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Abstract

This doctoral dissertation presents a range of results concerning effi-
cient algorithms and data structures for string processing, including
several schemes contributing to sequential data compression. It com-
prises both theoretic results and practical implementations.

We study the suffix tree data structure, presenting an efficient rep-
resentation and several generalizations. This includes augmenting the
suffix tree to fully support sliding window indexing (including a practi-
cal implementation) in linear time. Furthermore, we consider a variant
that indexes naturally word-partitioned data, and present a linear-time
construction algorithm for a tree that represents only suffixes starting
at word boundaries, requiring space linear in the number of words.

By applying our sliding window indexing techniques, we achieve
an efficient implementation for dictionary-based compression based
on the LZ-77 algorithm. Furthermore, considering predictive source
modelling, we show that a PPM* style model can be maintained in
linear time using arbitrarily bounded storage space.

We also consider the related problem of suffix sorting, applicable
to suffix array construction and block sorting compression. We present
an algorithm that eliminates superfluous processing of previous solu-
tions while maintaining robust worst-case behaviour. We experimen-
tally show favourable performance for a wide range of natural and
degenerate inputs, and present a complete implementation.

Block sorting compression using BWT, the Burrows-Wheeler trans-
form, has implicit structure closely related to context trees used in pre-
dictive modelling. We show how an explicit BWT context tree can
be efficiently generated as a subset of the corresponding suffix tree
and explore the central problems in using this structure. We experi-
mentally evaluate prediction capabilities of the tree and consider rep-
resenting it explicitly as part of the compressed data, arguing that a
conscious treatment of the context tree can combine the compres-
sion performance of predictive modelling with the computational ef-
ficiency of BWT.

Finally, we explore offline dictionary-based compression, and present
a semi-static source modelling scheme that obtains excellent compres-
sion, yet is also capable of high decoding rates. The amount of memory
used by the decoder is flexible, and the compressed data has the po-
tential of supporting direct search operations.



Between theory and practice, some talk as if they were two – making
a separation and difference between them. Yet wise men know that
both can be gained in applying oneself whole-heartedly to one.

Bhagavad-Gı̄tā 5:4

Short-sighted programming can fail to improve the quality of life. It
can reduce it, causing economic loss or even physical harm. In a few
extreme cases, bad programming practice can lead to death.

P. J. Plauger,
Computer Language, Dec. 1990
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Foreword

Originally, my motivation for studying computer science was most
likely spawned by a calculator I bought fourteen years ago. This gad-
get could store a short sequence of operations, including a conditional
jump to the start, which made it possible to program surprisingly intri-
cate computations. I soon realized that this simple mechanism had the
power to replace the tedious repeated calculations I so detested with
an intellectual exercise: to find a general method to solve a specific
problem (something I would later learn to refer to as an algorithm)
that could be expressed by pressing a sequence of calculator keys. My
fascination for this process still remains.

With more powerful computers, programming is easier, and more
challenging problems are needed to keep the process interesting. Ul-
timately, in algorithm theory, the bothers of producing an actual pro-
gram are completely skipped over. Instead, the final product is an
explanation of how an idealized machine could be programmed to
solve a problem efficiently. In this abstract world, program elements
are represented as mathematical objects that interact as if they were
physical. They can be chained together, piled on top of each other, or
linked together to any level of complexity. Without these data struc-
tures, which can be combined into specialized tools for solving the
problem at hand, producing large or complicated programs would be
infeasible. However, they do not exist any further than in the pro-
grammer’s mind; when the program is to be written, everything must
again be translated into more basic operations. In my research, I have
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Foreword

tried to maintain this connection, seeing algorithm theory not merely
as mathematics, but ultimately as a programming tool.

At a low level, computers represent everything as sequences of
numbers, albeit with different interpretations depending on the con-
text. The main topic in this thesis is algorithms and data structures
– most often tree shaped structures – for finding patterns and repeti-
tions in long sequences, strings, of similar items. Examples of typical
strings are texts (strings of letters and punctuation marks), programs
(strings of operations), and genetic data (strings of amino acids). Even
two-dimensional data, such as pictures, are represented as strings at
a lower level. One area particularly explored in the thesis is storing
strings compactly, compressing them, by recording repetition and sys-
tematically introducing abbreviations for repeating patterns.

The result is a collection of methods for organizing, searching, and
compressing data. Its creation has deepened my insights in computer
science enormously, and I hope some of it can make a lasting contri-
bution to the computing world as well.

Numerous people have influenced this work. Obviously, my coau-
thors for different parts of the thesis, Arne Andersson, Alistair Moffat,
Kunihiko Sadakane, and Kurt Swanson, have had a direct part in its
creation, but many others have contributed in a variety of ways. With-
out attempting to name them all, I would like to express my gratitude
to all the central and peripheral members of the global research com-
munity who have supported and assisted me.

The influence of my advisor Arne Andersson goes beyond the work
where he stands as an author. He brought me into the research com-
munity from his special angle, and imprinted me with his views and
visions. His notions of what is relevant research, and how it should be
presented, have guided me through these last five years.

Finally, I wish to specifically thank Alistair Moffat for inviting me to
Melbourne and collaborating with me for three months, during which
time I was accepted as a full member of his dynamic research group.
This gave me a new perspective, and a significant push towards com-
pleting the thesis.

Malmö, August 1999
Jesper Larsson
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Chapter One

Fundamentals

The main theme of this work is the organization of sequential data
to find and exploit patterns and regularities. This chapter defines ba-
sic concepts, formulates fundamental observations and theorems, and
presents an efficient suffix tree representation. Following chapters fre-
quently refer and relate to the material given in this chapter.

The material and much of the text in this current work is taken
primarily from the following five previously presented writings:

• Extended Application of Suffix Trees to Data Compression, presented at
the IEEE Data Compression Conference 1996 [42]. A revised and
updated version of this material is laid out in chapters two and five,
and to some extent in §1.3.

• Suffix Trees on Words, written in collaboration with Arne Andersson
and Kurt Swanson, published in Algorithmica, March 1998 [4]. A pre-
liminary version was presented at the seventh Annual Symposium on
Combinatorial Pattern Matching in June 1996. This is presented in
chapter three, with some of the preliminaries given in §1.2.

• The Context Trees of Block Sorting Compression, presented at the IEEE
Data Compression Conference 1998 [43]. This is the basis of chap-
ter six.

• Offline Dictionary-Based Compression, written with Alistair Moffat of
the University of Melbourne, presented at the IEEE Data Compression
Conference 1999 [44]. An extended version of this work is presented
in chapter seven.
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Chapter One

• Faster Suffix Sorting, written with Kunihiko Sadakane of the University
of Tokyo; technical report, submitted [45]. This work is reported in
chapter four. Some of its material has been presented in a preliminary
version as A Fast Algorithm for Making Suffix Arrays and for Burrows-
Wheeler Transformation by Kunihiko Sadakane [59].

1.1 Basic Definitions

We assume that the reader is familiar with basic conventional defini-
tions regarding strings and graphs, and do not attempt to completely
define all the concepts used. However, to resolve differences in the
literature concerning the use of some concepts, we state the defini-
tions of not only our specialized concepts, but also of some more
general ones.

For quick reference to our specialized notations, appendix C on
pages 125–126 summarizes terms and symbols used in each of the
chapters of the thesis.

Notational Convention For notation regarding asymptotic growth of
functions and similar concepts, we adopt the general tradition in com-
puter science; see, for instance, Cormen, Leiserson, and Rivest [20].

All logarithms in the thesis are assumed to be base two, except
where otherwise stated.

Symbols and Strings The input of each of the algorithms described in1.1.1
this thesis is a sequence of items which we refer to as symbols. The
interpretation of these symbols as letters, program instructions, amino
acids, etc., is generally beyond our scope. We treat a symbol as an
abstract element that can represent any kind of unit in the actual im-
plementation – although we do provide several examples of practical
uses, and often aim our efforts at a particular area of application.

Two basic sets of operations for symbols are common. Either the
symbols are considered atomic – indivisible units subject to only a few
predefined operations, of which pairwise comparison is a common ex-
ample – or they are assumed to be represented by integers, and thereby
possible to manipulate with all the common arithmetic operations. We
adopt predominantly the latter approach, since our primary goal is to
develop practically useful tools, and in present computers everything
is always, at the lowest level, represented as integers. Thus, restricting
allowed operations beyond the set of arithmetic ones often introduces
an unrealistic impediment.

We denote the size of the input alphabet, the set of possible values
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§ 1.1.2

of input symbols, by k. When the symbols are regarded as integers, the
input alphabet is {1, . . . , k} except where otherwise stated.

Consider a string α = a1 . . . aN of symbols ai. We denote the
length of α by |α| = N. The substrings of α are ai . . . aj for 1 ≤ i ≤ N

and i − 1 ≤ j ≤ N, where the string ai . . . ai−1 is the empty string, de-
noted ε. The prefixes of α are the N+ 1 strings a1 . . . ai for 0 ≤ i ≤ N.
Analogously, the suffixes of α are ai . . . aN for 1 ≤ i ≤ N + 1.

With the exception of chapters two and five, where the input is
potentially a continuous and infinite stream of symbols, the input is
regarded as a fixed string of n symbols, appended with a unique termi-
nator symbol $, which is not regarded as part of the input alphabet ex-
cept where stated. This special symbol can sometimes be represented
as an actual value in the implementation, but may also be implicit. If
it needs to be regarded as numeric, we normally assign it the value 0.

We denote the input string X. Normally, we consider this a finite
string and denote X = x0x1 . . . xn, where n is the size of the input,
xn = $, and xi, for 0 ≤ i < n, are symbols of the input alphabet.

Trees and Tries We consider only rooted trees. Trees are visualized 1.1.2
with the root at the top, and the children of each node residing just
below their parent. A node with at least one child is an internal node;
a node without children is a leaf. The depth of a node is the num-
ber of nodes on the path from the root to that node. The maximum
depth in a tree is its height.

A trie is a tree that represents strings of symbols along paths starting
at the root. Each edge is labeled with a nonempty string of symbols,
and each node corresponds to the concatenated string spelled out by
the symbols on the path from the root to that node. The root rep-
resents ε. For each string contained in a trie, the trie also inevitably
contains all prefixes of that string. (This data structure is sometimes
referred to as a digital tree. In this work, we make no distinction be-
tween the concepts trie and digital tree.)

A trie is path compressed if all paths of single-child nodes are con-
tracted, so that all internal nodes, except possibly the root, have at
least two children. The path compressed trie has the minimum num-
ber of nodes among the tries representing a certain set of strings; a
string α contained in this trie corresponds to an explicit node if and
only if the trie contains two strings αa and αb, for distinct symbols a

and b. The length of a string corresponding to a node is the string
depth of that node.

Henceforth, we assume that all tries are either path compressed or
that their edges are all labeled with single symbols only (in which case
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§ 1.1.2

depth and string depth are equivalent), except possibly during transi-
tional stages.

A lexicographic trie is a trie for which the strings represented by
the leaves appear in lexicographical order in an in-order traversal. A
non-lexicographic trie is not guaranteed to have this property.

1.2 Trie Storage Considerations

The importance of the trie data structure lies primarily in the ease
at which it allows searching among the contained strings. To locate a
string, we start at the root of the trie and the beginning of the string,
and scan downwards, matching the string against edge labels, until a
leaf is reached or a mismatch occurs. This takes time proportional to
the length of the matched part of the search, plus the time to choose
edges along the search path. The choice of edges is the critical part of
this process, and its efficiency depends on what basic data structures
are used to store the edges.

When choosing a trie implementation, it is important to be aware
of which types of queries are expected. The ordering of the nodes is
one important concept. Maintaining a lexicographic trie may be use-
ful in some applications, e.g. to facilitate neighbour and range search
operations. Note, however, that in many applications the alphabet is
merely an arbitrarily chosen enumeration of unit entities with no tan-
gible interpretation of range or neighbour, in which case a lexicographic
trie has no advantage over its non-lexicographic counterpart.

Because of the characteristics of different applications, it is some-
times necessary to discuss several versions of tries. We note specifically
the following possibilities:

1 Each node can be implemented as an array of size k. This allows fast
searches, but for large alphabets it consumes a lot of space and makes
efficient initialization of new nodes complex.

2 Each node can be implemented as a linked list or, for instance, as a
binary search tree. This saves space at the price of a higher search cost,
when the alphabet is not small enough to be regarded as constant.

3 The edges can be stored in a hash table, or alternatively, a separate hash
table can be stored for each node. Using dynamic perfect hashing [22],
we are guaranteed that searches spend constant time per node, even
for a non-constant alphabet. Furthermore, this representation may be
combined with variant 2.

An important fact is that a non-lexicographic trie can be made lexi-
cographic at low cost by sorting all edges according to the first symbol
of each edge label, and then rebuilding the tree in the sorted order.
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§ 1.3.1

ab

ab$ $

b

ab$ $

$

Suffix tree for
the string
‘abab$’.

We state this formally for reference in later chapters:

Observation A non-lexicographic trie with l leaves can be transformed 1A

into a lexicographic one in time O(l + s(l)), where s(l) is the time
required to sort l symbols.

1.3 Suffix Trees

A suffix tree (also known as position tree or subword tree) of a string
is a path compressed trie holding all the suffixes of that string – and
thereby also all other substrings. This powerful data structure appears
frequently throughout the thesis.

The tree has n + 1 leaves, one for each nonempty suffix of the
$-terminated input string. Therefore, since each internal node has at
least two outgoing edges, the number of nodes is at most 2n + 1. In
order to ensure that each node takes constant storage space, an edge
label is represented by pointers into the original string. A sample suffix
tree indexing the string ‘abab$’ is shown above.

The most apparent use of the suffix tree is as an index that al-
lows substrings of a longer string to be located efficiently. The suf-
fix tree can be constructed, and the longest substring that matches a
search string located, in asymptotically optimal time. Under common
circumstances this means that construction takes linear time in the
length of the indexed string, the required storage space is also linear
in the length of the indexed string, and searching time is linear in the
length of the matched string.

An alternative to the suffix tree is the suffix array [47] (also known
as PAT array [28]), a data structure that supports some of the opera-
tions of a suffix tree, generally slower but requiring less space. When
additional space is allocated to supply a bucket array or a longest com-
mon prefix array, the time complexities of basic operations closely ap-
proach those of the suffix tree. Construction of a suffix array is equiv-
alent to suffix sorting, which we discuss in chapter four
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§ 1.3.1

Construction Algorithms Weiner [68] presented the first linear time1.3.1
suffix tree construction algorithm. Shortly thereafter, McCreight [48]
gave a simpler and less space consuming version, which became the
standard. Also notable is Ukkonen’s construction algorithm [67], the
most comprehensible online suffix tree construction algorithm. The
significance of this is explained in chapter two, which also presents a
full description of Ukkonen’s algorithm, with extensions.

The three mentioned algorithms have substantial similarities. They
all achieve linear time complexity through the use of suffix links, addi-
tional backwards pointers in the tree that assist in navigation between
internal nodes. The suffix link of a node representing the string cα,
where c is a symbol and α a string, points to the node representing α.

Furthermore, these algorithms allow linear time construction only
under the assumption that the choice of an outgoing edge to match
a certain symbol can be determined in amortized constant time. The
time for this access operation is a factor in construction time com-
plexity. We state this formally:

Theorem (Weiner) A suffix tree for a string of length n in an alphabet1B

of size k can be constructed in O(n i(k)) time, where i(k) bounds the
time to locate a symbol among k possible choices.

This bound follows immediately from the analysis of any of the
mentioned construction algorithms. Thus, these algorithms take linear
time when the input alphabet is small enough to be regarded as a
constant or – if a randomized worst case bound is sufficient – when
hash coding is used to store the edges.

When hash coding is used, the resulting tree is non-lexicographic.
Most of the work done on suffix tree construction seems to assume
that a suffix tree should be lexicographic. However, it appears that
the majority of the applications of suffix trees, for example all those
discussed by Apostolico [6], do not require a lexicographic trie, and
indeed McCreight asserts that hash coding appears to be the best rep-
resentation [48, page 268]. Furthermore, once the tree is constructed
it can always be made lexicographic in asymptotically optimal time
by observation 1A.

Farach [23] took a completely new approach to suffix tree con-
struction. His algorithm recursively constructs the suffix trees for odd-
and even-numbered positions of the indexed string and merges them
together. Although this algorithm has not yet found broad use in im-
plementations, it has an important implication on the complexity of
the problem of suffix tree construction. Its time bound does not de-
pend on the input alphabet size, other than requiring that the input

14



§ 1.3.2

is represented as integers bounded by n. Generally, this is formu-
lated as follows:

Theorem (Farach) A lexicographic suffix tree for a string of length n 1C

can be constructed in O(n + s(n)) time, where s(n) bounds the time
to sort n symbols.

This immediately gives us the following corollary:

Corollary The time complexity for construction of a lexicographic 1D

suffix tree for a string of length n is Θ(n + s(n)), where s(n) is the
time complexity of sorting n symbols.

Proof The upper bound is given by theorem 1C. The lower bound
follows from the fact that in a lexicographic suffix tree, the sorted
order for the symbols of the string can be obtained by a linear scan
through the children of the root.

Suffix Tree Representation and Notation The details of the suffix tree 1.3.2
representation deserves some attention. Choice of representation has
a considerable effect on the amount of storage required for the tree.
It also influences algorithms that construct or access the tree, since
different representations require different access methods.

We present a suffix tree representation designed primarily to be
compact in the worst case. We use this representation directly in chap-
ter two, and in the implementation in appendix A. It is to be regarded
as our basic choice of implementation except where otherwise stated.
We use hashing to store edges, implying randomized worst case time
when it is used. The notation used for our representation is summa-
rized in the table on the next page.

In order to express tree locations of strings that do not have a cor-
responding node in the suffix tree, due to path compression, we in-
troduce the following concept:

Definition For each substring α of the indexed string, point(α) is a 1E

triple (u, d, c), where u is the node of maximum depth that represents
a prefix of α, β is that prefix, d = |α|− |β|, and c is the |β|+1st symbol
of α, unless α = β in which case c can be any symbol.

Less formally: if we traverse the tree from the root following edges
that together spell out α for as long as possible, u is the last node
on that path, d is the number of remaining symbols of α below u,
and c is the first symbol on the edge label that spells out the last
part of α, i.e., c determines on which outgoing edge of u the point
is located. For an illustration, consider the figure on page 17, where

15



§ 1.3.2

depth(u) String depth of node u, i.e., total number of symbols in edge
labels on the path from the root to u; stored explicitly for
internal nodes only.

pos(u) Starting position in X of the incoming edge label for node u;
stored explicitly for internal nodes only.

fsym(u) First symbol in the incoming edge label of leaf u.
leaf (i) Leaf corresponding to the suffix xi . . . xn.

spos(u) Starting position in X of the suffix represented by leaf u;
i = spos(u)⇔ u = leaf (i).

child(u, c) The child node of node u that has an incoming edge label of
beginning with symbol c. If u has no such child,
child(u, c) = nil.

parent(u) The parent node of node u.
suf (u) Node representing the longest proper suffix of the string

represented by internal node u (the suffix link target of u).
h(u, c) Hash table entry number for child(u, c).
g(i, c) Backward hash function, u = g(i, c)⇔ i = h(u, c).

hash(i) Start of linked list for nodes with hash value i.
next(u) Node following u in the linked list of nodes with equal hash

values.

Summary of
suffix tree
representation.
The values of
leaf , spos, child,
parent, h, and g

are computed,
the others
stored explicitly.

point(‘bangsl’) = (v, 2, ‘s’).
All nodes are represented by numbers. Internal nodes can have their

numbers assigned in any order, but leaves are numbered consecutively
according to which suffixes they represent. This gives us constant time
access to a leaf node given the starting position, as well as to the start-
ing position given the node. If a leaf node v corresponds to the suf-
fix xi . . . xn, we denote leaf (i) = v and spos(v) = i. For instance, we
can number the leaves l0, . . . , l0 + n for any l0, and define leaf(i) to
be node number l0 + i.

We adopt the following convention for representing edge labels:
each node u in the tree has two associated values pos(u), which de-
notes a position in X where the label of the incoming edge of u is
spelled out; and depth(u), which denotes the string depth of u (the
length of its represented string). Hence, the label of an edge (u, v) is
the string of length depth(v) − depth(u) that begins at position pos(v)
of X. For internal nodes, we store these values explicitly. For leaves, this
is not needed, since the values can be obtained from the node number-
ing: if v is a leaf, the value corresponding to depth(v) is n+ 1− spos(v),
and the value of pos(v) is spos(v)+depth(u), where u is the parent of v.

