance to translate the load point B around the constant
conductance circle on which it lies to C, a point on circle II,

this being the transformation of I through the kk% section
between screws 1 and 2. If B lies within the constant-
conductance circle tangential to II (circle III), B cannot be
translated onto circle II without adjustment of screw 3. This
serves to add sufficient susceptance to load point A so that
B (which is A transformed by the k),s section between screws
2 and 3) lies outside circle III. As the frequency increases,
the radius of circle III decreases, but, if k < \ throughout
the 2:1 wavelength range, the radius of circle III > 0 and
tuning is possible. However, if k = \ a t a n v frequency, circles
I and II coincide and tuning is impossible.

The design can be optimised, in the sense that the action of
the screws can be made the same at the band edges, if the
screw spacing be Ag/6 at the lowest frequency of the band, or,
more generally, if it be kkg, where k = \{\+r)~x, r being
the ratio of kg at the lowest frequency to that at the highest.
The Smith chart illustrating this is shown at Fig. 2, in which
circle I is the unit-conductance circle and circles II and II'
represent, respectively, its transformation by the Ag/6 section
between screws 1 and 2 at the lowest frequency and XJ2>
at the highest. The radius of circle III is then the same at
both band edges (#~l-35) and its variation with
frequency is minimised.

Although the foregoing is elementary, the author is
unaware of any statement of it, and some suppliers of tuners
do not incorporate these features in their designs.

E. J. GRIFFIN 8th November 1976

Fig. 2
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METHOD OF CONSTRUCTING DE-BRUIJN
SEQUENCES

Indexing terms: Binary sequences, Shift registers

\t is shown how a de-Bruijn sequence of length 2", which is
considered to have 'good' random properties, can be generated
by starting from a p.n. sequence of length 2""1 —1. The
number of different sequences which can be generated from
the same p.n. sequence is 2" —4.

Introduction: A class of binary sequences which are con-
sidered to have 'good' random properties are the de-Bruijn
sequences.' • 2 Such a sequence is of length 2" with all possible
strings of n successive bits distinct. Throughout this letter,
the first bit of a finite sequence is considered to be successor
of the last bit, owing to the cyclic properties of the sequence.

A known general method of constructing de-Bruijn
sequences is by joining several short sequences.1'3~5 This
method is usually implemented by a complicated design.
This letter shows how a class of de-Bruijn sequences can be
constructed by joining two sequences, using a modified
version of a linear shift register which generates a p.n.
sequence.

Theory:
Postulate 1: Let A be a p.n. sequence of length 2""1 —1.
Let S be the set of all 2"~l — 1 possible strings of n successive
bits taken from A. Let JC = (xt,x2, ...,xn) be a string of
n bits and let x be its complement. If xs S, then x$ S.

Proof: A basic property of a linear feedback shift register
which generates a p.n. sequence is that an even number of
stages are connected to the feedback loop. If a string x
consists of the first n—\ bits of x, xn is the sum of an even
number of bits taken from x, and therefore the bit which
follows x in A is also xn. This means that the string Jc does
not exist in A, and therefore x $ S.

Let S denote the set whose elements are the complements
of the strings in S. If A is the complement of A, then S con-
tains all strings of length n in A. To illustrate postulate 1, as

well as the following postulates, the strings of S and S are
listed for A = 1110010:

S = {1110, 1100, 1001, 0010,0101, 1011, 0111}

S = {0001, 0011, 0110, 1101, 1010, 0100, 1000}

Notation: Let a and b be strings of binary bits. The string ab
is obtained by attaching b to the end of a.

Postulate 2: If x — xt bxn e S and y = yi byn e S, the common
string b being any binary string of length n — 2, then either
xi = yi or xn = yn.

Proof:
(a) b is 'all 0': A basic property of the p.n. sequence A is that
there exists in it one and only one string of 0s whose length
is n — 2. The length of A was defined to be 2"~' — 1. The only
x e S whose form is xt bxn is therefore \b\.

Since there is one and only one string of n— 1 successive
Is in A, there are two and only two strings in S of the form
Xj bxn. (6 being 'all 1'). These are 160 and Obi. It follows that
there are two and only two strings in S of the form yt byn.
These are Obi and 160. Since it has been shown that x = 161,
the postulate is proved.

(b) b is 'all V: Since the strings in S are the complements of
the strings in S, it follows that the only y = y{ byn e S is
060, which is the complement of JC mentioned in (a). It has
also been shown that the only strings in S of the form Xi bxn
are 160 and 061, and the postulate is proved.

(c) 6 is neither 'all 0' nor 'all V: In view of postulate 1, the
set S u § contains 2" — 2 distinct strings. In view of what was
said above, the missing two strings, out of the 2" possible
ones, are of the form z, bzn, where 6 is either 'all 0' or 'all 1\
Fo/ 6 being any other string of length n — 2, the set S u 5
contains all of the following four possible sequences: 060,
061, 160 and 161. Since no string of length n-l in A repeats
itself and the same applies to A, it follows that the only way
of distributing these four sequences between S and S is that

658 ELECTRONICS LETTERS 9th December 1976 Vol. 12 No. 25



060 and 161 belong to one set, where 160 and 061 belong to
the other; otherwise either 06, 60, 16 or 61 occur twice. This
means that if xx bxn e S and yt byn e S then either Xi = yy or

Implementation: If A is a p.n. sequence of length 2""1 —1
and A is its complement, all strings of length n— I which
appear in A appear in A, except for the 'all-1' sequence
which is replaced by an 'all 0'.