As noted by McCreight [48, page 268] it is possible to avoid storing
pos values through a similar numbering arrangement for internal nodes
as for the leaves, thus saving one integer of storage per internal node.
However, we choose not to take advantage of this due to the limita-

16



§ 1.3.2

bang

slash

a

ng

root

u

v

w

suf (v) = w

Fragment of a
suffix tree for a
string containing
‘bangslash’. In
this tree,
point(‘bangsl’) is
(v, 2, ‘s’),
child(root, ‘b’) is
the node v and
child(v, ‘s’) is
the node u. The
dotted line
shows the suffix
link of v.

tions it imposes on handling of node deletions, which are necessary for
the sliding window support treated in chapter two.

By child(u, c) = v, and parent(v) = u, where u and v are nodes
and c is a symbol, we denote that there is an edge (u, v) whose la-
bel begins with c.

Associated with each internal node u of the suffix tree, we store a
suffix link as described in §1.3.1. We define suf (u) = v if and only
if u represents cα, for symbol c and string α, and the node v repre-
sents α. In the figure above, the node v represents the string ‘bang’
and w represents ‘ang’; consequently, suf (v) = w. The suffix links
are needed during tree construction but are not generally used once
the tree is completed.

For convenience, we add a special node nil and define suf (root) =

nil, parent(root) = nil, depth(nil) = −1, and child(nil, c) = root for any
symbol c. We leave suf (nil) and pos(nil) undefined, allowing the al-
gorithm to assign these entities any value. Furthermore, for a node u

that has no outgoing edge such that its label begins with c, we de-
fine child(u, c) = nil.

We use a hashing scheme where elements with equal hash values
are chained together by singly linked lists. The hash function h(u, c),
for internal node u and symbol c produces a number in the range
[ 0, H), where H is the number of entry points in the hash table. We
require that a backward hash function g is defined so that the node u

can be uniquely identified as u = g(i, c), given i and c such that i =

h(u, c). For uniqueness, this implies that H is at least max {n, k}.
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§ 1.3.2

child(u, c):
1 i← h(u, c), v← hash(i).
2 While v is not a list terminator, execute steps 3 to 5:
3 If v is a leaf, c ′ ← fsym(v); otherwise c ′ ← xpos(v).
4 If c ′ = c, stop and return v.
5 v← next(v) and continue from step 2.
6 Return nil.

Child retrieval
in our edge
representation.
Numeric values
of nodes are
defined in the
text.

To represent an edge (u, v) whose edge label begins with symbol c,
we insert the node v in the linked list of hash table entry point h(u, c).
By hash(i) we denote the first node in hash table entry i, and by
next(u) the node following u in the hash table linked list where it
is stored. If there is no node following u, next(u) stores a special list
terminator value. If there is no node with hash value i, hash(i) holds
the terminator.

Because of the uniqueness property of our hash function, it is not
necessary to store any additional record for each item held in the
hash table. To determine when the correct child node is found when
scanning through a hash table entry, the only additional information
needed is the first symbol of the incoming edge label for each node.
For an internal node v, this symbol is directly accessible as xpos(v), but
for the leaves we need an additional n symbols of storage to access
these distinguishing symbols. Hence, we define and maintain fsym(v)

for each leaf v to hold this value.
The child(u, c) algorithm above shows the child retrieval process

given the specified storage. Steps 3 and 4 of this algorithm determine
if the current v is the correct value of child(u, c) by checking if it is
consistent with the first symbol in the label of (u, v) being c.

Summing up storage, we have three integers for each internal node,
to store the values of pos, depth, and suf , plus the hash table storage
which requires max {n, k} integers for hash and one integer per node
for next. In addition, we need to store n + 1 symbols to maintain fsym
and the same amount to store the string X. (For convenience, we store
the nil node explicitly.) Thus, we can state the following regarding
the required storage:

Observation A suffix tree for a string of n symbols from an alphabet of1F

size k, with an appended end marker, can be constructed in expected
linear time using storage for 5(n+1)+max {n, k} integers and 2(n+1)

symbols.

The hash function h(u, c) can be defined, for example, as a simple
xor operation between the numeric values of u and c. The dependence
of this value on the symbols of X, which potentially leads to degenerate
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§ 1.4

hashing performance, is easily eliminated by assigning internal node
numbers in random order. This scheme may require a hash table with
more than max {n, k} entry points, but its size is still represented in
the same number of bits as max {n, k}.

The uniqueness of the hash function also yields the capability of
accessing the parent of a node without using extra storage. If we let the
list terminator in the hash table be, say, any negative value – instead of
one single value – we can store information about the hash table entry
in that value. For example, let the list terminator for hash table entry i

be −(i + 1). We find in which list a node is stored, after following
its next pointer chain to the end, signified by any negative value. This
takes expected constant time using the following procedure:

To find the parent u of a given node v, we first determine the first
symbol c in the label of (u, v). If v is a leaf, c = fsym(v), otherwise
c = xpos(v). We then follow the chain of next pointers from v until a
negative value j is found, which is the list terminator in whose value
the hash table entry number is stored. Thus, we find the hash value i =

−(j + 1) for u and c, and obtain u = g(i, c).

1.4 Sequential Data Compression

A large part of this thesis is motivated by its application in data com-
pression. Compression is a rich topic with many branches of research;
our viewpoint is limited to one of these branches: lossless sequential
compression. This is often referred to as text compression, although its
area of application goes far beyond that of compressing natural lan-
guage text – it can be used for any data organized as a sequence.

Furthermore, we almost exclusively concentrate on the problem of
source modelling, leaving the equally important area of coding to other
research. The coding methods we most commonly refer to are en-
tropy codes, such as Huffman and arithmetic coding, which have the
purpose of representing output data in the minimum number of bits,
given a probability distribution (see for instance Witten, Moffat, and
Bell [70, chapter two]). A carefully designed coding scheme is es-
sential for efficient overall compression performance, particularly in
connection with predictive source models, where probability distribu-
tions are highly dynamic.

Our goal is to accomplish methods that yield good compression
with moderate computational resources. Thus, we do not attempt to
improve compression ratios at any price. Nor do we put much ef-
fort into finding theoretical bounds for compression. Instead, we con-
centrate on seeking efficient source models that can be maintained in
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time which is linear, or very close to linear, in the size of the input.
By careful application of algorithmic methods, we strive to shift the
balance point in the tradeoff between compression and speed, to en-
able more effective compression at reasonable cost. Part of this work
is done by starting from existing methods, whose compression per-
formance is well studied, and introducing augmentations to increase
their practical usefulness. In other parts, we propose methods with
novel elements, starting from scratch.

We assume that the reader is familiar with the basic concepts of in-
formation theory, such as an intuitive understanding of a source and
the corresponding definition of entropy, which are important tools
in the development of data compression methods. However, as our
exploration has primarily an algorithmic viewpoint, the treatment of
these concepts is often somewhat superficial and without mathemat-
ical rigour. For basic reference concerning information theoretic con-
cepts, see, for instance, Cover and Thomas [21].
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Sliding Window Indexing

In many applications where substrings of a large string need to be
indexed, a static index over the whole string is not adequate. In some
cases, the index needs to be used for processing part of the indexed
string before the complete input is known. Furthermore, we may not
need to keep record all the way back to the beginning of the input.
If we can release old parts of the input from the index, the storage
requirements are much smaller.

One area of application where this support is valuable is in data
compression. The motive for deletion of old data in this context is ei-
ther to obtain an adaptive model or to accomplish a space economical
implementation of an advanced model. Chapter five presents applica-
tions where support of a dynamic indexed string is critical for efficient
implementation of various source modelling schemes.

Utilizing a suffix tree for indexing the first part of a string, before
the whole input is known, is directly possible when using an online
construction algorithm such as Ukkonen’s [67], but the nontrivial task
of moving the endpoint of the index forward remains.

The contribution of this chapter is the augmentation of Ukkonen’s
algorithm into a full sliding window indexing mechanism for a win-
dow of variable size, while maintaining the full power and efficiency
of a suffix tree. The description addresses every detail needed for the
implementation, which is demonstrated in appendix A, where we
present source code for a complete implementation of the scheme.

Apart from Ukkonen’s algorithm construction algorithm, the work
of Fiala and Greene [26] is crucial for our results. Fiala and Greene
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presented (in addition to several points regarding Ziv-Lempel com-
pression which are not directly relevant to this work) a method for
maintaining valid edge labels when making deletions in a suffix tree.
Their scheme is not, however, sufficient for a full linear-time sliding
window implementation, as several other complications in moving the
indexed string need to be addressed.

The problem of indexing a sliding window with a suffix tree is also
considered by Rodeh, Pratt, and Even [57]. Their method is to avoid
the problem of deletions by maintaining three suffix trees simultane-
ously. This is clearly less efficient, particularly in space requirements,
than maintaining a single tree.

2.1 Suffix Tree Construction

Since the support of a sliding window requires augmentation inside
the suffix tree construction algorithm, it is necessary to recapitulate
this algorithm in detail. We give a slightly altered, and highly con-
densed, formulation of Ukkonen’s online suffix tree construction al-
gorithm as a basis for our work. For a more elaborate description, see
Ukkonen’s original paper [67].

We base the description on our suffix tree implementation, and no-
tation, described in §1.3.2. One detail regarding the given representa-
tion needs to be clarified in this context. To minimize representation
of leaves, we have stipulated that incoming edges of leaves are implic-
itly labeled with strings that continue to the end of the input. In the
current context, the end of the input is not defined. Instead, we let
these labels dynamically represent strings that continue to the end of
the currently indexed string. Hence, there is no one-to-one mapping
between suffixes and leaves of the tree, since some suffixes of the in-
dexed string may be represented by internal nodes or points between
symbols in edge labels.

Ukkonen’s algorithm is incremental. In iteration i we build the tree
indexing x0 . . . xi from the tree indexing x0 . . . xi−1. Thus, iteration i

needs to add, for all suffixes α of x0 . . . xi−1, the i strings αxi to the
tree. Just before αxi is to be added, precisely one of the following
three cases holds:

1 α occurs in precisely one position in x0 . . . xi−1. This means that it is
represented by some leaf s in the current tree. In order to add αxi we
need only increment the string depth of s.

2 α occurs in more than one position in x0 . . . xi−1, but αxi does not
occur in x0 . . . xi−1. This implies that α is represented by an internal
point in the current tree, and that a new leaf must be created for αxi.
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In addition, if point(α) is not located at a node but inside an edge label,
this edge has to be split, and a new internal node introduced, to serve
as the parent of the new leaf.

3 αxi occurs in x0 . . . xi−1 and is therefore already present in the tree.
Note that if, for a given xi in a specific suffix tree, case 1 holds for

α1xi, case 2 for α2xi, and case 3 for α3xi, then |α1| > |α2| > |α3|.
For case 1, all work is avoided in our representation. The labels of

leaf edges are defined to continue to the end of the currently indexed
string. This implies that the leaf that represented α after iteration i−1

implicitly gets its string depth incremented by iteration i, and is thus
updated to represent αxi.

Hence, the point of greatest depth where the tree may need to be
altered in iteration i is point(α), for the longest suffix α of x0 . . . xi−1

that also occurs in some other position in x0 . . . xi−1. We call this the
active point. Before the first iteration, the active point is (root, 0, ∗),
where ∗ denotes any symbol. Other points that need modification can
be found from the active point by following suffix links, and possibly
some downward edges.

Finally, we reach the point that corresponds to the longest αxi

string for which case 3 holds. This concludes iteration i; all the neces-
sary insertions have been made. We call this point, the point of max-
imum string depth for which case 3 holds, the endpoint. The active
point for the next iteration is found simply by moving one step down
from the endpoint, just beyond the symbol xi along the current path.

The figure above shows an example suffix tree before and after the
iteration that expands the indexed string from ‘abab’ to ‘ababc’. Before
this iteration, the active point is (root, 2, ‘a’), the point corresponding
to ‘ab’, located on the incoming edge of leaf(0). During the iteration,
this edge is split, points (root, 2, ‘a’) and (root, 1, ‘b’) are made into
explicit nodes, and leaves are added to represent the suffixes ‘abc’,
‘bc’, and ‘c’. The two longest suffixes are represented by the leaves
that were already present, whose depths are implicitly incremented.
The active point for the next iteration is (root, 0, ∗), corresponding
to the empty string.
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We maintain a variable front that holds the position to the right
of the string currently included in the tree. Hence, front = i when
the tree spans x0 . . . xi−1.

The insertion point is the point where new nodes are inserted. Two
variables ins and proj are kept, where ins is the closest node above
the insertion point and proj is the number of projecting symbols be-
tween that node and the insertion point. Consequently, the insertion
point is (ins, proj, xf ront−proj).

At the beginning of each iteration, the insertion point is set to the
active point. The Canonize subroutine on the facing page is used to
ensure that (ins, proj, xf ront−proj) is a valid point after proj has been
incremented, by moving ins along downward edges and decreasing proj
for as long as ins and the insertion point are separated by at least one
node. The routine returns nil if the insertion point is now at a node,
otherwise it returns the node r, where (ins, r) is the edge on which
the active point resides.

The complete procedure for one iteration of the construction algo-
rithm is shown on the facing page. This algorithm takes constant amor-
tized time, provided that the operation to retrieve child(u, c) given u

and c takes constant time (proof given by Ukkonen [67]), which is
true in our representation of choice.

2.2 Sliding the Window

We now give the indexed string a dynamic left endpoint. We maintain
a suffix tree over the string XM = xtail . . . xf ront−1, where tail and front
are integer variables such that at any point in time 0 ≤ front− tail ≤ M

for some maximum length M. For convenience, we assume that front
and tail may grow indefinitely. However, since the tree does not con-
tain any references to x0 . . . xtail−1, the storage for these earlier parts
of the input string can be released or reused. In practice, this is most
conveniently done by representing indices as integers modulo M, and
storing XM in a circular buffer. This implies that for each i ∈ [ 0, M),
the symbols xi+jM occupy the same memory cell for all nonnegative
integers j, and consequently only M symbols of storage space is re-
quired for the input.

Each iteration of suffix tree construction, performed by the algo-
rithm shown on the facing page, can be viewed as a method to in-
crement front. This section presents a method that, in combination
with some slight augmentations to the previous front increment pro-
cedure, allows tail to be incremented without asymptotic increase in
time complexity. By this method we can maintain a suffix tree as an
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Canonize:
1 While proj > 0, repeat steps 2 to 5:
2 r← child(ins, xf r ont−proj).
3 d← depth(r) − depth(ins).
4 If r is a leaf or proj < d, then stop and return r,
5 otherwise, decrease proj by d, and set ins← r.
6 Return nil.

Subroutine that
moves ins down
the tree and
decreases proj,
until proj does
not span any
node.

1 Set v← nil, and loop through steps 2 to 16:
2 r← Canonize.
3 If r = nil and child(ins, xf r ont) 6= nil, break out of loop to step 17.
4 If r = nil and child(ins, xf r ont) = nil, set u← ins.
5 If r is a leaf, j← spos(r) + depth(ins); otherwise j← pos(r)
6 If r 6= nil and xj+proj = xf r ont, break out of loop to step 17.
7 If r 6= nil and xj+proj 6= xf r ont, execute steps 8 to 13:
8 Assign u an unused node.
9 depth(u)← depth(ins) + proj.

10 pos(u)← front − proj.
11 Delete edge (ins, r).
12 Create edges (ins, u) and (u, r).
13 If r is a leaf, fsym(r)← xj+proj ; otherwise, pos(r)← j + proj.
14 s← leaf (front − depth(u)).
15 Create edge (u, s).
16 suf (v)← u, v← u, ins← suf (ins), and continue from step 2.
17 suf (v)← ins.
18 proj← proj + 1, front ← front + 1.

One iteration of
suffix tree
construction.
The string
indexed by
the tree is
expanded with
one symbol.
Augmentations
necessary for
sliding window
support are
given in §2.2.6.

index for a sliding window of varying size at most M, while keep-
ing time complexity linear in the number of processed symbols. The
storage space requirement is Θ(M).

Preconditions Removing the leftmost symbol of the indexed string in- 2.2.1
volves removing the longest suffix of XM, i.e. XM itself, from the tree.
Since this is the longest string represented in the tree, it must corre-
spond to a leaf. Furthermore, accessing a leaf given its string position is
a constant time operation in our tree representation. Therefore it ap-
pears, at first glance, to be a simple task to obtain the leaf v to remove
as v = leaf (tail), and delete the leftmost suffix simply by removing
v and incrementing tail.

This simple operation does remove the longest suffix from the tree,
and it is the basis of our deletion scheme. However, to correctly main-
tain a suffix tree for the sliding window, it is not sufficient. We have to
ensure that our deletion operation retains a complete and valid suffix
tree, which is specified by the following preconditions:
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• Path compression must be maintained. If removing one node leaves
its parent with only one remaining child, the parent must also be re-
moved.

• Only the longest suffix must be removed from the tree, and all other
strings retained. This is not trivial, since without an input terminator,
several suffixes may reside on the same edge.

• The insertion point variables ins and proj must be kept valid.
• Edge labels must not slide outside the window. As tail is incremented

we must make sure that pos(u) ≥ tail still holds for all internal nodes u.
The following sections explain how our deletion scheme deals with

these preconditions.

Maintaining path compression Given that the only removed node is2.2.2
v = leaf (tail), the only point where path compression may be lost is at
the parent of this removed leaf. Let u = parent(v). If u has at least two
remaining children after v is deleted, the path compression property
is not violated. Otherwise, let s be the single remaining child of u;
u and s should be contracted into one node. Hence, we remove the
edges (parent(u), u) and (u, s), and create an edge (parent(u), s). To
update edge labels accordingly, we move the starting position of the
incoming edge label of s backwards by d positions.

Removing u cannot decrease the number of children of parent(u),
since s becomes a new child of u. Hence, violation of path compres-
sion does not propagate, and the described procedure is enough to
keep the tree correctly path compressed.

When u has been removed, the storage space occupied by it should
be marked unused, so that it can be reused for nodes created when
the front end of the window is advanced.

Since we are now deleting internal nodes, one issue that needs to
be addressed is that deletion should leave all suffix links well defined,
i.e., if suf (x) = y for some nodes x and y, then y must not be re-
moved unless x is removed. However, this follows directly from the
tree properties. Let the string represented by x be cα for some sym-
bol c and string α. The existence of x as an internal node implies
that the string cα occurs at least twice in XM. This in turn implies
that α, the string represented by y, occurs at least twice, even if cα is
removed. Therefore, y has at least two children, and is not removed.

Avoiding unwanted suffix removals When we delete v = leaf (tail), we2.2.3
must ensure that no other string than xtail . . . xf ront−1 is removed from
the tree. This is violated if some other suffix of the currently indexed
string is located on the edge (parent(v), v).
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The tree shown above indexes the string ‘ababcabab’. Deleting v

from this tree would remove the longest suffix, but it would also
cause the suffix ‘abab’ to be lost since this is located on the incom-
ing edge of v.

Fortunately, there is a simple way to avoid this. First note the fol-
lowing general string property:

Lemma Assume that A and α are nonempty strings for which the 2A

following properties hold:
1 α is the longest string such that A = δα = αθ for some nonempty

strings δ and θ;
2 if αµ is a substring of A, then µ is a prefix of θ.

Then α is the longest suffix of A that also occurs as a substring in
some other position of A.

Proof Trivially, by assumption 1, α is a suffix of A that also occurs
as a substring in some other position of A. Assume that it is not the
longest one, and let χα be a longer suffix with this property. This im-
plies that A = φχα = βχαγ, for nonempty strings φ, χ, β, and γ.

Since αγ is a substring of A, it follows from assumption 2 that γ

is a prefix of θ. Hence, θ = γθ ′ for some string θ ′. Now observe that
A = αθ = αγθ ′. Letting α ′ = αγ and δ ′ = βχ then yields A = δ ′α ′ =

α ′θ ′, where |α ′| > |α|, which contradicts assumption 1.
Assume that some nonempty string would be inadvertently lost

from the tree if v was deleted, and let α be the longest string that
would be lost. If we let A = XM, the two premises of lemma 2A are
fulfilled. This is clear from the following observations:

1 Only prefixes of the removed string can be lost. Hence, α is both a
prefix and a suffix of XM. If a longer string with this property existed,
it would be located further down in the tree along the path to v, and
it would therefore be lost as well. This cannot be the case, since we
defined α as the longest lost string.

2 There cannot be any internal node in the tree below point(α), since it
resides on the incoming edge of a leaf. Therefore, for any two strings
following α in XM, one must be a prefix of the other.
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Hence, both premises of lemma 2A hold, and we conclude that the
longest potentially lost suffix α is also the longest suffix that occurs
as a substring elsewhere in XM.

This in turn implies that point(α) is the active point of the next
iteration. Therefore, we can determine if a suffix would be lost by
checking if the active point is located on the incoming edge of v, the
leaf that is to be deleted. We call Canonize and check whether the
returned value is equal to v. If so, instead of deleting v, we replace it
by a leaf that represents α, namely leaf (front− |α|), where we calculate
|α| as the string depth of the active point.

This saves α from being lost, and since all potentially lost suffixes
are prefixes of XM and therefore also of α, the result is that all po-
tentially lost suffixes are saved.

Keeping a valid insertion point The insertion point indicated by the2.2.4
variables ins and proj must, after deletion, still be the correct active
point for the next front increment operation. In other words, we must
ensure that the point (ins, proj, xf ront−proj) = point(α) still represents
the longest suffix that also appears as a substring in another position
of the indexed string. This is violated if and only if:

• the node ins is deleted, or
• removal of the longest suffix has the effect that only one instance of

the string α is left in the tree.
The first case occurs when ins is deleted as a result of maintaining

path compression, as explained in §2.2.2. This is easily overcome by
checking if ins is the node being deleted, and, if so, backing up the
insertion point by increasing proj by depth(ins) − depth(parent(ins))
and then setting ins ← parent(ins).

The second case is closely associated with the circumstances ex-
plained in §2.2.3; it occurs exactly when the active point is located on
the incoming edge of the deleted leaf. The effect is that if the previous
active point was cβ for some symbol c and string β, the new active
point is point(β). To see this, note that, according to the conclusions
of §2.2.3, the deleted suffix in this case is cβγ, for some nonempty
string γ. Therefore, while cβ appears only in one position of the in-
dexed string after deletion, the string β still appears in at least two
positions. Consequently, the new active point in this case is found fol-
lowing a suffix link from the old one, by simply setting ins← suf (ins).

Keeping Labels Inside the Window The final precondition that must2.2.5
be fulfilled is that edge labels do not become out of date when tail is
incremented, i.e. that pos(u) ≥ tail for all internal nodes u.
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One immediately apparent method is as follows. Each newly added
leaf corresponds to a suffix xi . . . xf ront, for some i ≥ tail, of the cur-
rently indexed string. Each time a leaf is added, we can traverse the
path between the root and that leaf, and update the incoming edge
label of each internal node u on that path by setting pos(u) ← i +

depth(u). This ensures that all labels on the path from the root to any
current leaf, i.e., any path in the tree, are kept up to date. However,
this would yield superlinear time complexity, and we must find a way
to restrict the number of updates to keep the algorithm efficient.

The idea of the following scheme should be attributed to Fiala and
Greene [26]; our treatment is only slightly extended, and modified
to fit into our context.

When leaf (i), the leaf representing the suffix xi . . . xf ront, is added,
we let it pass the position i on to its parent. We refer to this operation
as the leaf issuing a credit to its parent.

We assign each internal node u a binary counter cred(u), explic-
itly stored in the data structure. This credit counter is initially zero as
u is created. When a node u receives a credit, we first refresh its in-
coming edge label by updating the value of pos(u). Then, if cred(u) is
zero, we set it to one, and stop. If cred(u) was already one, we reset it
to zero, and let u pass a credit on to its parent. This allows the par-
ent, and possibly nodes higher up in the tree, to have the incoming
edge label updated.

When a node is deleted, it may have been issued a credit from its
newest child (the one that is not deleted), which has not yet been
passed on to its parent. Therefore, when a node u is scheduled for
deletion and cred(u) = 1, we let u issue a credit to its parent. How-
ever, this introduces a complication in the updating process: several
waiting credits may aggregate, causing nodes further up in the tree
to receive an older credit than it has already received from another
of its children. Therefore, before updating a pos value, we compare
its previous value against the one associated with the received credit,
and use the newer value.

By fresh credit, we denote a credit originating from one of the leaves
currently present, i.e., one associated with a position larger than or
equal to tail. Since a node u has pos(u) updated each time it receives
a credit, pos(u) ≥ tail if u has received at least one fresh credit. The
following lemma states that this scheme guarantees valid edge labels.

Lemma (Fiala and Greene) Each internal node has received a fresh 2B

credit from each of its children.

Proof Any internal node of depth h−1, where h is the height of the
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tree, has only leaves as children. Furthermore, these leaves all issued
credits to their parent as they were created, either directly or to an in-
termediate node that has later been deleted and had the credit passed
on. Consequently, any internal node of maximum depth has received
a credit from each of its leaves. Furthermore, since each internal node
has at least two children, it has also issued at least one fresh credit to
its parent.

Assume that any node of depth d received at least one fresh credit
from each of its leaves, and issued at least one to its parent. Let u be
an internal node of depth d − 1. Each child of u is either a leaf or an
internal node of depth at least d, and must therefore have issued at
least one fresh credit each to u. Consequently, u has received fresh
credits from all its children, and has issued at least one to its parent.

Hence, internal nodes of all depths have received fresh credits from
all its children.

To account for the time complexity of this scheme, we state the fol-
lowing:

Lemma (Fiala and Greene) The number of label update operations is2C

linear in the size of the input.

Proof The number of update operations is the same as the number
of credit issue operations. A credit is issued once for each leaf added to
the tree, and once when two credits have accumulated in one node. In
the latter case, one credit is consumed and disappears, while the other
is passed up the tree. Consequently, the number of label updates is
at most twice the number of leaves added to the tree. This in turn, is
bounded by the total number of symbols indexed by the tree, i.e., the
total length of the input.

The Algorithms The deletion algorithm conforming to the conclusions2.2.6
in §2.2.2 through §2.2.5, including the Update subroutine used for
passing credits up the tree, is shown on the facing page.

The child access operation in step 10 is guaranteed to yield the
single remaining child s of u, since all leaves in the subtree of s are
newer than v, and s must therefore have issued a newer credit than v

to u, causing pos(u) to be updated accordingly.
The algorithm that advances front on page 25 needs some augmen-

tation to support deletion, since it needs to handle the credit counters
for new nodes. This is accomplished with the following additions:

At the end of step 12: cred(u)← 0.
At the end of step 15: Update(u, front − depth(u)).
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Update(v, i):
1 While v 6= root, repeat steps 2 to 6
2 u← parent(v).
3 i← max {i, pos(v) − depth(u)}.
4 pos(v)← i + depth(u).
5 cred(v)← 1 − cred(v).
6 If cred(v) = 1, stop; otherwise v← u, and continue from step 1.

Subroutine that
issues a credit to
node v. The
parameter i is
the position of
the suffix being
added.

1 r← Canonize, v← leaf (tail).
2 u← parent(v), delete edge (u, v).
3 If v = r, execute steps 4 to 6:
4 i← front − (depth(ins) + proj).
5 Create edge (ins, leaf (i)).
6 Update(ins, i), ins← suf (ins).
7 If v 6= r, u 6= root, and u has only one child, execute steps 8 to 16:
8 w← parent(u).
9 d← depth(u) − depth(w).

10 s← child(u, xpos(u)+d).
11 If u = ins, set ins← w and proj← proj + d.
12 If cred(u) = 1, Update(w, pos(u) − depth(w)).
13 Delete edges (w,u) and (u, s).
14 Create edge (w, s).
15 If s is a leaf, fsym(s)← xpos(u); otherwise, pos(s)← pos(s) − d.
16 Mark u as unused.
17 tail ← tail + 1.

Deletion
algorithm.
Removes the
longest suffix
from the tree
and advances
tail.

The algorithm as shown fulfills all the preconditions listed in §2.2.1.
Hence, we conclude that it can be used to correctly maintain a slid-
ing window.

Apart from the work performed by the Update routine, the deletion
algorithm comprises only constant time operations. By lemmata 2B
and 2C, the total time for label updates is linear in the number of
leaf additions, which is bounded by the input length. Furthermore,
our introduction of sliding window support clearly does not affect the
amortized constant time required by the tree expansion algorithm on
page 25 (cf. Ukkonen’s time complexity proof [67]). Hence, we can
state the following, in analogy with theorem 1B:

Theorem The presented algorithms correctly maintain a sliding win- 2D

dow index over an input of size n from an alphabet of size k in
O(n i(k)) time, where i(k) is an upper bound for the time to locate a
symbol among k possible choices.
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2.3 Storage Issues and Final Result

Two elements of storage required for the sliding window scheme are
unaccounted for in our suffix tree representation given in §1.3.2. The
first is the credit counter. This binary counter requires only one bit per
internal node, and can be incorporated, for example, as the sign bit of
the suffix link. The second is the counter for the number of children
of internal nodes, which is used to determine when a node should
be deleted. The number of children of any internal node apart from
the root in our algorithm is in the range [ 1, k ] at all times. The root
initially has zero children, but this can be treated specially. Hence,
maintaining the number of children requires memory corresponding
to one symbol per internal node.

Consequently, we can combine these observations with observa-
tion 1F to obtain the following conclusion:

Theorem A sliding window suffix tree indexing a window of maxi-2E

mum size M over an input of size n from an alphabet of size k can be
maintained in expected O(n) time using storage for 5M + max {M, k}

integers and 3M symbols.
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Chapter Three

Indexing Word-Partitioned Data

Traditional suffix tree construction algorithms rely heavily on the fact
that all suffixes are inserted, in order to obtain efficient time bounds.
Little work has been done for the common case where only certain
suffixes of the input string are relevant, despite the savings in storage
and processing times that are to be expected from only considering
these suffixes.

Baeza-Yates and Gonnet [9] have pointed out this possibility, by
suggesting inserting only suffixes that start with a word, when the in-
put consists of ordinary text. They imply that the resulting tree can be
built in O(nH(n)) time, where H(n) denotes the height of the tree,
for n symbols. While the expected height is logarithmic under certain
assumptions [64, theorem 1 (ii)], it is unfortunately linear in the worst
case, yielding an algorithm that is quadratic in the size of the input.

One important advantage of this strategy is that it requires only
O(m) space for m words. Unfortunately, with a straightforward ap-
proach such as that of the aforementioned algorithm, this is obtained
at the cost of a greatly increased time complexity. We show that this
is an unnecessary tradeoff.

We formalize the concept of words to suit various applications and
present a generalization of suffix trees, which we call word suffix trees.
These trees store, for a string of length n in an arbitrary alphabet, only
the m suffixes that start at word boundaries. The words are separated
by, possibly implicit, delimiter symbols. Linear construction time is
maintained, which in general is optimal, due to the requirement of
scanning the entire input.
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A sample string
where ¢ = T
with its number
string and word
trie. The word
numbers used,
shown in the
leaves of the
trie, generate
the number
string, shown
just below the
original string.

The related problem of constructing evenly spaced suffix trees has
been treated by Kärkkäinen and Ukkonen [34]. Such trees store all
suffixes for which the start position in the original text are multiples
of some constant. We note that our algorithm can produce this in
the same complexity bounds by assuming implicit word boundaries
at each of these positions.

It should be noted that one open problem remains, namely that
of removing the use of delimiters – finding an algorithm that con-
structs a trie of arbitrarily selected suffixes using only O(m) construc-
tion space for m words.

3.1 Definitions

For convenience, this chapter considers the input to be drawn from an
input alphabet which includes two special symbols which do not nec-
essarily have a one-to-one correspondence to actual low-level symbols
of the implementation. One is the end marker $; the other is a word
delimiter ¢. This differs slightly from the general definition given in
§1.1.1, in that the $ symbol is included among the k possible symbols
of the input alphabet, and in the input string of length n.

Thus, we study the following formal problem. We are given an in-
put string consisting of n symbols from an alphabet of size k, including
two, possibly implicit, special symbols $ and ¢. The $ symbol must be
the last symbol of the input string and may not appear elsewhere,
while ¢ appears in m − 1 places in the input string. We regard the
input string as a series of words – the m non-overlapping substrings
ending either with ¢ or $. There may of course exist multiple occur-
rences of the same word in the input string. We denote the number of
distinct words by m′. We regard each ¢ or $ symbol as being contained
in the preceding word, which implies that there are no empty words;
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corresponding
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the shortest possible word is a single ¢ or $. The goal is to create a trie
structure containing m strings, namely the suffixes of the input string
that start at the beginning of words.

The figures on this spread constitute an example where the input
consists of a DNA sequence, and the symbol T is viewed as the word
delimiter. (This is a special example, constructed for illustrating the
algorithm, not a practical case.) The lower tree on this page is the
word suffix tree for the string displayed on the preceding page. These
figures are more completely explained throughout this chapter.

Our definition can be generalized in a number of ways to suit var-
ious practical applications. The ¢ symbol does not necessarily have to
be a single symbol, we can have a set of delimiting symbols, or even sets
of delimiting strings, as long as the delimiters are easily recognizable.

All tries discussed (the word suffix tree as well as some temporary
tries) are assumed to be path compressed. In order to reduce space
requirements, edge label strings are represented by pointers into the
original string. Thus, a trie with m leaves occupies Θ(m) space.

We assume that the desired data structure is a non-lexicographic trie
and that a randomized algorithm is satisfactory, except where other-
wise stated. This makes it possible to use hashing to represent trees
all through the construction. However, in §3.4 we discuss the cre-
ation of lexicographic suffix trees, as well as deterministic construc-
tion algorithms.
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3.2 Wasting Space: Algorithm A

We first observe the possibility of creating a word suffix tree from
a traditional Θ(n) size suffix tree. This is a relatively straightforward
procedure, which we refer to as Algorithm A. Delimiters are not nec-
essary when this method is used – the suffixes to be represented can
be chosen arbitrarily. Unfortunately however, the algorithm requires
much extra space during construction.

Algorithm A is as follows:
1 Build a traditional non-lexicographic suffix tree for the input string with

a traditional algorithm, using hashing to store edges.
2 Refine the tree into a word suffix tree: remove the leaves that do not

correspond to any of the desired suffixes, and perform explicit path
compression.

3 If so desired, perform a sorting step to make the trie lexicographic.
The time for step 1 is O(n) according to theorem 1B; the refine-

ment time in step 2 is bounded by the number of nodes in the original
tree, i.e. O(n); and step 3 is O(m + s(m)), where s(m) denotes the
time to sort m symbols, according to observation 1A.

Hence, if the desired final result is a non-lexicographic tree, the
construction time is O(n), the same as for a traditional suffix tree. If
a sorted tree is desired however, we have an improved time bound of
O(n + s(m)) compared to the Θ(n + s(n)) time required to create a
lexicographic traditional suffix tree on a string of length n. We state
this in the following observation:

Observation A word suffix tree for a string of n symbols in m words3A

can be created in O(n) time and O(n) space, and made lexicographic
in extra time O(m+ s(m)), where s(m) is the time to sort m symbols.

The disadvantage of Algorithm A is that it consumes as much space
as traditional suffix tree construction. Even the most space-economical
implementation of Ukkonen’s or McCreight’s algorithm requires sev-
eral values per node in the range [ 0, n ] to be held in primary storage
during construction, in addition to the n symbols of the string. While
this is infeasible in many cases, it may well be possible to store the
final word suffix tree of size Θ(m).

3.3 Saving Space: Algorithm B

We now present Algorithm B, the main word suffix tree construction
algorithm, which in contrast to Algorithm A uses only Θ(m) space.

The algorithm is outlined as follows. First, a non-lexicographic trie
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with m′ leaves is built, containing all distinct words: the word trie.
Next, this trie is traversed and each leaf – corresponding to each dis-
tinct word in the input string – is assigned its in-order number. There-
after, the input string is used to create a string of m numbers by rep-
resenting every word in the input by its in-order number in the word
trie. A lexicographic suffix tree is constructed for this string. Finally, this
number-based suffix tree is expanded into the final non-lexicographic
word suffix tree, utilizing the word trie.

We now discuss the stages in detail.

Building the Word Trie We employ a recursive algorithm to create a 3.3.1
non-lexicographic trie containing all distinct words. Since the delim-
iter is included at the end of each word, no word can be a prefix of
another. This implies that each word will correspond to a leaf in the
word trie. We use hashing for storing the outgoing edges of each node.
The construction is performed top-down by the following algorithm,
beginning at the root, which initially contains all words:

1 If the current node contains only one word, stop.
2 Set the variable i to 1.
3 Check if all contained words have the same ith symbol. If so, incre-

ment i by one, and repeat this step.
4 Let the incoming edge to the current node be labeled with the sub-

string consisting of the i − 1 symbol long common prefix of the words
it contains. If the current node is the root, and i > 1, create a new,
unary, root above it.

5 Store all distinct ith symbols in a hash table. Construct children for
all distinct ith symbols, and split the words, with the first i symbols
removed, among them.

6 Apply the algorithm recursively to each of the children.
Each symbol is examined no more than twice, once in step 3 and

once in step 5. For each symbol examined, steps 3 and 5 perform a
constant number of operations. Furthermore, steps 2, 4, and 6 take
constant time and are performed once per recursive call, which is
clearly less than n. Thus, the time for construction is O(n).

Assigning In-Order Numbers We perform an in-order traversal of the 3.3.2
trie, and assign the leaves increasing numbers in the order they are
visited, as shown in the figure on page 34. At each node, we take the
order of the children to be the order in which they appear in the hash
table. It is crucial for the correctness of the algorithm (the stage given
in §3.3.5), that the following property holds:
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Definition An assignment of numbers to strings is semi-lexicographic if3B

and only if for all strings, α, β, and γ, where α and β have a common
prefix that is not also a prefix of γ, the number assigned to γ is either
less or greater than both numbers assigned to α and β.

For an illustration of this, consider the word trie shown on page 34.
The requirement that the word trie is semi-lexicographic ensures that
consecutive numbers are assigned to the strings AGAT and AGAAT,
since these are the only two strings with the prefix AGA.

The time for this stage is the same as for an in-order traversal of
the word trie, which is clearly O(m′), where m′ ≤ m is the num-
ber of distinct words.

Generating a Number String We now create a string of length m in3.3.3
the alphabet {1, . . . , m′}.

This is done in O(n) time by scanning the original string while
traversing the word trie, following edges as the symbols are read. Each
time a leaf is encountered, its assigned number is output, and the tra-
versal restarts from the root.

Constructing the Number-Based Suffix Tree We create a traditional lex-3.3.4
icographic suffix tree from the number string. For this, we use an ordi-
nary suffix tree construction algorithm, such as McCreight’s or Ukko-
nen’s. Edges are stored in a hash table. The time needed for this is
O(m).

Since hashing is used, the resulting trie is non-lexicographic. How-
ever, it follows from observation 1A that it can be made lexicographic
in O(m) time using bucket sorting. In the lexicographic trie, we rep-
resent the children at each node with linked lists, so that the right
sibling of a node can be accessed in constant time.

As an alternative, the suffix tree construction algorithm of Farach
(see §1.3.1) can be used to construct this lexicographic suffix tree
directly in O(m) time, which eliminates the randomization element
of this stage.

Expanding the Number-Based Suffix Tree Each node of the number-3.3.5
based suffix tree is now replaced by a local trie, containing the words
corresponding to the children of that node. First, we preprocess the
word trie for lowest common ancestor retrieval in O(m′) time, using
for example the method of Harel and Tarjan [30]. This allows lowest
common ancestors to be obtained in constant time. The local tries
are then built left-to-right, using the fact that since the assignment of
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numbers to words is semi-lexicographic and the number-based suffix
tree is lexicographic, each local trie has the essential structure of the
word trie with some nodes and edges removed. We find the lowest
common ancestor of each pair of adjacent children in the word trie,
and this gives us the appropriate insertion point (where the two words
diverge) of the next node directly.

More specifically, after preprocessing for computation of lowest
common ancestors, we build a local trie at each node. The node ex-
pansion (illustrated in the figure on page 35) is performed in the fol-
lowing manner:

1 Insert the first word.
2 Retrieve the next word in left-to-right order from the sorted linked

list of children. Compute the lowest common ancestor of this word
and the previous word in the word trie.

3 Look into the partially built trie to determine where the lowest com-
mon ancestor of the two nodes should be inserted, if it is not already
there. This is done by searching up the tree from the last inserted word
until reaching a node that has smaller height within the word trie.

4 If necessary, insert the internal (lowest common ancestor) node, and
insert the leaf node representing the word.

5 Repeat from step 2 until all children have been processed.
6 If the root of the local trie is unary, remove it to maintain path com-

pression.
Steps 1 and 6 take constant time, and are executed once per inter-

nal node of the number-based suffix tree. This makes a total of O(m′)

time for these steps. Steps 2, 4, and 5 also take constant time, and
are executed once per node in the resulting word suffix tree. This
implies that their total cost is O(m). The total work performed in
step 3 is essentially an in-order traversal of the local subtree being
built. Thus, the total time for step 3 is proportional to the total size
of the final tree, which is O(m). Consequently, the expansion takes
a total of O(m) time.