For any cyclic shift of A, except for that starting with n— 1
successive Is, it is possible to shift A cyclically until A' is
obtained, such that both A and A' start with the same n— 1
bits. If A' is now attached to the tail of A, a sequence of
length 2" —2 is obtained. This sequence is denoted by B.

Illustration 1 will clarify some of the following arguments:

Illustration 1: Let k = 2"~J — 1, A — (a1 } a2, •••, ak) and
A' — (ai, a2', ..., ak'), where a,- = a/, i = 1, 2, ..., n — l. Then
B = (ax,a2, . . . , ak, ax', a2', ..., ak'). It will be shown now that
the 2" —2 strings of length n in B are all the strings i n S u S
and are distinct, in view of postulate 1.

There are n—l strings of length n in S, which are obtained
from A by an 'end-around' process. These are the strings
which start with any of the last n—l bits of A. These strings
are also found in B, since the second half of B, namely A',
starts with the same n — l bits as A, such that the 'end around'
is replaced by continuing with the bits which start the second
half of B. For example, the string (ak, au a2, ..., an-i)e S is
replaced in B by the string (ak, a/ , a2 , ..., a'n-i).

The n—l strings of length n in S, which are obtained from
A' by 'end around', are also found in B. This is because B
starts with the same n — l bits as A', so that 'end around' for
the complete B produces the same strings as those produced
when 'end around' is performed only in A'. For example,
the string (ak, a/, a2', ..., a'n_l)GS is replaced in B by the
string (ak, au a2, ...,an-!).

Of course, B contains all the remaining strings in S and S.
It follows that all the 2"-2 distinct strings in S u 5 are
found in B. If a 1 and a 0 are now added to the longest strings
of Is and 0s, respectively, a de-Bruijn sequence of length 2"
is obtained.

The following postulate shows how many different sequences
B can be produced by A (where two cyclic shifts of the same
B are not considered different).

Postulate 3: Each cyclic shift of A produces a different
sequence B.

Proof: Assume that there exists a sequence B' which is
obtained by shifting B cyclically for / places, and assume that
the first and second halves of B' are a cyclic shift of A and A,
respectively, where both halves start with the same n—l bits.
If n ^ / ^ 2" — 2 — n, the result is that A' and A have n or more
successive bits in common (n or more bits of A' are now in
the first half of B'), which is impossible. If 0 < / < n or
2" — 2 — n < I < 2" — 2, then either an and an', or ak and ak,
are in corresponding places within the n—l bits which start
each half of B' (refer to illustration 1). This means that
an = an' or ak' = ak. On the other hand, since A and A' (in B)
have their first n—l bits in common, it follows that an ^ an'
and ak ^ ak, otherwise A and A' have a string of length n in
common. It is concluded that B' cannot exist and all sequences
B generated by any cyclic shift of A are different.

There are 2"- * — 2 possible cyclic shifts of A which produce
a sequence B. The only missing shift being the one which
starts with n—l successive Is. The number of different
sequences B, produced by A, is therefore 2""1 — 2.

The following is a second method by which more de-
Bruijn sequences are obtained:

Let B be obtained by attaching A and A, where A' is
obtained from the complement of A by a cyclic shift such that
A and A' are identical only in their first n —2 bits, while their
(n-l)th bit differs. Illustration 1 is still valid here. The only
change is that at = at', i = 1, 2, ..., n — 2.

Of the 2(n-1) strings of length n which are i n S u 5 and
which are obtained from A or A' by an 'end-around' process,
all but two can be found directly in B by using considerations
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identical to those mentioned before. The two strings in B
which need a special consideration are those starting with
ak and ak. Let these strings be denoted by x' and y', res-
pectively. If x e S starts with ak, then x ^ x', since they differ
in their last bit (unlike the previous case where x = *')• If
ye S starts with ak, then y ^ y'.

Postulate 4: x' = }'andj>' = x.

Proof: x = akban-x and y = ak ba'n.x, where 6 is a string
of n — 2 bits common to * and y and an_ i ^ o'n_i. It follows
from postulate 2 that ak = ak'. Since x' = akba'»-x and
y' — ak ban-i, it follows that x' = y and y' = x.

It follows that all 2"-2 strings of length n in B are the
strings of S u S and are therefore distinct.

The number of different de-Bruijn sequences obtained by
the two described methods is 2(2n~1 -2 ) = 2"-4. In the first
version, the sequence B is generated by a linear shift register
which generates a p.n. sequence of length 2""1 — 1. After the
initial state repeats itself, the bits which are fed back are
complemented. In the second version, the sequence B is
generated by first complementing the last bit of the repeated
initial state and then carrying out the above procedure.

B. ARAZI 2nd November 1976
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DESIGN OF STABLE 2-DIMENSIONAL
DISCRETE RECURSIVE FILTERS

Indexing term: Digital filters

The letter presents preliminary results on the design of stable
2-dimensional (2d) discrete recursive filters. The method is
based on the properties of multivariable positive real functions
and multivariable passive networks, and results in an approach
wherein the stability of the filter is guaranteed.

There has been recent interest in the design of 2d recursive
filters for processing 2d discrete signals. Denoting the
transfer function of a 2d recursive filter as

H{zuz2)=- D(dihzuz2)
0)

where N and D are polynomials in zv (=exp(5x TO) and
z2 (=exp(s2 T2)), the design problem is to obtain the poly-
nomial coefficients {ntJ} and {dtJ} such that

(a) H approximates a given response

(6) the filter is stable. That is

D(du,zuz2) ^ 0 for I z x I J z z l ^ l . . . (2)

The testing of the condition in expr. 2 is by no means an easy
task,1 inhibiting the widespread application of recursive
filters, in spite of their significant advantages over the
nonrecursive filters.
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