Main Algorithm Result The correctness of the algorithm is easily ver- 3.3.6
ified. The crucial point is that the number-based suffix tree has the
essential structure of the final word suffix tree, and that the expansion
stage does not change this.

Theorem A word suffix tree for an input string of size n containing m 3C

words can be built in O(n) expected time, using O(m) storage space.
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3.4 Extensions and Variations

Although the use of randomization, in the form of hashing, and non-
lexicographic suffix trees during construction is sufficient for a major-
ity of practical applications, we describe extensions to Algorithm B in
order to meet stronger requirements.

Building a Lexicographic Trie While many common applications have3.4.1
no use for maintaining a lexicographic trie, there are cases where this
is necessary. (A specialized example is the number-based suffix tree
created in §3.3.4).

If the alphabet size k is small enough to be regarded as a constant,
it is trivial to modify Algorithm B to create a lexicographic tree in lin-
ear time: instead of hash tables, use any ordered data structure – most
naturally an array – of size O(k) to store references to the children
at each node.

If hashing is used during construction as described in the previ-
ous section, Algorithm B can be modified to construct a lexicographic
trie simply by requiring the number assignments in §3.3.2 to be lexi-
cographic instead of semi-lexicographic. Thereby, the number assign-
ment reflects the lexicographic order of the words exactly, and this
order propagates to the final word suffix tree. A lexicographic number
assignment can be achieved by ensuring that the word trie constructed
in §3.3.1 is lexicographic. Observation 1A states that the trie can be
made lexicographic at an extra cost which is asymptotically the same
as for sorting m′ symbols, which yields the following:

Theorem A lexicographic word suffix tree for an input string of size3D

n containing m words of which m′ are distinct can be built in O(n +

s(m′)) expected time, using O(m) storage space, where s(m′) is the
time required to sort m′ symbols.

For the general problem, with no restrictions on alphabet size, this
implies an upper bound of O(n log log n) by applying the currently
best known upper bound for integer sorting [3].

A Deterministic Algorithm A deterministic version of Algorithm B can3.4.2
be obtained by representing the tree with deterministic data struc-
tures only, such as binary search trees. Also, when these data struc-
tures maintain lexicographic ordering of elements (which is common,
even for data structures with the best known time bounds) the re-
sulting tree becomes lexicographic as a side effect. We obtain a better
worst case time, at the price of an asymptotically inferior expected
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performance.
We define i(m, m′) to denote the time to insert m symbols into or-

dered dictionaries each bounded in size by m′, where m′ ≤ m is the
number of distinct words. In a straightforward manner, we can replace
the hash tables in §3.3.1 and §3.3.4 with deterministic data struc-
tures. Since no node may have more than m′ children, the resulting
time complexity is O(n + i(m, m′)).

Theorem A lexicographic word suffix tree for an input string of size 3E

n containing m words of which m′ are distinct can be built determin-
istically in O(n + i(m, m′)) time and O(m) space, where i(m, m′) is
the time required to insert m symbols into ordered dictionaries each
bounded in size by m′.

Using binary search trees, i(m, m′) = O(m log m′). There are other
possibilities, for example we could implement each node as a fusion
tree [27], which implies

i(m, m′) = O(m log m′/ log log m′),

or as an exponential search tree [2], which implies

i(m, m′) = O(m
√

log m′), or

i(m, m′) = O(m log log m′ log log k),

where the latter bound is the more advantageous when the alphabet
size is reasonably small.

3.5 Sublinear Construction: Algorithm C

In some cases, particularly when the alphabet is small, we may assume
that the n symbols in the input string occupy o(n) machine words.
Then it may be possible to avoid the apparently inescapable Ω(n)

cost due to reading the input.
This theme can be altered in many ways, the details depend on the

application. The purpose of this – somewhat technical – section is to
show that a cost of Ω(n) is not a theoretical necessity.

We start by studying the case when the positions of the delimiters
are known in advance. Then we describe an application where the
input string can be scanned and delimiters located in o(n) time.

If the alphabet size is k, then each symbol occupies log k bits and
the total length of the input is N = n log k bits stored in N/w machine
words, where w is the number of bits in a machine word. (In this
section, it is important to distinguish between words in the input string
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and hardware-dependent machine words.)
We first observe the following:

Lemma A lexicographic trie containing strings of a-bit symbols can3F

be transformed into the corresponding lexicographic trie in a b-bit
alphabet in linear time, where a and b are not larger than the size of a
machine word.

Proof This transformation can be made in two steps, where we first
transform the trie of a-bit symbols into a binary trie, which is then
transformed into the final b-bit trie.

For the first part, we compute the lowest common ancestor in the
binary trie for each pair of neighbouring strings, by finding the position
of their first differing bit. This position is found in constant time using
the technique of Fredman and Willard [27]. When lowest common
ancestors for each pair of adjacent leaves are known, we can construct
a binary path compressed trie in the same manner as the node expan-
sion stage of Algorithm B.

The binary trie, in turn, is easily transformed into a trie of the de-
sired degree in linear time during a single traversal, by constructing
each new node from b levels of the binary trie. (For a detailed descrip-
tion, we refer to Andersson, Hagerup, Nilsson, and Raman [3]).

The following algorithm, which we refer to as Algorithm C, builds
a word suffix tree, while temporarily viewing the string as consisting
of n′ b-bit pseudo-symbols, where n′ = o(n). It is necessary that this
transformation does not cause the words to be comprised of fractions
of pseudo-symbols. Therefore, in the case where a word ends at the
ith bit of a pseudo-symbol, we pad this word implicitly with b − i

bits at the end, so that the beginning of the next word may start with
an unbroken pseudo-symbol. This does not influence the structure of
the input string, since each distinct word can only be replaced by an-
other distinct word. Padding may add at most m (b − 1) bits to the
input. Consequently,

n′ = O

(

N + m (b − 1)

b

)

= O

(

N

b
+ m

)

We are now ready to present Algorithm C:
1 Construct a non-lexicographic word trie in the b-bit alphabet in time

O(n′), as in §3.3.1. The padding of words does not change the im-
portant property of direct correspondence between the words and the
leaves of the word trie.

2 Sort the edges of this trie, yielding a lexicographic trie in the b-bit
alphabet in O(m′ + sb(m′)) time, by observation 1A, where sb(m′) is
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the time to sort m′ b-bit integers.
3 Assign in-order numbers to the leaves, and then generate the number

string in time O(n′), in the same manner as in §3.3.3.
4 Convert this word trie into a word trie in the original k-size alphabet,

utilizing lemma 3F. (This does not affect the in-order numbers of the
leaves).

5 Proceed from the number-based suffix tree construction stage (§3.3.4)
of Algorithm B.

The first four steps take time O(n′ + sb(m′)), and the time for the
completion of the construction from §3.3.4 is O(m). Thus the com-
plexity of Algorithm C is O(n′ + m + sb(m′)). Thereby we obtain
the following theorem:

Theorem When the positions of all delimiters are known, a lexico- 3G

graphic word suffix tree on a string comprising m words of which m′

are distinct, can be constructed in time

O

(

N

b
+ m + sb(m′)

)

for some integer parameter b ≤ w, where N is the number of bits in
the input, w is the machine word length, and sb(m′) is the time to
sort m′ b-bit integers.

Note that theorem 3G does not give a complete solution to the
problem of creating a word suffix tree. We still have to find the de-
limiters in the input string, which may take linear time. We illustrate
a possible way around this for one application:

Example: Huffman Coded Text Suppose we are presented with a Huff-
man coded text and asked to generate an index on every suffix start-
ing with a word. Furthermore, suppose that word boundaries are de-
fined to be present at every position where a non-alphabetic symbol
(a space, comma, punctuation etc.) is followed by an alphabetic sym-
bol (a letter), i.e. we have implicit ¢ symbols in these positions. The
resulting word suffix tree may be a binary trie based on the Huff-
man codewords, or a trie based on the original alphabet. Here we
assume the former.

We view the input as consisting of b-bit pseudo-symbols, where
b = (log n)/2. The algorithm is divided in two main parts:

1 Create a code table: We start by creating a table containing 2b

entries, each entry corresponding to one possible pseudo-symbol. For
each entry, we scan the corresponding pseudo-symbol and examine
its contents by decoding the Huffman codewords contained in it. If
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there is an incomplete Huffman codeword at the end, we make a note
to the length of this codeword. We denote the decodable part of the
pseudo-symbol a chunk. While decoding the contents of a table entry,
we check if any word boundaries are contained in the decoded chunk.
If so, this is noted in the table entry. Furthermore, we check if the
last symbol in the chunk is non-alphabetic, in which case we note that
this symbol, together with the first symbol in the next chunk, may
define a word boundary.

The time to create and scan the table is at most proportional to the
total number of bits it contains, which is 2b · b.

2 Scan the input and locate delimiters: We use p as a pointer into
the input string, and scan the input for delimiters with the follow-
ing procedure:

1 Set p← 1.
2 Read a pseudo-symbol (b bits), starting at position p.
3 Use the pseudo-symbol as an address in the code table. Examine if any

word boundaries are contained in the corresponding decoded chunk.
Let i be the length of the chunk. We have two cases:
a i ≥ b/2. Update p to point at the first bit after the chunk and repeat

from step 2.
b i < b/2. Continue reading bits in the input string one at a time

while traversing the Huffman tree until the end of a symbol is
found. Update p to point at the first bit after this symbol and go
repeat from step 2.
Assuming that b consecutive bits can be read in O(1) time, the

time consumption for step 2 is constant. This step is performed a total
number of O(dN/be) times.

Case a of step 3 takes constant time plus the number of found word
boundaries. Hence the total cost of this case is O(N/b + m).

Case b of step 3 occurs when more than the last b/2 bits are occu-
pied by a single symbol. It consumes time proportional to the number
of bits in the symbol’s codeword each time it occurs. Hence, the total
cost of case b equals the total number of bits occupied by codewords
of length more than b/2.

The length of a Huffman coded text asymptotically approaches
the entropy of the text. Therefore, we may assume that the length
of the codeword for a symbol with frequency f approaches − log f.
This yields the following:

Observation Given a Huffman coded input string of n symbols, a3H

symbol whose Huffman codeword occupies i bits occupies a total of
O(ni/2i) bits in the coded string.
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Since the number of symbols occupying i bits cannot exceed the
alphabet size, k, the total number of bits taken by codewords of length
i or longer is O(kNi/2i). Hence, the total number of bits taken by
codewords of length b/2 or longer is O(kNb/2b), which gives us a
bound on the cost of case b in step 3.

The total cost for finding delimiters becomes

O

(

2b · b +
N

b
+ m +

kNb

2b

)

= O

(√
n log n +

N

log n
+ m +

kN log n√
n

)

The first term can be canceled since N ≥ n and the last term can be
canceled if k = O(

√
n/(log n)2). We then get a cost of

O

(

N

log n
+ m

)

Next, applying theorem 3G with the same choice of b, we find that

sb(m′) = O(m′ + 2b) = O(m′ +
√

n)

by using bucket sorting; this cost is negligible. The space used by
this algorithm is O(m +

√
n), the last term being due to the table.

This yields:

Observation For a Huffman coded input string of n symbols coded 3I

in N bits, where the alphabet size k satisfies k = O(
√

n/(log n)2),
a word suffix tree on m natural words can be constructed in time
O(N/ log n + m) with construction space O(m +

√
n).

It should be noted that even if the alphabet is very large, the com-
plexity of our algorithm would be favourable as long as symbols with
long Huffman codewords are rare, i.e. when the entropy of the in-
put string is not too high.

3.6 Additional Notes on Practice

Space Overhead As noted in §1.3, a suffix array is a space efficient 3.6.1
alternative to the suffix tree. Asymptotically, our space requirement is
better than that of a suffix array, but, an asymptotic advantage may of
course sometimes be neutralized by high constant factors.

However, the potential increase in constant factors from using our
data structure is not particularly large. Recall that we have n symbols,
m words, and m′ distinct words. The space taken by our construction
algorithm equals the space required to construct a traditional suffix
tree of m symbols, plus the space required to store m′ words in the
word trie, (including lowest-common-ancestor links). In many prac-
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n m m′

Mark Twain’s Tom Sawyer 387 922 71 457 7 389
August Strindberg’s Röda rummet 539 473 91 771 13 425

Examples of
natural language
text.

tical cases (for example, see the table above which lists two typical
examples of natural language), m′ is considerably smaller than m and
we can neglect the space required by the word trie.

Thus, the word suffix tree, whose final size is bounded by O(m), has
competitive space requirements compared to the linear-sized suffix
array, unless the word lengths are very small.

Examples of Applications The word suffix tree is indeed a natural data3.6.2
structure, and it is surprising that efficient construction of word suf-
fix trees has previously received very little attention. We now discuss
several practical cases where word suffix trees would be desirable.

With natural languages, a reasonable word partitioning would con-
sist of standard text delimiters: space, comma, carriage return, etc. We
could also use implicit delimiters, as in the example in the preceding
section. Using word suffix trees, large texts can be manipulated with
a greatly reduced space requirement, as well as increased processing
speed [9]. The table above indicates that the number of words, m,
in common novels, is much less than the length of the work in bytes,
n. This difference is even greater when one considers the number of
distinct words, m′.

An application directly related to this is natural language text mod-
elling as considered by Teahan. As a way of saving space in a PPM*
context trie data structure (see §5.2.1) that is used as a word model, he
suggests including only contexts that start at a word [65, page 187 ff.].
This corresponds exactly to a word suffix tree with the space char-
acter as the word delimiter. Teahan concludes that this provides sub-
stantial storage savings.

In the study of DNA sequences, we may represent a large vari-
ety of genetic substructures as words, from representations of single
amino acids, up to entire gene sequences. In many such cases, the size
of the overlying DNA string is substantially greater than the number
of substructures it contains. As an example, there are merely tens of
thousands of human genes, whilst the entire length of human DNA
contains approximately three billion nucleotides.

The word suffix tree is of particular importance in the case where
the indexed string is not held in primary storage while the tree is uti-
lized. Using an alternative trie representation that stores only the first
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symbol of each edge and the length of the label explicitly in the trie, al-
lows search operations with a single access to secondary storage. With
this representation, only O(m) cells of primary storage are required,
regardless of the length of the search string. However, a search opera-
tion may reach a leaf where it would have failed in the tree with full
edge label representation; the full string must subsequently be com-
pared against the potentially matching position in the indexed string.

47



Chapter Four

Suffix Sorting

Suffix sorting is the problem of lexicographically ordering all the
suffixes of a string. The suffixes are represented by integers denoting
their starting positions. We present a novel algorithm that removes
much of the overhead of previous solutions, and yet maintains ro-
bust behaviour for all kinds of input, with a worst case time com-
plexity of O(n log n). We present a practical implementation in detail
and give experimental results that demonstrate the favourable perfor-
mance of our algorithm.

Suffix sorting has at least two important applications. One is con-
struction of a suffix array (see §1.3). Another is in data compression
with the Burrows-Wheeler transform, BWT, where suffix sorting is a
computational bottleneck, and an efficient sorting method is crucial
for any implementation of this compression scheme. A detailed de-
scription of BWT can be found in chapter six.

Suffix sorting differs from ordinary string sorting in that the ele-
ments to sort are overlapping strings, whose lengths are linear in the
input length n. This implies that a comparison-based algorithm, which
requires Ω(n log n) comparisons, may take Ω(n2 log n) time for suf-
fix sorting, and analogously a non-specialized radix sorting algorithm
may take Ω(n2) time. Fortunately, these bounds can be surpassed with
specialized methods.

Linear time suffix sorting can be achieved by building a suffix tree
and obtaining the sorted order from its leaves. However, a suffix tree
involves overhead, particularly in space requirements, which com-
monly makes it too expensive to use for suffix sorting alone. In ex-
periments, we find our proposed algorithm to outperform suffix tree
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implementations for natural data, even for very large files, and to be
competitive even for degenerate cases – despite the fact that suffix
trees have superior asymptotic time complexity. In addition, our algo-
rithm requires less space than a suffix tree.

Manber and Myers [47] presented an elegant radix-sorting based
algorithm that takes at most O(n log n) time. They also suggested aug-
mentations to allow string matching operations in time bounds close
to those of the suffix tree, at the cost of additional space. Although our
proposed algorithm is strongly related to that of Manber and Myers (it
requires the same amount of space, has the same asymptotic worst
case time complexity, and relies on the same suffix ordering observa-
tions), our algorithm gains a substantial advantage through reduction
of superfluous processing. Our experiments clearly show that our ap-
proach yields a substantially faster algorithm for almost any input.

Our algorithm exhibits an excellent robustness when processing
large or repetitive inputs, matched only by suffix trees. Thus, although
a general string sorting algorithm optimized for short strings may have
a slight advantage for inputs with little repetition, we assert that our
algorithm is clearly a better choice in general, since ordinary string
sorting degenerates catastrophically for some input distributions.

In §4.1 we recapitulate the Manber-Myers algorithm and other ap-
proaches connected with our algorithm, which we present in its ba-
sic version in §4.2. In §4.3 we analyze time complexity. In §4.4 we
present various refinement techniques. In §4.5 we present a practical
implementation that includes the refinements, and results of an exper-
imental comparison with other suffix sorting implementations.

This work was performed in collaboration with Kunihiko Sadakane,
who has previously presented the basic ideas of the proposed algo-
rithm in preliminary work [59]. This extended work presents an algo-
rithm that has been improved in both time and space requirements,
and contributes a tight time complexity analysis.

Problem Definition We apply our normal notation regarding input,
considering a string X = x0x1 . . . xn of n + 1 symbols, where xn = $.
We regard $ as having a value below all other symbols. By Si, for
0 ≤ i ≤ n, we denote the suffix of X beginning in position i. Thus,
S0 = X, and Sn = $ is the first suffix in lexicographic suffix order.

The output of suffix sorting is a permutation of the Si, contained
in an integer array I. Throughout the algorithm, this array holds all
integers in the range [ 0, n ], where i represents Si. Ultimately, these
numbers are placed in order corresponding to lexicographic suffix or-
der, i.e., SI[ i−1 ] lexicographically precedes SI[ i ] for all i ∈ [ 1, n ]. We
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refer to this final content of the array I as the sorted suffix array.
Thus, suffix sorting in more practical terms means sorting the in-

teger array I according to the corresponding suffixes. We interchange-
ably refer to the integers in the I array and the suffixes they represent;
i.e., suffix i, where i is an integer, denotes Si.

Manber and Myers also consider calculation of longest common pre-
fix (LCP) information, within the time bounds of the algorithm. We
conjecture that this can be efficiently computed as a byproduct of
our algorithm as well, but do not consider it further, for the follow-
ing reasons. The LCP array, as well as other augmentations that allow
faster access in the suffix array, increase space requirements to the ex-
tent that a compact suffix tree implementation (consider for example
the representation of Kurtz [40], McCreight [48, page 268], Ander-
sson and Nilsson [5], or the one given in §1.3.2) would often be a
better alternative. Furthermore, LCP information is unnecessary for
many applications. It is, for example, of no use in implementing the
Burrows-Wheeler transform. Lastly, a linear time LCP calculation al-
gorithm is given by Kasai, Arimura, and Arikawa [36], surpassing our
sorting bound as well as previous ones.

Alphabet Size Considerations Much confusion concerning time com-
plexity of suffix sorting originates from insufficient consideration of
the input alphabet size.

It is well known that general sorting with only pairwise comparisons
has time complexity Θ(n log n), matching the worst case complexity
of the Manber-Myers algorithm as well as ours. However, when the
input consists of integers in a restricted range, radix techniques may be
used. Indeed, the Manber-Myers algorithm is radix based, and requires
that the input consists of integers bounded by n. To lift this restriction,
the algorithm must be preceded by a transform comprising symbol
sorting. Our algorithm does not require this augmentation.

The suffix order can also be obtained by traversing a lexicographic
suffix tree of the input string. Thus, according to theorem 1C, linear-
time suffix sorting is possible for O(n) alphabets by taking the detour
over suffix tree construction. (See also §6.1.2, which discusses the
time complexity of BWT.)

4.1 Background

This section presents the background material for our algorithm as
well as previous work and alternative approaches to suffix sorting.
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Suffix Sorting in Logarithmic Number of Passes One obvious idea for 4.1.1
a suffix sorting algorithm is to start by sorting according to only the
first symbol of each suffix, then successively refining the order by ex-
panding the considered part of each suffix. If one additional symbol
per suffix is considered in each pass, the number of passes required
in the worst case is Ω(n). However, fewer passes are needed if we
exploit the fact that each proper suffix of the whole string is also a
suffix of another suffix.

The key for reducing the number of passes is a doubling technique,
originating from Karp, Miller, and Rosenberg [35], which allows the
positions of the suffixes after each sorting pass to be used as the sorting
keys for preceding suffixes in the next pass.

Define the h-order of the suffixes as their order when lexicograph-
ically sorted according to their initial h symbols of each suffix. The
h-order is not necessarily unique when h < n. Note the following:

Observation (Manber and Myers) Sorting the suffixes using, for each 4A

suffix Si, the position in the h-order of Si as its primary key, and the
position of Si + h in the same order as its secondary key, yields the
2h-order.

To use this observation, we first sort the suffixes according to the
first symbol of each suffix, using the actual contents of the input; i.e.,
xi is the sorting key for suffix i. This yields the 1-order. Then, in pass j,
for j ≥ 1, we use the position that suffix i+ 2j−1 obtained in pass j− 1

(where pass 0 refers to the initial sorting step) as the sorting key for
suffix i. This doubles the number of considered symbols per suffix in
each pass, and only O(log n) passes in total are needed.

Manber and Myers [47] use this observation to obtain an O(n log n)

time algorithm through bucket sorting in each pass. An auxiliary inte-
ger array, which we denote V , is employed to maintain constant-time
access to the positions of the suffixes in I.

The main implementation given by Manber and Myers uses, in ad-
dition to storage space for X, I, and V , an integer array with n el-
ements, to store counts. However, the authors sketch a method for
storing counts in temporary positions in V with maintained asymp-
totic complexity.

A substantially cleaner solution with reduced constant factors has
been presented as source code by McIlroy and McIlroy [49]. Some
properties of their implementation are discussed in §4.4.3.

Ternary-Split Quicksort The well known Quicksort algorithm [31] re- 4.1.2
cursively partitions an array into two parts, one with smaller elements
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than a pivot element and one with larger elements. The parts are then
processed recursively until the whole array is sorted.

Where traditional Quicksort partitioning mixes the elements equal
to the pivot into – depending on the implementation – one or both
of the parts, a ternary-split partition generates three parts: one with
elements smaller than the pivot, one with elements equal to the pivot,
and one with larger elements. The smaller and larger parts are then
processed recursively while the equal part is left as is, since its elements
are already correctly placed.

This approach is analyzed and implemented by Bentley and McIl-
roy [13]. The comparison-based sorting subroutine used in our algo-
rithm is directly derived from their work.

Ternary String-Sorting and Trees Bentley and Sedgewick [14] employ4.1.3
a ternary-split Quicksort for the problem of sorting an array of strings,
which results in the following algorithm. Start by partitioning the
whole array based on the first symbol of each string. Then process
the smaller and larger parts recursively in exactly the same manner as
the whole array. The equal part is also sorted recursively, but with par-
titioning starting from the second symbol of each string. Continue this
process recursively: each time an equal part is being processed, move
the position considered in each string forward by one symbol.

The result is a fast string sorting algorithm which, although it is
not specialized for suffix sorting, has been used successfully for this
application in the widely spread Burrows-Wheeler implementation
Bzip2 [62].

Our proposed algorithm does not explicitly make use of this string
sorting method, but the techniques are related. This is apparent from
our time complexity analysis in §4.3. Bentley and Sedgewick consider
the implicit ternary tree that emerges from their algorithm when re-
garding each partitioning as a node with three outgoing edges, one for
each part of the splitting. We use this tree as a tool for our analysis.

4.2 A Faster Suffix Sort

Usually in suffix sorting, the final sorted positions of most of the suf-
fixes are determined by only the first few symbols of each suffix. This
is true for common real-life data (see §4.5.2) as well as random strings.
As a result, a specialized suffix sorting method, such as the Manber-
Myers algorithm, is often outperformed in practice by an ad hoc string
sorting method, optimized for sorting short strings.

To improve the Manber-Myers algorithm, we need to remove un-
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necessary scanning and idle reorganizing of already sorted suffixes.
Still, we wish to maintain the robust worst case behaviour for repet-
itive strings which do also occur in practice. Furthermore, we do not
want to increase the amount of auxiliary space, which would be nec-
essary if a suffix tree was used.

We now present a suffix sorting algorithm that accomplishes this.
The various techniques explained in §4.1 are components of our algo-
rithm. This section describes a basic version of the algorithm, which
we refer to as Algorithm S. In §4.4 we describe refinements to the
algorithm that improve both running time and storage space.

Our algorithm inherits the use of observation 4A to double the
number of considered symbols over a number of sorting passes, as
well as the array V to gain constant time access to suffix positions,
from Manber and Myers (see §4.1.1). To refrain from scanning the
whole array in each pass, we mark which sections of the suffix array
are already finished and skip over them when sorting. We use ternary-
split Quicksort (§4.1.2) as our sorting subroutine.

The following concepts allow us to express the rules of individ-
ual sorting passes:

Definition When suffixes are sorted lexicographically according to the 4B

first h symbols of each suffix, we say that:
• a maximal sequence of adjacent suffixes in I that have the same initial

h symbols is a group;
• a group containing at least two suffixes is an unsorted group;
• a group containing only one suffix is a sorted group; and
• a maximal sequence of adjacent sorted groups is a combined sorted

group.

We number the groups so that the numbers reflect the order in
which the groups appear in I. This is necessary to allow group num-
bers to be used as sorting keys for preceding suffixes. It is convenient
to define the number of a group I[ f. . . g ] as one of the numbers f. . . g.
For reasons that become apparent in §4.4, we choose the following
group numbering:

Definition A group occupying the subarray I[ f. . . g ] has group num- 4C

ber g.

During sorting, the array V stores group numbers. V [ i ] = g reflects
that suffix i is currently in group number g.

Furthermore, we employ a conceptual array L that holds the lengths
of unsorted groups and combined sorted groups in positions corre-
sponding to their leftmost elements. To distinguish between them, we
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1 Place the suffixes, represented by the numbers 0, . . . , n, in I. Sort the
suffixes using xi as the key for i. Set h to 1.

2 For each i ∈ [ 0, n ], set V[ i ] to the group number of suffix i.
3 For each unsorted group or combined sorted group occupying the

subarray I[ f. . . g ], set L[ f ] to its length or negated length respectively.
4 Process each unsorted group in I with ternary-split Quicksort, using

V[ i + h ] as the key for suffix i.
5 Mark splitting positions between non-equal keys in the unsorted

groups.
6 Double h. Create new groups by splitting at the marked positions,

updating V and L accordingly.
7 If the contents of I is a single combined sorted group, then stop.

Otherwise, go to 4.

Algorithm S, the
basic version of
our proposed
algorithm.

store positive numbers for unsorted groups and negative numbers –
the negated lengths – for combined sorted groups. Thus, if the subar-
ray I[ f. . . g ] is an unsorted group, we have L[ f ] = g − f + 1; if it is
a combined sorted group, L[ f ] = −(g − f + 1) instead. In §4.4.1, we
show how the relevant information of L can be superimposed on the
I array, so that no storage space needs to be allocated for L.

Note the difference in treatment of sorted groups between V and L:
L holds lengths of combined sorted groups; V holds group numbers for
unit length sorted groups.

The first step of the algorithm places the suffixes – represented as
numbers 0 through n – into the I array, sorted according to the first
symbol of each suffix. This step consists of integer sorting, where the
keys are drawn from the input alphabet. After this step, the contents
of I are in 1-order. We initialize V and L accordingly.

Then a number of passes for further sorting follow. At the beginning
of the jth such pass, the contents of the I array are in h-order where
h = 2j−1. Note the following:

Observation When the contents of I are in h-order, each suffix in a4D

sorted group is uniquely distinguished from all other suffixes by its
first h symbols.

This implies that all suffixes in sorted groups are already in their final
location, and only unsorted groups need to be rearranged.

We sort the unsorted groups using the group number of suffix i+h

as the key for suffix i, which, by observation 4A, places the contents of
I in 2h-order. We then split groups between suffixes with non-equal
keys, updating V and L. When setting the lengths in L, we combine
adjacent groups so that they can be efficiently skipped over in sub-
sequent passes.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

h xi t o b e o r n o t t o b e $

I[ i ] 13 2 11 3 12 6 1 4 7 10 5 0 8 9

V[ I[ i ] ] 0 2 2 4 4 5 9 9 9 9 10 13 13 13

L[ i ] −1 2 2 −1 4 −1 3

1 V[ I[ i ] + h ] 4 4 7 0 2 10 12 2 7 12 7

I[ i ] 2 11 12 3 1 10 4 7 0 9 8

V[ I[ i ] ] 2 2 3 4 7 7 8 9 12 12 13

L[ i ] −1 2 −3 2 −3 2 −1

2 V[ I[ i ] + h ] 8 0 4 3 2 2

I[ i ] 11 2 10 1 0 9

V[ I[ i ] ] 1 2 6 7 12 12

L[ i ] −11 2 −1

4 V[ I[ i ] + h ] 8 0

I[ i ] 9 0

V[ I[ i ] ] 11 12

L[ i ] −14

I[ i ] 13 11 2 12 3 6 10 1 4 7 5 9 0 8

Example run of
Algorithm S
with the
input string
‘tobeornottobe’.
Time flow is
from the top
down. Sections
with h values
show the keys
used when
sorting the
entries that have
equal values of
V [ I[ i ] ]. Other
sections show
the parts of the
contents of X, I,
V , and L that are
accessed at each
sorting stage.

Algorithm S is shown on the preceding page. Its time complexity is
analyzed in §4.3. The crucial point of this algorithm is the utilization
of observation 4D in step 4: the group lengths stored in L allow us
to skip over sorted groups completely while we continue to process
unsorted groups. For marking of groups in step 5, we can use, for in-
stance, the sign bits of I. (With the refinement shown in §4.4.2, the
necessity of this marking disappears.)

Note that step 4 does not check that i + h is in the legal range – at
most n – when referring to V [ i + h ]. This is not necessary, because of
the unique $ symbol that terminates X. All suffixes n − h + 1, . . . , n

have length at most h, and the $ symbol is therefore included in the
considered part of these suffixes, which implies that their positions in
the sorted suffix array must already have been uniquely determined.
They are therefore all in sorted groups, and we never attempt to ac-
cess their sorting keys.

The chart above shows a run of Algorithm S with the string ‘tobe-
ornottobe’ as input. The top section of the chart shows X, the input
with the unique $ symbol attached to the end. The second section
shows the result of sorting the suffixes according to their first symbols.
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Negative numbers in L[ 0 ], L[ 5 ] and L[ 10 ] denote that suffixes I[ 0 ],
I[ 5 ] and I[ 10 ] are already in their final positions.

The next, single-line, section of the chart shows the keys used for
the h = 1 sorting pass. In this pass, the sorting key of suffix i is
V [ I[ i ] + 1 ]. Suffixes in groups 2, 4, 9, and 13 (i.e., subarrays I[ 1 . . . 2 ],
I[ 3 . . . 4 ], I[ 6 . . . 9 ], and I[ 11 . . . 13 ]) are sorted separately, according
to these keys. The result, shown in the next section of the chart, is
that suffixes are sorted according to their first two symbols. Groups
have been split by updating L[ i ] and V [ i ] for i ranging over the just
sorted groups.

Analogously, the next sorting pass, for h = 2, processes still un-
sorted groups (2, 7, and 12) by sorting according to V [ I[ i ] + 2 ], and
obtains the suffix order according to the first four symbols of each suf-
fix. Finally, the single remaining unsorted group (12) is sorted accord-
ing to V [ I[ i ] + 4 ], again doubling the number of considered symbols.
This concludes the suffix sorting, since the longest repeated string in
the input is shorter than eight symbols, and leaves the I array holding
the sorted suffix array as shown at the bottom of the chart.

4.3 Time Complexity

Consider Algorithm S on page 54. The time for the first sorting step is
between O(n) and O(n log n) depending on the sorting method used.
Initialization of V and L in steps 2 and 3 are both performed in lin-
ear time in a left-to-right sweep. The asymptotically dominant part
of the algorithm is thus the loop comprising steps 4–7, which is per-
formed up to log n times. Clearly, the time for each run through this
loop can be bounded by n log n – the time to sort the contents of I

with a comparison-based sorting method – yielding an upper bound
of O(n(log n)2) for the total time complexity. However, the more de-
tailed complexity analysis that follows shows that a worst case bound
of O(n log n) is possible.

Our sorting subroutine is Quicksort with a ternary-split partition,
such as the split-end partition of Bentley and McIlroy (see §4.1.2).
We assume that the true median is chosen as pivot element to guar-
antee that the array is partitioned as evenly as possible. This requires
that the median is located in linear time, for example using the al-
gorithm of Schönhage, Paterson, and Pippenger [61], as part of the
partitioning routine. In practice, this is rarely desirable, due to in-
creased constant factors, and hardly necessary. There exists a range
of pivot-choice methods which balances guaranteed worst-case versus
expected performance [13].
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0, . . . , 13

2, 3, 6, 11, 12, 13

< ‘o’

13

< ‘b’

h =
1

h =
2

2, 11

= ‘b’

2, 11

= 4

11

= 0

2

> 0

3, 6, 12

> ‘b’

3, 12

= ‘e’

12

= 0

3

> 0

6

> ‘e’

1, 4, 7, 10

= ‘o’

1, 10

= 2

10

= 3

1

> 3

4, 7

> 2

4

= 8

7

> 8

h =
4

0, 5, 8, 9

> ‘o’

5

< ‘t’

0, 8, 9

= ‘t’

0, 9

= 7

0, 9

= 2

9

= 0

0

> 0

8

> 7

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

xi t o b e o r n o t t o b e $

An implicit
ternary tree that
corresponds to
the sorting
process
illustrated on
page 55.
Suffixes
processed in
each partition
are listed
inside the
corresponding
nodes. Outgoing
edges are
labeled with
relation
operations and
pivot keys that
determine the
results of
partitioning.
The dotted
curves mark
transitions
between sorting
passes.

For simplicity, we assume in the following analysis that the same
method is used for the initial sorting in step 1 as in later passes. Em-
ploying a different sorting algorithm for initial sorting (considered in
§4.4) may improve the practical behaviour of the algorithm, but does
not influence the asymptotic worst case time complexity.

We view the sorting process as construction of an implicit ternary
tree, which is analogous to the search tree discussed by Bentley and
Sedgewick [14]. In this tree, each call to the partitioning routine cor-
responds to a node. The initial partitioning of the whole array corre-
sponds to the root of the tree. Each node has three subtrees: a mid-
dle subtree which corresponds to the subarray containing elements
equal to the pivot after the partitioning, and left and right subtrees
corresponding to the subarrays holding smaller and larger elements
respectively. All internal nodes have nonempty middle subtrees, while
their left or right subtrees are empty for subarrays with less than three
distinct keys. The tree has n + 1 leaves, corresponding to all the el-
ements in sorted order.
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An example ternary tree is shown on the preceding page. It corre-
sponds to the same input and sorting process as the chart on page 55.
Note that a different choice of pivot elements would lead to a differ-
ent tree – even if the difference is only in how the median of an even
number of elements is determined.

The following lemma bounds the height of the ternary tree:

Lemma The length of a path from the root to any leaf in the ternary4E

tree is at most 2dlog ne + 3.

Proof Consider first the number of middle-subtree roots on a walk
from the root to a leaf in the tree. At the first such node encountered,
only the first symbol of each suffix is considered by the sorting. Then,
at each subsequent middle-subtree root encountered, the number of
symbols considered by the sorting is twice as large as at the previous
one. Consequently, the full length of any suffix is considered after en-
countering at most dlog ne + 1 middle-subtree roots, at which time
sorting is done.

Now consider the left- and right-subtree roots. For each such node
encountered on a walk from the root to a leaf, the number of leaves
in its subtree is at most half compared to the previous one, since par-
titioning is done as evenly as possible. Thus, we are down to a single
leaf after encountering at most blog nc + 1 left- or right-subtree roots.

Summing the root and the maximum number of middle-, left-,
and right-subtree roots on a path, we have a path length of at most
dlog ne+ blog nc+ 3 ≤ 2dlog ne + 3.

We now consider the amount of work that corresponds to each
depth level of the ternary tree.

Lemma Partitioning operations corresponding to all the nodes of any4F

given depth of the tree takes at most O(n) time.

Proof Partitioning a subarray takes time linear in its size. The initial
array, whose partitioning corresponds to the root, has n + 1 elements,
and since no overlapping subarrays are ever assigned to different sub-
trees of any node, the total number of elements in all subarrays at any
given depth is at most n + 1. The total time for partitioning at this
depth is thus O(n).

We can now state the following tight bound:

Theorem Suffix sorting with Algorithm S can be done in O(n log n)4G

worst case time.

Proof Partitioning asymptotically dominates sorting time; splitting
and combining groups is done in linear time on subarrays which are
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already sorted.
From lemma 4F, the total partitioning cost is at most O(n) times

the height of the ternary tree. Lemma 4E implies that the height
of the tree is O(log n), and consequently the total partitioning time
is O(n log n).

4.4 Algorithm Refinements

This section lists a number of refinements that reduce the time and
space requirements of Algorithm S. These are incorporated in the
practical implementation described in §4.5.1.

Eliminating the Length Array The only use of the information stored 4.4.1
in the array L is to find right endpoints of groups in the scanning-and-
sorting phase of the algorithm (step 4 in Algorithm S on page 54).
For combined sorted groups, this is needed in order to skip over them
in constant time, and for unsorted groups to use the endpoint as a
parameter to the sorting subroutine. However, the endpoint of un-
sorted groups is directly known without using L, since it is equal to
the group number according to definition 4C, and can therefore be
obtained from V .

Consequently, we need only find alternative storage for the lengths
of combined sorted groups to be able to get rid of the L array. For this,
note that once a suffix has been included in a combined sorted group,
the position in I where it resides is never accessed again. Therefore, we
can reuse the subarrays of I that span sorted groups for other purposes,
without compromising the correctness of the algorithm.

Of course, overwriting parts of the I array with other informa-
tion means that it does not hold the desired output, the sorted suf-
fix array, when the algorithm terminates. However, the information
needed to quickly reconstruct this is present in V . When the algo-
rithm finishes, all parts of the suffix array are sorted groups, and since
V holds group numbers of unit-length sorted groups, it is in fact at this
point the inverse permutation of the sorted suffix array. Hence, setting
I[V [ i ] ]← i for all i ∈ [ 0, n ] reconstructs the sorted suffix array in I.

This allows us to use the first positions of each combined sorted
group for storing its length. To distinguish it from the suffix numbers
of other positions, we store the negated length. When we probe the
beginning of the next group in the left to right scanning-and-sorting
step, we check the sign of the number I[ i ] in this position. If it is
negative, I[ i . . . i − I[ i ] + 1 ] is a combined sorted group; otherwise
I[ i . . . V [ I[ i ] ] ] is an unsorted group.
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Combining Sorting and Updating After each call to the sorting routine,4.4.2
Algorithm S scans the processed parts twice, in order to update the
information in V and L. This is true both for the initial sorting step
and for each run through the loop in steps 4–7. We now show how
this additional scanning can be eliminated.

First, note that concatenating adjacent sorted groups, to obtain the
maximal combined sorted groups, can be delayed and performed as
part of the scanning-and-sorting step (step 4) of the following iteration.
This change is straightforward.

Furthermore, all other updates of group numbers and lengths can
be incorporated in the sorting subroutine. This change requires some
more consideration, since changing group numbers of some suffixes
affects sorting keys of other suffixes. Therefore, updating group num-
bers before all unsorted groups have been processed must be done
in such an order that no group is ever, not even temporarily, given
a lower group number than a group residing in a higher part of the
I array. With the ternary-split sorting routine we use, this poses no
difficulty. We give the sorting routine the following schedule:

1 Partition the subarray into three parts: smaller than, equal to, and
larger than the pivot.

2 Recursively sort the smaller part.
3 Update group number and size of the equal part, which becomes a

group of its own.
4 Recursively sort the larger part.

Since the group numbers stored in V never increase – splitting
groups always only involves decreasing group numbers – this keeps
the sorting keys consistent.

This change may still influence the sorting process, but only in a
positive direction. Some elements may now be directly sorted accord-
ing to the keys they would otherwise obtain after the current sorting
pass, and this effect may propagate through several groups. Although
this does not affect the worst case time complexity, it causes a non-
trivial improvement in time complexity for some input distributions.

Input Transformation If we assume that the input alphabet is small4.4.3
enough for a symbol to be represented as a nonnegative integer (which
is invalid for only a few, less than practical, machine models), we can
start by transferring the contents of X to V , and perform the initial
sorting in step 1 using V [ i ] as the key for suffix i. This has the fol-
lowing potential advantages, which to some degree all originate from
McIlroy and McIlroy [49]:
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• By setting h = 0, we can use the exact same sorting subroutine for
initial sorting as for subsequent sorting passes.

• Since we no longer access X, we do not need to keep it in primary
storage during sorting. Indeed, if we do not wish to retain X, we can
overlay V on X, eliminating the memory usage for this array com-
pletely.

• When transferring symbols from X to V , the alphabet can undergo any
transformation as long as the order between the suffixes is maintained.

The implementation of McIlroy and McIlroy requires an alphabet
transformation that represents the unique $ symbol with zero, and
maps the original symbols to integers in the range [ 1, k ′), where k ′ − 1

is the number of distinct symbols in the input. This transformed alpha-
bet facilitates bucket sorting – essential in this implementation, since
it is based on the Manber-Myers algorithm.

We now develop alphabet transforms that our algorithm can benefit
from even though we do not use bucket sorting (except possibly for
initial sorting, see §4.4.4). We assume for the remainder of this section
that the input consists of integers in the range [ l, k), not counting the
$ symbol. In other words, k is the size of the input alphabet, and l ∈
[ 0, k) is a lower bound for the lowest-numbered symbol that occurs
in a specific input string.

The possibility to introduce an explicit representation of the $ sym-
bol is a small but convenient effect of alphabet transformation. The
simplest way to achieve this is to set V [ i ] to xi − l+1 for all i ∈ [ 0, n)

when transferring from X, and set V [n ] to zero. Now, the rest of the al-
gorithm does not have to pay any attention to range or alphabet limits.

A transform with direct impact on time complexity, related to a
variation described by Manber and Myers [47, page 944], is possible
when the input range is small enough for several symbols to be aggre-
gated into one integer. Let K denote k− l+ 1, the upper bound on the
size of the set of occurring symbols in the input, including $, and let
r be the largest integer such that Kr − 1 can be held in one machine
word. Now, for all i ∈ [ 0, n ], set

V [ i ]←
r∑

j=1

xi+j−1 · Kr−j

where we define xi = 0 for i ≥ n.
This has the effect that initial sorting, where V [ i ] is used as the key

for suffix i, concerns not only the first symbol of each suffix, but the
first r symbols. Therefore, subsequent sorting can start with h set to r

instead of 1, and the number of sorting passes is reduced.
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The transform can be computed in linear time independent of r

through the alternative form

V [ i + 1 ]← (V [ i ] mod Kr−1) · K + xi+r

for i > 0. If K is rounded up to the nearest power of two, the multi-
plication and modulo operations can be replaced by faster shift and
and operations.

Since r is highly dependent on K and thereby on k and l – the
limits of the input alphabet range – it can be fruitful to tighten these
limits as much as possible before computing the transform. Checking
the minimum and maximum symbol values that actually occur in the
input and adjusting k and l accordingly is a simple task that commonly
yields a noticeable improvement.

A further improvement can be gained in many cases by compacting
the alphabet prior to the symbol aggregating transform. Denote the set
of symbols that occur in the input Σ = {s1, . . . , s|Σ|}, where si < sj if
and only if i < j. Replacing each symbol si in the input with its ordinal
number i allows us to set l = 0 and k = |Σ|. If only a small subset of
the allowed input alphabet is used, this can result in a substantially
larger value of r than would otherwise be possible.

With a maximum used range size K0 ≤ k for the original alphabet,
we can, unless K0 is very large, compute the preparatory compaction
transform efficiently using an auxiliary array of size K0 (which may
be overlaid on I). Positions in the array corresponding to used symbol
numbers are marked, and ordinal numbers then accumulated in the
same array. The time complexity is O(n + K0).

Initial Bucket Sorting The initial sorting step is quite separate from4.4.4
the rest of the algorithm and is does not need to use the same sort-
ing method as later passes. Since this step must process all of the in-
put in one single sorting operation, a substantial improvement can be
gained by using a linear-time bucket sorting algorithm, instead of a
comparison-based algorithm that requires Ω(n log n) time.

At this stage, the array I does not yet contain any data. Therefore, if
the alphabet size is at most n+1, we can use I as an auxiliary bucketing
array, not requiring any extra space. If the input alphabet is larger than
n+1 and cannot be readily renumbered, we cannot use this technique.
However, in practice, this is unusual unless n is very small, in which
case there is no need for a sophisticated sorting algorithm. (Note also
that the Manber-Myers suffix sorting algorithm and similar techniques
cannot function at all if the alphabet size is larger than n + 1.)

An even more substantial improvement can be gained by combin-
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ing bucket sorting with transformation of the input alphabet as de-
scribed in §4.4.3. In this case, when choosing the value of r – the num-
ber of original symbols to aggregate into one – we require not only that
Kr − 1 can be held in one machine word, but also that it is at most n.
The resulting transformed alphabet can be larger than the original one,
but still allows bucket sorting without allocating extra space. Thus,
using only linear-time preprocessing, we allow the initial order of the
suffixes to be sorted according to the first r symbols of each suffix.
This commonly takes a substantial load off the main sorting routine.

4.5 Implementation and Experiments

This section describes a practical implementation of the proposed suf-
fix sorting algorithm, and an experimental comparison between this
and other suffix sorting methods.

Implementation We describe an implementation of our algorithm that 4.5.1
includes the refinements of §4.4, and present source code in the C
programming language [38]. Since the details for implementation of
alphabet transformation (described in §4.4.3) and bucket sorting (de-
scribed in §4.4.4) are not central to this work, we omit the source
code for the functions that perform those operations. The full imple-
mentation, including alphabet transformation and bucket sorting, is
found in appendix B.

The main suffix sorting routine is shown on the next page. The pa-
rameters to this function are two pointers x and p to arrays that are
to be used as the V and I arrays of the algorithm, and integers repre-
senting n, the input length, and the input alphabet limits k and l (see
§4.4.3). When this function is called, the input should already have
been transferred to the V array (which thus holds nonnegative integers
in the range [ l, k), representing the input string), but the alphabet not
yet transformed, other than possibly with the initial compaction de-
scribed in the last two paragraphs of §4.4.3. On return, the contents
of this array has been transformed to the inverse of the sorted suffix
array held in the I array.

The suffixsort function first sets global variables that allow the arrays
to be accessed by other functions, then enters the alphabet transfor-
mation and initial sorting phase.

The transform function called in this phase implements techniques
described in §4.4.3. It transforms the alphabet and changes the con-
tents of V accordingly, while maintaining the lexicographic order be-
tween suffixes:
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void suffixsort(int *x, int *p, int n, int k, int l)
{

int *pi, *pk;
int i, j, s, sl;

V=x; I=p; /* set global values.*/
if (n >= k-l) { /* if bucketing possible,*/

j=transform(V, I, n, k, l, n);
bucketsort(V, I, n, j); /* bucketsort on first r positions.*/

} else {
transform(V, I, n, k, l, INT_MAX);
for (i=0; i<=n; ++i)

I[i]=i; /* initialize I with suffix numbers.*/
h=0;
sort_split(I, n+1); /* quicksort on first r positions.*/

}
h=r; /* symbols aggregated by transform.*/

while (I[0] >= -n) { /* while not single combined group.*/
pi=I; /* pi is first position of group.*/
sl=0; /* sl is neg. length of sorted groups.*/
do {

if ((s=*pi) < 0) {
pi-=s; /* skip over sorted group.*/
sl+=s; /* add negated length to sl.*/

} else {
if (sl) {

*(pi+sl)=sl; /* combine sorted groups left of pi.*/
sl=0;

}
pk=I+V[s]+1; /* pk-1 is end of unsorted group.*/
sort_split(pi, pk-pi);
pi=pk; /* next group.*/

}
} while (pi <= I+n);
if (sl) /* if I ends with a sorted group.*/

*(pi+sl)=sl; /* combine sorted groups at the end.*/
h=2*h; /* double sorted-depth.*/

}
for (i=0; i<=n; ++i) /* reconstruct array from inverse.*/

I[V[i]]=i;
}

The function
suffixsort.
Parameter x

points to
an array
representing the
input; p to an
array that is to
hold the suffix
array. On
return, x holds
the inverse of x.
V , I, h, and r are
global variables
in the program.

• V [ n ] is set to zero, representing the $ symbol, and the previous n cells
of the V array are assigned positive integers.

• r symbols of the original alphabet are aggregated into one, where r is
the maximum integer such that Kr ≤ q, K is the smallest power of
two such that K > k − l, and q is the last parameter in the call to
transform. The value of r is kept as a global variable.

The transformed alphabet is {0, . . . , j − 1} for some alphabet size
j ≤ q + 1, where 0 represents the unique $ symbol and q is a parame-
ter to the transform function. The value returned by this function is j.
(To simplify the bucket sorting routine, our transform implementation
also under some circumstances compacts the alphabet after symbol ag-
gregation, so that all integers less than j occur at least once in V .)
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We adapt the use of transform to the sizes of the input and the input
alphabet. If n is large enough for the I array to hold all the symbol
buckets for the given alphabet range, i.e., if n ≥ k−l, we call transform
with the q parameter set to n. This guarantees that bucketing is still
possible for the transformed alphabet. We then use bucket sorting for
initialization of I through a call to a separate function bucketsort.

If the given alphabet range is larger than n we do not use bucket
sorting, since this would require extra space. In this case, we may just
as well use the largest possible symbol aggregation, so we call the trans-
form function with q value INT_MAX. Then we initialize the I array
with the numbers 0 through n, and use our main ternary-split Quick-
sort subroutine sort_split for initial sorting. By setting h to zero before
the call to sort_split, we get the desired effect that the contents of
V [ i ] is used as the sorting key for suffix i.

This concludes the initialization phase. The suffix array has been
sorted according to the first r symbols of each suffix, i.e., we can set h

to r. The contents of I are suffix numbers for unsorted groups, and neg-
ative group length values for sorted groups, according to the scheme
described in §4.4.1. (At this point, the sorted group length values are
all −1, since the groups have yet to be combined.)

The main while loop of the routine runs for as long as the I array
does not consist of a single combined sorted group of length n + 1,
i.e., until the first cell of I has got the value −(n + 1). The inner part
of the loop consists of combining sorted groups that emerged from
the previous sorting pass with each other, and with previously com-
bined sorted groups, and refining the order in unsorted groups through
calls to the function sort_split. This process follows the description in
§4.4.1 and §4.4.2.

Finally, I, now filled with negative numbers denoting lengths of
sorted sequences, is restored to the sorted suffix array from its inverse
permutation, which the algorithm has produced in V . If the appli-
cation of suffix sorting is Burrows-Wheeler transformation, this step
can be replaced by an analogous one that computes the transformed
string instead.

The ternary-split Quicksort routine is shown on the next page. The
implementation is directly based on Program 7 of Bentley and McIl-
roy [13] with two exceptions, the sorting method for the smallest sub-
arrays, and the incorporation of group updates. The choice of pivot el-
ement is in a separate function choose_pivot. Our implementation uses
the same ninther strategy as Bentley and McIlroy. Other possibilities
are, for instance, using the true median (as we assumed for guaranteed
worst case performance in §4.3) or a random choice.

65



§ 4.5.1

static void sort_split(int *p, int n)
{

int *pa, *pb, *pc, *pd, *pl, *pm, *pn;
int f, v, s, t, tmp;

# define KEY(p) (V[*(p)+(h)])
# define SWAP(p, q) (tmp=*(p), *(p)=*(q), *(q)=tmp)

if (n<7) {
select_sort_split(p, n); /* special sorting for smallest arrays.*/
return;

}
v=choose_pivot(p, n);
pa=pb=p; pc=pd=p+n-1;
while (1) {

while (pb<=pc && (f=KEY(pb))<=v) {
if (f==v) { SWAP(pa, pb); ++pa; }
++pb;

}
while (pc>=pb && (f=KEY(pc))>=v) {

if (f==v) { SWAP(pc, pd); --pd; }
--pc;

}
if (pb>pc) break;
SWAP(pb, pc); ++pb; --pc;

}
pn=p+n;
if ((s=pa-p)>(t=pb-pa)) s=t;
for (pl=p, pm=pb-s; s; --s, ++pl, ++pm) SWAP(pl, pm);
if ((s=pd-pc)>(t=pn-pd-1)) s=t;
for (pl=pb, pm=pn-s; s; --s, ++pl, ++pm) SWAP(pl, pm);

s=pb-pa; t=pd-pc;
if (s>0) sort_split(p, s);
update_group(p+s, p+n-t-1);
if (t>0) sort_split(p+n-t, t);

}

The function
sort_split.
Parameters are
beginning of a
subarray and its
number of
elements. The
function
choose_pivot
returns the key
for one element
in the subarray.

Group updates are handled in the last section of the routine, be-
tween the recursive calls, as explained in §4.4.2. This is implemented
as the separate function update_group, shown on the facing page. This
function takes as parameters pointers to the first and last positions of
a subarray that is to constitute a group of its own, and updates the
corresponding group numbers in V – unless the result is a unit-length
group in which case it is registered as sorted through a −1 value in V .

For fast handling of very small subarrays, we use a nonrecursive
sorting routine for subarrays with less than 7 elements, implemented
as a separate function. Since group updating is difficult in insertion
sorting – the common algorithm to use in this situation – we use a
variant of selection sorting that picks out one new group at a time,
left to right, by repeatedly finding all elements with the smallest key
value and moving them to the beginning of the subarray. This is easily
combined with group updating.
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static void update_group(int *pl, int *pm)
{

int g=pm-I; /* new group number.*/
V[*pl]=g; /* update group number.*/
if (pl==pm) *pl=-1; /* one element, sorted group.*/
else do /* more than one element, not sorted.*/

V[*(++pl)]=g; /* update group numbers.*/
while (pl<pm);

}

The function
update_group.
Called with first
and last
positions of a
subarray to be a
single group.

Experimental Results We report suffix sorting time for various inputs. 4.5.2
We use a Sun Ultra 60 workstation (360 MHz Ultrasparc II CPU and
2 GB primary storage) running Solaris 2.6. The programs were com-
piled with the Gnu C compiler version 2.7.2.3, with option –O3 for
maximum optimization. The reported times are user times, measured
with the rusage command.

The list of programs included in the comparison is shown on the
next page. The htr2ar, tr2ar, and bese programs were kindly supplied
by Stefan Kurtz of the University of Bielefeld. The first two of these
are based on suffix trees implemented using Kurtz’s space reduction
techniques [40]. The htr2ar code originates from an application with
limited input length; it is unable to handle our largest test files.

The mcil program is the implementation by McIlroy and McIl-
roy [49], referred to in §4.1.1 and §4.4.3. It uses a variant of the
Manber-Myers algorithm [47], with improvements that yield better
performance than a direct implementation of that algorithm. The im-
plementation originally contains error checks and calculation of pa-
rameters that we regard as inputs. These computations, which would
lead to unjustly large execution times, have been removed in our
experiments. Because of the input requirements of this implemen-
tation, the same input alphabet computation as for qss2 is incorpo-
rated in mcil.

As example input, we use a set of large files, listed on the next page.
The files are chosen to demonstrate the behaviour of the programs for
different kinds of natural data as well as degenerate cases. The files that
are part of the Calgary or Canterbury corpora are available via ftp:// ftp.
cpsc.ucalgary.ca/pub/projects/ text.compression.corpus/ or http://corpus.
canterbury.ac.nz/fileset.html respectively.

The table on page 69 shows sorting time of the algorithms, listed
with average and maximum LCP length for each file, which gives a
good estimate of the repetitiveness of the files. (Maximum LCP is
equivalent to the longest repeated string.) The top section of the ta-
ble lists the results for the full sized natural data files, and the lower
sections list results for generated and truncated files of equal length,
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program algorithm
htr2ar Kurtz’s suffix tree implementation with hash table

representation (IHTI).
tr2ar Kurtz’s suffix tree implementation with linked list

representation (ILLI).
mcil Suffix sorting implementation by McIlroy and McIlroy using an

improved version of the Manber-Myers algorithm.
bese String sorting algorithm of Bentley and Sedgewick (see §4.1.3)

with an initial bucket sorting step. Implementation by Kurtz.
qss0 Our algorithm with input alphabet size 256.
qss1 Our algorithm with input alphabet limits k and l set according

to the input (see §4.4.3).
qss2 Our algorithm with compacted input alphabet (see §4.4.3).

Algorithm im-
plementations
participating in
the comparison.

file contents size
maini All articles of the Japanese newspaper Mainichi

during 1995.
109 442 894

patent A collection of Japanese patent claims. 89 229 120
reuters The Reuters corpus. 27 636 766
html A collection of html files from servers in Japan. 125 595 037
calg Concatenation of the original Calgary corpus

files except pic (13 files).
2 628 406

cant Concatenation of the Canterbury corpus files
except ptt5.

2 297 568

pic A Calgary corpus file (the same as ptt5 of the
Canterbury Corpus).

513 216

ecoli The file E.coli of the large Canterbury corpus. 4 638 690
bible The file bible.txt of the large Canterbury corpus. 4 047 392
world The file world192.txt of the large Canterbury

corpus.
2 473 400

aaaa64k The letter ‘a’ repeated 64× 1 024 times. 65 536
aaaa2M The letter ‘a’ repeated two million times. 2 000 000

—2M First two million bytes of the corresponding file. 2 000 000
—8M First 8 191 kB of the corresponding file. 8 387 584

Input data set
used for
algorithm
comparison.

which give normalized timing results. Within each section, the files
are listed in order of increasing average LCP.

The table shows that the simple, non-specialized, string sorting im-
plementation bese is the fastest when average LCP is small, but not
much faster than the qss programs that implement our algorithm.
When repeated strings are longer, the qss programs are more efficient,
and for extremely repetitive input, the suffix tree implementations
have an advantage. For the most repetitive files, bese degenerates to
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file avg LCP max LCP htr2ar tr2ar mcil bese qss0 qss1 qss2

cant 9.0 738 8.4 15.7 24.1 3.7 4.0 4.0 4.2
bible 14.0 551 20.4 13.8 72.6 9.1 12.0 10.7 10.7
calg 14.6 1706 12.5 11.8 43.2 5.0 5.7 5.7 5.8
ecoli 17.4 2815 29.2 17.6 101.1 8.5 17.3 13.5 9.8
maini 20.1 5918 — 1109.2 5499.9 415.8 537.1 539.4 536.7
world 23.0 559 11.1 7.6 39.1 8.0 6.7 6.0 6.1
patent 41.4 8923 — 545.7 3663.7 398.6 390.1 385.9 392.2
reuters 50.9 4975 — 120.3 713.4 161.6 115.0 103.6 103.3

html 606.4 99125 — 953.2 6450.5 3521.3 585.0 586.1 585.9
pic 2353.4 36316 1.6 0.8 3.3 53.3 0.9 0.9 0.9

maini8M 19.3 4701 40.2 50.9 205.4 21.3 24.0 23.8 21.4
patent8M 38.1 2027 39.9 33.9 160.6 29.5 25.5 25.6 26.1
reuters8M 50.3 4967 36.7 31.0 199.0 41.7 29.0 25.9 26.5
html8M 849.6 73344 38.8 40.7 238.2 301.6 25.4 25.4 25.9
cant2M 8.3 228 7.4 15.3 14.6 3.1 3.2 3.2 3.3
maini2M 10.0 1032 9.3 10.7 33.0 3.5 4.1 4.1 4.2
calg2M 11.0 1029 9.9 9.0 32.4 3.6 4.3 4.3 4.4
ecoli2M 12.9 1345 11.7 7.1 34.2 3.1 6.0 4.7 3.5
bible2M 14.7 551 9.4 6.3 30.6 4.1 5.0 4.5 4.4
world2M 22.9 559 8.8 6.3 30.2 6.5 5.1 4.7 4.8
patent2M 31.6 1439 9.2 7.0 29.6 5.4 4.5 4.5 4.6
reuters2M 47.1 4967 8.6 6.3 36.4 8.1 5.0 4.6 4.7
html2M 252.1 27110 9.0 8.9 36.9 21.0 4.0 4.0 4.1
aaaa2M 999999.5 1999999 4.4 1.8 11.4 — 5.8 5.1 5.2
aaaa64k 32767.5 65535 0.1 0.1 0.2 92.8 0.1 0.1 0.1

Sorting times
in seconds.
Average and
maximum LCP,
longest common
prefix length for
adjacent suffixes
in sorted order,
is listed at the
left for each file.
Files are in order
of increasing
average LCP.
Lowest time for
each file is in
bold face. The
three lower
sections list
files with
homogenized
sizes.

quadratic time complexity. Since the bese program is unable to handle
the aaaa2M file, we include the smaller file aaaa64k to illustrate the
extremely poor behaviour of bese for this kind of data.

It is interesting to note that mcil is slower than the qss programs
for all the files, even though mcil implements the Manber-Myers al-
gorithm which is also specialized for suffix sorting and has the same
worst case time complexity as our algorithm. Indeed, these experi-
ments indicate that the Manber-Myers algorithm performs very badly
for large files, even for natural, non-degenerate, input data. When
maximum LCP is large, mcil becomes slow, since the number of passes
in this algorithm is the logarithm of maximum LCP length, and each
pass has to process the full input string. In our algorithm, the speed is
not much influenced by maximum LCP, because in later passes most
suffixes are already sorted and skipped.
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Note that the difference between qss and mcil is fairly small for
aaaa2M, whose average and maximum LCP are both large, which
causes the unsorted parts to shrink slowly. For ecoli on the other hand,
the difference between these algorithms is large, since average LCP is
small but maximum LCP is large.

Although htr2ar is the only program that uses an algorithm with
expected linear worst case performance, it is not the fastest for any
of the inputs. The other suffix tree implementation, tr2ar, uses linked
lists for storing edges, which means that the input alphabet is a fac-
tor in its time complexity. This program is slightly faster than those
using our algorithm for the most repetitive natural data file pic, and
the fastest without comparison for the generated file aaaa2M, whose
input alphabet size is one.

Input alphabet compaction clearly helps when the input alphabet
is small. This is noticeable particularly for ecoli, which is in the four
symbol alphabet of DNA sequences, causing qss2 to be much faster
than qss0 and qss1.

Our algorithm is the fastest for files whose average LCP is neither
terribly small nor large. Moreover, it exhibits robust behaviour over
all the inputs: the difference in speed between our algorithms and the
fastest one is small for all files.
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Chapter Five

Suffix Tree Source Models

Lossless compression of a string involves maintaining, in some
form, statistics for the occurrences of its substrings. Indeed, this is
commonly the computationally dominant part of the compression al-
gorithm. Thus, the necessity for efficient string data structures in se-
quential data compression is clear. In this chapter presents several in-
stances where suffix trees contribute to this field. In particular, we
emphasize use of the sliding window scheme given in chapter two.

In the context of dictionary-based compression, our techniques pro-
vide a robust expected linear-time complexity, independent of the
input – a property that common implementation techniques do not
have. For predictive modelling, our contribution is even more notable,
as it assists in making schemes that are among the most theoretically
prominent available for efficient practical use.

5.1 Ziv-Lempel Model

The dictionary-based family of algorithms originating from Ziv and
Lempel [71, 72] comprise perhaps the conceptually simplest source
model of all. The idea of these schemes is to incrementally construct
a dictionary – a set of phrases, strings that occur in the input – and
produce an output consisting of references to the dictionary. Apart
from an initial part that typically consists of the individual symbols
of the input alphabet, the dictionary is constructed exclusively from
already processed parts of the input, which implies that the dictionary
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need not be explicitly transferred. Instead, the compression and de-
compression algorithms share the same rules for creating new phrases,
causing them to build analogous dictionaries, and sharing the same set
of phrases at all times.

In the LZ-77 family of algorithm, originating from the first pre-
sented algorithm of Ziv and Lempel [71], the idea is to let the dic-
tionary comprise all strings in the previous part of the input. In each
iteration, the previous part of the input is searched for a string that
matches the following part (usually, the longest match is used), and
then the position and length of the match are output. If no match
is found, the next symbol of the input is transferred explicitly to
the output.

Since primary storage is never unlimited, the dictionary cannot be
allowed to grow indefinitely in practice. The algorithm must be aug-
mented in some manner to be able to handle large inputs. One pos-
sibility is to block the input into smaller parts, restarting the model
from scratch at each new block. However, this may yield considerably
worse compression, since the beginning of each block is compressed
using a very small dictionary. As a more attractive approach to han-
dling strings of unlimited length, it is common to store the latest part
(typically several thousand symbols) of the processed part of the input
in a buffer, and limit the search for the longest match to this buffer.

A suffix tree can locate the longest matching substring of its in-
dexed string in time proportional to the length of the match, and can
be constructed in linear time. Hence, continuously maintaining a suffix
tree for the buffer supplies an ideal situation for locating the longest
previous string matching the input.

Rodeh, Pratt, and Even [57] consider this possibility, and observe
that it is possible to implement a linear-time LZ-77 algorithm by uti-
lizing a suffix tree. They also consider moving the indexed string along
the input to support a finite buffer, by pacing over the string with
three simultaneous suffix trees, each of maximum size proportional to
the buffer size. Asymptotically, this solves the finite buffer problem,
but it introduces substantial overhead in time and, particularly, space
requirements. Indeed, in a survey of string searching algorithms for
LZ-77 compression, Bell and Kulp [11] rule out suffix trees because
of the inefficiency of deletions.

Using our sliding window scheme given in chapter two, this inef-
ficiency can be eliminated. The index is incrementally expanded to
include newly processed parts of the input using the front increment
procedure consisting of the procedure on page 25 with the augmenta-
tions on page 30, and the back end of the input is moved forward the
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same number of positions using the tail increment procedure given on
page 31, once the size of the index has reached the buffer size.

The time required for searching is proportional to the total length
of the matching strings located with the suffix tree, which does not
exceed the total length of the input. Thus, we have the following:

Theorem An LZ-77 algorithm using a buffer of maximum size M im- 5A

plemented using our sliding window indexing scheme processes an
input of size n in expected O(n) time, using O(M) storage space.

An LZ-77 implementation that uses a simple hashing scheme, which
is common, and advocated by Bell and Kulp [11], does not have this
robust worst case complexity. When the input is repetitive, many
equal substrings are entered into the hash table, causing a large num-
ber of collisions. Since a number of strings sharing the same hashed
sample need to be scanned in each step of the algorithm, this may lead
to Ω(M2) time complexity – independently of the hashing scheme.

5.2 Predictive Modelling

Some of the most effective results in data compression have been
achieved by statistical source modelling in combination with arith-
metic coding. Specifically, PPM, prediction by partial matching, has
generated notable results. The original PPM algorithm was given by
Cleary and Witten [19]. A plethora of improvements and analyses has
been presented since [1, 15, 18, 32, 51].

The idea of PPM is to regard the last few symbols of the input
stream as a context, and maintain statistical information about each
context in order to predict the next symbol; i.e., to estimate a proba-
bility distribution for which symbol follows the current context. The
length of the string used as a context is referred to as the order.

For each context, a table of symbol counts is dynamically main-
tained, and the code applied whenever that context occurs is based on
the statistics of this table. The higher the count of a certain symbol in
the current context, the larger the code space allocated to it. The low
level encoding is usually performed with arithmetic coding.

When a symbol appears in a context for the first time, its count in
that context is zero. Still, it must be possible to encode the symbol
in that context, so some amount of code space must be reserved for
previously unseen events. Therefore, each context also keeps an escape
count, used to encode a new symbol event in that context. After an es-
cape occurs, the algorithm falls back to the context of nearest smaller
order. A (−1)-order context, where all symbols (or, possibly, only pre-
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viously unseen symbols) are assumed to be equally likely, is maintained
for symbols that have never occurred in the input stream.

PPM with unbounded contexts The most general and flexible PPM vari-5.2.1
ant is the one named PPM* by Cleary and Teahan [18], which main-
tains statistics for all contexts that have occurred in the previous part
of the input. Previous to PPM*, the maximum order has usually been
set to some small number – primarily to keep the number of states
from growing too large, but also because a decrease in compression
performance can be observed when the order is allowed to grow large
(usually to more than about six). This is because contexts of high or-
der make the algorithm less stable; the chance of the current context
not having seen the upcoming symbol is larger. However, the perfor-
mance of PPM* demonstrates that with a careful strategy of choos-
ing contexts, allowing the order to grow without bounds can yield a
significant improvement.

All substrings that have occurred in the input stream are stored in
a trie and each node in the trie corresponds to a context. A context
list, a linked list of all nodes whose corresponding contexts match the
last part of the input stream, is maintained. For instance, if the part
of the input processed thus far ends with ‘. . . abc’, and the string ‘abc’
has also occurred in some previous position of the input, the context
list holds the nodes corresponding to ‘c’, ‘bc’, ‘abc’, and possibly some
longer previously occurred contexts that match the current one.

The context to use for encoding is chosen among the ones on the
context list. The exact rules for which context should be used may
differ. Escaping is also performed along the context list by moving
one step in the direction of shorter contexts. Furthermore, in the im-
plementation of Cleary and Teahan, the context list is used in main-
taining the trie, for finding the positions that need to be updated as
the model expands.

5.3 Suffix Tree PPM* Model

Cleary and Teahan observe that collapsing paths of unary nodes into
single nodes, i.e. path compression, can save substantial space. We
make some further observations that lead us to the conclusion that the
suffix tree operations described in chapter two are suitable to main-
tain the data structure for a PPM* model. Again, our data structure is
based on the representation given in §1.3.2.

• A context trie is equivalent to a suffix tree A path compressed context
trie is a trie storing all substrings of the processed part of the input.

74



§ 5.3

3

let

1

lettertele

1

tertele

5

e

2

t

1

lettertele

1

tertele

1

ertele

1

le

4

t

1

lettertele

1

tertele

2

e

1

rtele

1

le

1

rtele

Suffix tree
context trie
corresponding
to the input
‘letlettertele’.
Numbers are
context counts.

Thus, this context trie is a suffix tree indexing this string, according to
our definition in §1.3.

• Suffix links provide context lists The context list of the PPM* scheme
corresponds to a chain of nodes in the suffix tree connected by suf-
fix links. Using suffix links, it is not necessary to maintain a separate
context list, since all possible lists are already present in the tree. We
only need to decide which is the first node in the context list, the one
corresponding to the longest context.

• Linear number of counts is sufficient The symbols that have nonzero
counts in the table associated with a context are exactly the symbols
for which the node corresponding to that context has children. Hence,
if child(u, c) = v, the count for symbol c in context u can be stored
in v. As for contexts that correspond to points residing on edges, as
opposed to in explicit nodes, there is no need for additional tables
of counts for the following reason. If two strings (contexts) belong
to the same node, this implies that one is a prefix of the other, and
that there are no branches between them. Hence, in the currently
considered part of the input, they always appear with one as the prefix
of the other, which implies that they occur the same number of times.
Therefore, the reasonable strategy is clearly to let them have the same
count, and only one instance of the count needs to be stored.

Hence, we can use the online suffix tree maintenance techniques
of Ukkonen (see §2.1) for the context trie. This is illustrated in the
figure above, which shows a suffix tree for the string ‘letlettertele’,
augmented to serve as a context trie by noting the context count in
each node. For example, the number 3 in the top left internal node
corresponds to the number of times the letter ‘l’ appears in the string,
reflecting that this node is child(root, ‘l’).

This leads us to conclude the following:
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Theorem A PPM* context trie for input length n can be maintained in5B

expected O(n) time, using O(n) storage space.

Note, however, that linear space in the size of the input is still not
feasible for large files, or indeed, for processing unlimited streams of
data. Note also that the bound concerns only the structural part of
the context model; the time for statistical updates remains to be ac-
counted for.

The connection between PPM context tries and suffix trees has also
been considered by Bunton [15]. However, her work is not concerned
with keeping the data structure strictly linear, and the time and space
complexities of her techniques are not fully analyzed.

5.4 Finite PPM* Model

A suffix tree that is allowed to grow without bounds, until it covers
the whole input, is still not a practical source model in general. For
large files or long input streams, primary storage cannot even hold the
complete input, let alone a suffix tree to index it.

To bound the size of the data structure to a finite amount of stor-
age, we propose maintaining a source model that holds only the con-
texts appearing in the last M symbols of the processed part of the
input, for some finite number M which may depend on the amount
of available primary storage.

We accomplish this with the sliding window techniques of chapter
two. Thus, contexts corresponding to strings occurring in the latest
M symbols are always maintained, while older contexts are progres-
sively “forgotten”. Note, however, that we need not lose all informa-
tion from previous parts of the input when deleting old contexts. The
counts of remaining contexts can still be influenced by previous oc-
currence of these contexts. Analogously to theorem 5B, we have:

Theorem Maintaining a PPM* context trie limited to contexts occur-5C

ring in a sliding window of maximum size M is accomplished in O(M)

space, and expected linear time in the size of the input.

5.5 Non-Structural Operations

Our time complexity bounds concern only maintaining the structure
of the source model. In addition to this, the cost of choosing the con-
text to use, incrementing counts of contexts as they occur in the in-
put, and for coding remain to be accounted for. Although we do not
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have final conclusions regarding these topics, and consider them for
the most part to be beyond the scope of our research, we briefly state
the problems that must be considered in accounting for time com-
plexity of the overall implementation.

Context Choice and Count Updating The problems of choosing a start- 5.5.1
ing context, updating counts in the tree, and handling escape events
has been subject to some research [1, 15, 18]. However, these vari-
ables of the model have been considered almost exclusively regard-
ing their implications on compression performance, while their conse-
quences for time complexity are largely ignored.

The proposed updating strategy of Cleary and Teahan, which in-
volves frequently following the context list to the end, does break
linear time complexity, but its exact time requirements are not fully
understood. Furthermore, it is far from clear that some slightly relaxed
updating strategy requiring only amortized constant time per iteration
cannot yield equally good compression. Plausibly, there is a tradeoff
between speed and prediction when choosing an updating strategy,
whose characteristics remain to be studied.

Coding Our suffix tree source model data structure provides statis- 5.5.2
tics as individual counts. An arithmetic encoder requires a range of
cumulative counts to be allocated for each symbol. If only individ-
ual counts are maintained, the children of the node corresponding to
the context used for encoding must be scanned to compute the range.
This potentially introduces a factor of Ω(k) in the time complexity
of the algorithm.

In practice, this cost can be decreased with move-to-front techniques,
and rarely becomes as large as a factor k. Furthermore, it can be re-
duced to O(log k) by storing cumulative counts in a binary tree [24,
33, 52].

The matter is more complicated if symbol exclusion is to be em-
ployed in connection with escape events. When a symbol is coded
just after an escape, it cannot be one of the symbols that existed in
the previous context – if it was, it would have been encoded in that
context. Therefore, we can exclude the ranges that would have been
assigned to symbols existing in previous contexts, to gain some code
space for the others and decrease the size of the compressed output. It
is common to use exclusion with PPM, since it yields a notable com-
pression improvement.

Now, the problem is to compute a range from the intersection of
two sets of symbols, which is far more complicated. Incorporating this
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possibility in the data structure, while maintaining efficient asymptotic
worst-case time complexity is an open problem.

5.6 Conclusions

The tight connection between pattern matching and data compres-
sion offers many possibilities for improving the practical usefulness
of existing compression schemes by applying efficient data structures.
Our findings show that sliding window indexing with suffix trees is
a powerful tool for supporting finite source models for sequential
compression.

Another interesting aspect is the insight into the fundamental rela-
tion between two quite different source modelling schemes that can
be gained through considering the suffix tree. Equivalence between
predictive modelling schemes and dictionary-based compression has
been shown in various settings; see, for instance, Bell and Witten [12].
Our application of the same fundamental data structure to both of
these compression techniques serves as a further illustration of this.
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Chapter Six

Burrows-Wheeler Context Trees

Block sorting compression was originally presented by Burrows
and Wheeler in 1994 [16]. Its central element is a transform which
we refer to as the Burrows-Wheeler transform, BWT, that reorganizes
the input string to concentrate repetitions. The transformed string
can be compressed with a simple locally adaptive statistical compres-
sion scheme. Even in its most rudimentary form, BWT compression
matches substantially more complex modelling schemes in compres-
sion performance, and with advances in research as well as practical
implementations [10, 60, 62], its importance is growing rapidly.

While BWT may at first glance appear to be a magical new algo-
rithm, Cleary and Teahan [18] observe that its effect is quite similar
to that of PPM (see §5.2). In this chapter, we take that similarity one
step further in giving the context tree, which is implicit in BWT, a con-
crete form. An important aspect is the connection between this tree
and the suffix tree of the input string. We present a computationally
efficient method to construct the tree, explore its power of capturing
characteristics of the source, identify the central points in using it for
compression, and finally suggest a possible direction towards an effi-
cient complete compression algorithm, presenting a description of an
experimental program, with preliminary compression results.

This work springs from the observation that previous work in block
sorting compression maintains much of the traditional online approach
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1 Sort all the suffixes of X. Represent the sorted sequence as a
vector S = (s0, . . . , sn) of numbers in the range [ 0, n ] such that i

precedes j in S iff the suffix that begins in position i of X

lexicographically precedes that which begins in position j.
2 Let i be the number such that si = 1.
3 For i ∈ [ 0, n ], let x ′

i = xsi−1, where we define x−1 = xn = $.

BWT algorithm,
producing, from
the input X, a
transformed
string X ′ and a
number i.

i si xi suffix i in sorted order
0 9 c $
1 6 c abc$
2 3 c abcabc$
3 = i 0 $ abcabcabc$
4 7 a bc$
5 4 a bcabc$
6 1 a bcabcabc$
7 8 b c$
8 5 b cabc$
9 2 b cabcabc$

Illustration of
BWT (the
algorithm
above) for the
input string
‘abcabcabc$’.
The output is
the number
i = 3 and the xi

column.

of data compression, i.e. it allows the decompressor (and to some ex-
tent also the compressor) to work incrementally in one pass, updat-
ing parameters depending on only the previous part of the message.
However, BWT is inherently block structured, and hence there is no
apparent reason to prefer online strategies in this case. Through the
exploration of the context tree, we move towards considering the
full structure of the BWT, and not merely regarding it as a permu-
tation operation.

6.1 Background

We begin with a recapitulation the basics of BWT, and a discussion
of previous work. Although our formulations are somewhat different,
the basis of this section is primarily Burrows and Wheeler [16].

Block Sorting Transform We assume that the input is a string X as spec-6.1.1
ified in §1.1.1. The transform produces a string X ′ = x ′0 . . . x ′n which
comprises the same symbols as X in a different order. (The algorithm
and an illustration of it are shown above). The effect is that symbols
followed by the same substrings in X are placed in consecutive po-
sitions in X ′. Referring to the suffix following a position in X as the
context of that position, we can say that the more similar the contexts
of two positions, the closer the symbols in those positions in X ′. Note
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1 For c ∈ [ 0, k ], let nc be the number of occurrences of symbol c in X ′.
2 Set C[ 0 ] to 0. For i = 1, . . . , k, set C[ i ]← C[ i − 1 ] + ni−1.
3 For i = 0, . . . , n, set P[ C[ x ′

i ] ]← i and increment C[ x ′

i ].
4 Set i to i. For j = 0, . . . , n, let xj = x ′

i and set i← P[ i ].

The reverse
BWT algorithm.
Symbol 0 is the
$ symbol.

that interpretation of contexts is different than the one for PPM de-
scribed in §5.2, where the symbols preceding a position define its con-
text. If desired, the same behaviour can be emulated in BWT, simply
by reversing X. However, the difference is normally of no importance.

If X contains repeating patterns, some parts of X ′ – that originate
from similar contexts – comprise only symbols from a small part of
the input alphabet. By transferring the symbols to the decompressor
in the order of X ′ instead of X, we can exploit its regularities efficiently
with a simple locally adaptive compression method.

The decompression program needs to reverse the transform to ob-
tain the original string. This remarkably fast and simple procedure is
shown above.

Sorting Algorithms and Time Complexity The key advantage of BWT 6.1.2
compression is its moderate requirements in computational resources,
compared to other methods with similar compression performance.
We make an effort to maintain that advantage throughout this work
and avoid processes that notably increase time or space complexity.
We now discuss the time complexity of BWT itself.

Normally, the computationally critical part of the transform is the
suffix sorting, a subject thoroughly treated in chapter four. The trans-
form, as well as the reverse transform, also requires storage and scan-
ning of the frequency array C. This contributes an Ω(k) term to both
time and space complexity, but in practice this is usually a minor com-
ponent. Furthermore, this term can be avoided by preceding the trans-
form with an alphabet compaction phase that produces a new alpha-
bet of size O(n). However, this compaction, which requires sorting
the original symbols of the input, is worthwhile only if k is very large.

Existing BWT implementations typically use ad hoc combinations
of sorting algorithms, often paired with a run length encoding scheme
to handle common degenerate cases [16, 25, 62, 69]. A better alterna-
tive in general is the O(n log n) time sorting algorithm presented in
chapter four, which is shown to perform very well in practice. How-
ever, as noted by Burrows and Wheeler [16], this can be asymptot-
ically improved by building a suffix tree, which is then traversed in
sorted order and the sorted sequence obtained from the leaves (see
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§6.2.1). The traverse takes linear time. Thus we immediately have
the following corollary of theorem 1C:

Corollary The time complexity of BWT is Θ(n + s(n)), where n de-6A

notes the input length and s(n) the time to sort n symbols.

Move-to-front and Related Coding A large majority of the previous6.1.3
work on BWT relies on move-to-front coding to exploit the local repeti-
tiveness of the transformed string [16, 25, 62, 69]. The symbols of the
input alphabet are placed in a conceptual list, and the position of a
symbol in this list, counting from the head starting from zero, is used
to encode the symbol when encountered. Encoded symbols are im-
mediately moved to the head of the list.

This subsidiary transformation of X ′ produces another string X ′′ of
integers in the range [ 0, k ], for which the distribution is highly skewed
(provided that X is compressible): low numbers are more common
than high numbers. Now, the symbols of X ′′ can be predicted with
simple zero-order statistical source model, and entropy encoded with,
for example, Huffman or arithmetic coding.

Arnavut and Magliveras [8] devised a slightly different technique
named inversion frequencies. While move-to-front coding replaces each
symbol c with the number of distinct symbols encoded since the last
occurrence of c, inversion-frequency coding replaces c with the total
number of symbols greater than c encoded since the last occurrence
of c. The results were shown to be similar to move-to-front coding.

6.2 Context Trees

We elaborate on the properties of the reorganization performed in
BWT by relating it to context trees of PPM – equivalent to the suffix
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9 (c) 6 (c) 3 (c) 0 ($)

7 (a) 4 (a) 1 (a) 8 (b) 5 (b) 2 (b)

Pruned context
tree that
corresponds to
the suffix tree
on the facing
page.

tree source models, or context tries, discussed in the PPM* setting in
chapter two. The close relation between PPM and BWT was briefly
noted by Cleary and Teahan [18].

More on Suffix Trees As noted in §6.1.2, a suffix tree can be used 6.2.1
to produce the BWT string X ′: the tree is traversed left to right, and
for each leaf encountered, the symbol preceding the corresponding
position of X is emitted as the next symbol of X ′ (see the figure on the
preceding page). However, the suffix tree is not only a useful tool for
the transform, it is also an excellent hierarchical model of similarities
between contexts. The leaves of the tree correspond to the contexts.
The lowest common ancestor of a pair of nodes, particularly the depth
of that ancestor, manifests the similarity between the corresponding
pair of contexts, i.e. the length of their common prefix.

For each internal node, we consider the set of frequency counts
for the symbols of the input alphabet emitted by the BWT for leaves
in its subtree. The root holds the counts for the whole string, which
would be used in a simple zero-order encoding, while an internal node
corresponding to a string w (where w is the string spelled out by the
labels on the path from the root to that node) holds the counts for
symbols occurring in the context w. Thus, the suffix tree incorporates
exactly the structure of a suffix tree source model in PPM*, as de-
scribed in §5.2. (Note however, that since our contexts are the strings
after each position, the tree representation is “backwards” compared
to most PPM descriptions.)

Pruning the Tree Maintaining frequency counts in each internal node 6.2.2
as described in the previous section means keeping an absolute max-
imum of statistics about the context properties of the string. This is
generally much more than what is actually needed to fully charac-
terize the source.

As an extreme example, consider a single-state source – there is ob-
viously no gain in using more than one set of counts in modelling this.
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We should recognize this condition, and remove all internal nodes of
that context tree, except the root. Generally, we should remove all
internal nodes that do not exhibit any significant change in distribu-
tion compared to its parent (see the figure on the preceding page).
Eventually, for large n, the number of internal nodes should converge
towards a number that reflects the number of states in a tree model of
the source (provided that there is a finite tree model that adequately
captures the source).

To find an approximation of the optimal context tree, we use a
greedy method that recursively prunes the tree bottom-up and left-to-
right. This has the advantage of being simple and fast, and consuming
little space. At each point in time, we only need to maintain frequency
counts for nodes on the path from the root to the node currently being
processed. This limits space requirements to the height of the tree
times the size of the alphabet. We can limit space requirements even
further by simply removing all nodes below a certain, constant, depth.
This does not notably affect the final product (it is extremely rare that
nodes below a depth of about seven are maintained), but yields an
important improvement in worst case space complexity.

In principal, the pruning algorithm works as follows. At each node,
we calculate the optimal code length for encoding symbols both in-
cluding and excluding that node. If keeping the node does not yield a
smaller total code length, we remove it.

In addition to maintaining counts over the input alphabet, we also
need to take into account the discrepancy in which symbols are used
in different subtrees. Again in terms borrowed from PPM, we employ
an escape mechanism to account for the cost of introducing new events
in a state. The first time a symbol occurs, we increase the escape count
instead of the count for the symbol itself.

More specifically, the greedy pruning algorithm prunes the subtree
rooted at an internal node u as follows:

1 For each leaf child of u, check which symbol the transform should
produce corresponding to that leaf. Then for each symbol c, set nc,u

to the number of times c was encountered in this process.
2 Repeat steps 3 to 8 for each internal-node child v of u.
3 Recursively prune the subtree rooted at v.
4 For each symbol c, let ec = 1 if c occurs in the subtree rooted at v, and

ec = 0 otherwise. This is to account for escape events in the subtree.
5 Calculate the optimal code length hu for encoding, as an independent

sequence, the symbols corresponding to leaf children of u using nc,u+

ec as frequency counts.
6 Analogously calculate the optimal code length hΣ for encoding sym-
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bols in the combination of u and v using nc,u + nc,v as frequency
counts.

7 If hΣ < hu+hv, then delete v and let all children of v become children
of u. Update the nc,u by adding to them their corresponding nc,v.

8 Otherwise, update the nc,u by adding to them their corresponding ec.
Calculation of code lengths is expressed as follows. Denote U =

{ c | nc,u + ec > 0 }, and nU =
∑

c∈U
nc,u + ec . Summing code length

for escapes and symbols in u, we have

hu = |U| log
nU

|U|
+
∑

c∈U

(nc,u + ec − 1) log
nU

nc,u + ec − 1

= l(nU) − l(|U|) −
∑

c∈U

l(nc,u + ec − 1),

where l(n) ≡ n log n. The calculation of hΣ is analogously reduced
to a sum of l(n) terms. The function l(n) can be efficiently imple-
mented through a simple halving procedure, which can be speeded
up further by a lookup table. We may therefore realistically assume
that these calculations are dominated by set operations, which yields a
worst case complexity of O(n log k) for the greedy pruning algorithm
(where k is the alphabet size), with a straightforward implementation
using (possibly implicit) binary trees.

Code Length Measurements To illustrate how the context tree captures 6.2.3
the statistics of a file, the table on the next page shows experimental
results using the files of the Calgary corpus as input (available at ftp:
// ftp.cpsc.ucalgary.ca/pub/projects/ text.compression.corpus/). Note that
the reported code lengths are not compression results, since informa-
tion about the tree structure is not included (see §6.4), but rather
lower bounds for performance of the greedy-pruned context tree.

The measurements show how much redundancy the context tree
is able to capture for different kinds of data. Perhaps the most inter-
esting interpretation of these data is as an approximation of the lower
bound for any tree model based compression method, including PPM,
when compressing data with these characteristics – provided that the
pruned context tree is an adequate approximation of the optimal con-
text tree. However, the relatively large code lengths – not a general
improvement over the best predictive models – indicate that a prun-
ing strategy that brings the context tree closer to the global optimum
should be desirable for maximum compression.
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size nodes bits
bib 111 261 10 248 1.80
book1 768 770 59 701 2.19
book2 610 856 50 286 1.87
geo 102 400 5 442 4.37
news 377 109 40 568 2.28
obj1 21 504 1 972 3.45
obj2 246 814 27 037 2.27
paper1 53 161 6 265 2.26
paper2 82 199 8 338 2.22
pic 513 216 7 499 0.78
progc 39 611 4 939 2.29
progl 71 646 7 958 1.59
progp 49 379 5 922 1.62
trans 93 695 10 328 1.42

Measured
results of the
pruning
algorithm for
the Calgary
corpus. Size is
the original file
size in bytes,
nodes the
number of
internal nodes
maintained by
the pruning, and
bits the
calculated code
length in bits
per symbol.

6.3 The Relationship between Move-to-front Coding
and Context Trees

We now review the move-to-front encoding described in §6.1.3 from
a context tree perspective, in order to shed light on some important
points regarding its performance.

The transform of X ′ into X ′′ serves to replace the local repetitions
of X ′ by a globally skewed distribution that would ultimately submit
to compression using a static code. However, static coding is a poor
choice. While lower numbers are indeed generally more common than
high numbers in X ′′, their probabilities vary due to the following facts:

• The move-to-front process has no notion of depth changes in the con-
text tree. While BWT places similar contexts close to each other, many
not so similar contexts still end up in consecutive positions. The ex-
treme case occurs when all the contexts beginning with a particular
symbol are exhausted – the next position corresponds to a completely
different context, e.g., a character followed by ‘baaa’ may be placed
directly after a character followed by ‘azzz’.

• The degree of regularity varies between contexts. As an example, in
English text the characters followed by the string ‘the ’ are extremely
regular (almost all spaces), while the characters followed by ‘ the’ are
much less predictable. In information theoretic terms: different states
of the source have different entropy. Again, a simple left-to-right view
is unable to take context changes into account.
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Existing implementations essentially all deal with these inherent
disadvantages in the same way: they employ highly adaptive statistics.
The simplest method is the common approach of periodically scaling
down frequency counts, typically halving them. This gives local prob-
ability distributions an advantage over old statistics.

Despite the apparent crudeness of this approach – throwing away
large amounts of the collected statistics – it can give quite astonish-
ing results. Fenwick [25] reports the same average as the PPM* algo-
rithm [18] for the Calgary corpus. The key to this performance lies
in the extreme degree of repetition in X ′ for some files, which pro-
duces long runs of zeroes in the move-to-front transform. This is a
global property of those files, which remains in spite of the loss of
detail in the estimates.

6.4 Context Tree BWT Compression Schemes

The ultimate goal of our exploration of the BWT context tree is of
course to find a competitive compression scheme. However, while the
possibilities appear to be immense, it is far from clear what is the best
way of exploiting the context tree.

An interesting option, that has a clear potential of competing with
move-to-front encoding in computational requirements, is to include
a representation of the structural properties of the tree as part of the
compressed data, and then encoding the BWT transformed string left-
to-right, dynamically updating frequency counts as in PPM. In this sec-
tion we discuss a simple implementation using this strategy. It works
well for large files (where the tree representation comprises a small
part of the data), but it appears that a more sophisticated tree en-
coding is required for this method to be a general improvement over
move-to-front encoding.

Further Pruning When the tree is to be explicitly represented we need 6.4.1
to reconsider the pruning strategy. Now, the tree that models the data
optimally is not necessarily the best choice, since the size of the tree is
a factor. We need to weigh the cost of representing each node against
the gain of utilizing that node.

Consequently, the pruning algorithm should be modified so that
it maintains a node only if the gain in code length is larger than the
cost of representing that node. However, the cost of representing a
node is not easily predicted. It depends, naturally, on our choice of
representation of the tree, but also on the structure of the whole tree.
Our experimental algorithm employs the simplest possible strategy:
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the cost of representing each node is estimated as a constant, whose
value is empirically determined. Furthermore, we impose a lower limit
on the number of leaves in a subtree; all nodes with less than some
constant number of leaves below are removed.

Encoding the Tree A pruned context tree is highly compressible. One6.4.2
quickly noted attribute that is easy to take advantage of, is that a large
majority of the nodes are leaves. Less obviously exploitable are the
structural repetitions in the tree: small subtrees are essentially copies
of larger subtrees with some nodes removed.

In the current implementation we use the following simplistic en-
coding method: we traverse the tree in order, obtaining the number
of children of each node. These numbers are encoded as exponent-
mantissa pairs, where the exponents are compressed with a first-order
arithmetic encoder whose state is based on the size of the parent. A
more sophisticated tree encoding method could be based on exist-
ing specialized tree compression methods, such as those of Katajainen
and Mäkinen [37].

Encoding the Symbols For encoding the symbols symbols of the trans-6.4.3
formed string, corresponding to the leaves of the tree, we have to
choose a strategy for transferring the frequency counts to the decoder.
One possibility is to encode them explicitly, as we do the structure
of the tree. Another, which is chosen in the current implementation,
is to use the tree only for state selection and encode new symbols by
escaping to shorter contexts, as in PPM.

The crucial difference compared to PPM is that of computational
efficiency and simplicity. Since we encode left-to-right in the tree, we
only need to maintain frequency count for one branch of the tree at
a time. Furthermore, escaping to a shorter context is simple, since the
shorter context is the parent of each node – we do not need the suffix
links, or escape lists, of PPM implementations.

In this setting, we have the same choices as in PPM regarding strate-
gies of escape probability estimation, inheritance, exclusion etc. Again
because the tree is traversed in order, most conceivable choices are eas-
ily and efficiently implemented, which opens extensive possibilities
for refinement. Our current implementation uses no inheritance, an
escape estimate similar to PPMD [32], full exclusion, and update ex-
clusion.

Experimental Results The table on the facing page shows the results6.4.4
of our experimental compression program. The limits chosen for the
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size nodes bits ( tree + sym)
bib 111 261 2 308 2.26 (0.28 + 1.98)
book1 768 770 7 777 2.37 (0.15 + 2.22)
book2 610 856 8 793 2.17 (0.21 + 1.96)
geo 102 400 899 4.69 (0.13 + 4.56)
news 377 109 7 350 2.76 (0.26 + 2.50)
obj1 21 504 516 4.27 (0.32 + 3.95)
obj2 246 814 6 303 2.94 (0.33 + 2.61)
paper1 53 161 1 384 2.84 (0.35 + 2.49)
paper2 82 199 1 634 2.65 (0.28 + 2.37)
pic 513 216 652 0.80 (0.02 + 0.78)
progc 39 611 1 071 2.92 (0.36 + 2.56)
progl 71 646 1 778 2.13 (0.33 + 1.80)
progp 49 379 1 256 2.22 (0.34 + 1.88)
trans 93 695 2 775 2.06 (0.37 + 1.69)

Results of the
experimental
compression
program. Size is
original file size
in bytes, nodes
number of
internal nodes
maintained, and
bits average
number of bits
per compressed
symbol. Tree and
sym show
individual code
space for tree
and symbol
encoding.

pruning algorithm were five bits as the minimum gain to retain a
node, and a minimum of eight leaves for each subtrees rooted at an
internal node.

It is clear from the table that for these files our current experimental
program is no general improvement over the best known BWT imple-
mentations – only the largest file, book1, yields a total improvement
over the move-to-front results achieved by Fenwick [25]. In particu-
lar, the tree encoding scheme must be improved in order to achieve
favourable compression ratios for files as small as these (although for
a few files, Fenwick’s implementation performs better even disregard-
ing the tree part). The small number of internal nodes retained by the
pruning indicates that this improvement should certainly be possible
through a more sophisticated tree encoding.

For very large files, the representation of the tree should eventu-
ally be negligible, provided that the number of internal nodes of the
context tree which models the source converges towards a constant,
reflecting the states in the source (see §6.2.2).

6.5 Final Comments

Data compression using BWT has an advantage over other tree model
based methods in its moderate requirements on computational re-
sources. We assert that this advantage can be maintained with a much
more sophisticated modelling method than the move-to-front trans-
form. Our context tree approach reveals the possibility of using BWT
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to obtain a tight time complexity while taking advantage of sophisti-
cated techniques developed for PPM.

However, finding the optimal combination of these two approaches
remains as an open problem. Particularly, if the approach of represent-
ing the context tree explicitly is used, the structure of the tree must
be further analyzed, and a sophisticated encoding scheme designed, if
the method is to be competitive for small files.

It should be noted that while we have approached the context trees
of BWT with suffix trees as a starting point, the process of pruning the
suffix tree to obtain a useful context tree is by no means the only
possibility. On the contrary, the small number of internal nodes main-
tained by the extended pruning indicates that a top-down method of
constructing the tree (which could be made to consume less mem-
ory) should certainly be considered. This is particularly the case when
large blocks of data are treated, since the suffix tree may then require
considerable (although linear) storage space.
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Semi-Static Dictionary Model

Dictionary-based modelling is a mechanism used in many prac-
tical compression schemes. For example, the various members of the
two Ziv-Lempel families (see also §5.1) parse the input message into a
sequence of phrases selected from a dictionary, and obtain their com-
pression since a reference to the phrase can be more compact than the
phrase itself. Despite the inherent disadvantage in prediction capa-
bility compared to symbol-based methods – the conditioning context
used to guide probability predictions is, in essence, reset to the empty
string at the start of each phrase – the paradigm is attractive because
of the elegant balance it achieves between speed, memory usage, sim-
plicity, and compression ratio.

In most implementations of dictionary-based compression the en-
coder operates online, incrementally inferring its dictionary of available
phrases from previous parts of the message, and adjusting its dictionary
after the transmission of each phrase. Doing so allows the dictionary
to be transmitted implicitly, since the decoder simultaneously makes
similar adjustments to its dictionary after receiving each phrase.

An alternative approach – the topic explored in this chapter – is to
use the full message (or a large block of it) to infer a complete dic-
tionary in advance, and include an explicit representation of the dic-
tionary as part of the compressed message. Intuitively, the advantage
of this offline approach to dictionary-based compression is that with
the benefit of having access to all of the message, it should be possi-
ble to optimize the choice of phrases so as to maximize compression
performance. Indeed, we demonstrate that, particularly on large files,
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very good compression can be attained by an offline method without
compromising the fast decoding that is a distinguishing characteristic
of dictionary-based techniques.

Several nontrivial sources of overhead, in terms of both computa-
tion resources required to perform the compression, and bits gener-
ated into the compressed message, have to be carefully managed as
part of the offline process. In this investigation we develop a compres-
sion scheme Re-pair which is a combination of a simple but power-
ful phrase derivation method and a compact dictionary encoding. The
scheme is highly efficient, particularly in decompression, and has char-
acteristics that make it a favourable choice when compressed data is
to be searched directly.

It should also be noted that while offline compression involves the
disadvantage of having to store a large part of the message in mem-
ory for processing, the difference between doing this and storing the
growing dictionary of an online compressor is illusory. Indeed, incre-
mental dictionary-based algorithms maintain an equally large part of
the message in memory as part of the dictionary; similarly, online pre-
dictive symbol-based context models occupy space that may be linear
in the size of that part of the message on which prediction is based.

Our scheme is offline only while inferring the dictionary, and dur-
ing decompression bits are read and phrases written in a fully inter-
leaved manner. Moreover, during decoding only a relatively compact
representation of the dictionary must be stored. Thus, during decom-
pression, our approach has a space advantage over both incremental
dictionary-based schemes and over context-based source models.

Notation In this chapter we use the symbol concept in a more gen-
eral sense than in the rest of the thesis. We allow our algorithm to
introduce new symbols; thus, symbols are not restricted to be only in-
put items. To distinguish input symbols from created ones, we denote
them characters. Thus, there are k possible distinct characters – the
symbols of the input alphabet – but a larger variable number, k ′, of
distinct symbols currently used internally in the algorithm.

Dictionary-Based Compression The goal of dictionary-based modelling
to derive a set of phrases (normally, but not always, substrings of the
message being encoded) in such a way that replacing the occurrences
of these phrases in the message by references to the table of phrases
decreases the length of the message. Furthermore, since in an offline
method the phrase table must be transmitted as part of the com-
pressed message, the derivation scheme used should allow a compact
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encoding of the phrase set. This latter requirement does not apply to
incremental dictionary-based methods, and they may create their dic-
tionary without concern for how it might be represented.

7.1 Previous Approaches

Extensive treatment of offline substitution methods in the so-called
macro model is given by Storer [63, chapter 5]. In addition to present-
ing several practical schemes, this survey also proves the intractability
of optimal offline substitution.

An early exploration of phrase derivation is by Rubin [58]. He sug-
gests several strategies, and gives experimental results. The basic idea
for our scheme, as well as for some other similar approaches to dic-
tionary derivation [17, 55], is clearly related to the incremental encod-
ing schemes suggested by Rubin. However, his treatment of computa-
tional complexity and dictionary encoding techniques is superficial.

To facilitate a compact encoding of the phrase table we employ a
hierarchical scheme where longer phrases are encoded through refer-
ences to shorter ones. This is in some ways similar to the LZ-78 mech-
anism [72], and the extension to that developed by Miller and Weg-
man [50]. The drawback of the aggressive phrase construction policies
of LZ-78 mechanisms is that the dictionary is diluted by phrases that
do not in fact get productively used, and compression suffers. In our
proposal, described in detail in §7.2, every phrase is used either to
directly code at least two distinct parts of the source message, or as a
building block of a longer phrase that is itself used twice or more.

Our derivation scheme is also loosely related to the grammar-based
compression method Sequitur of Nevill-Manning and Witten [56]. In
Sequitur, the input message is processed incrementally, and rules in
a context-free grammar are created and then revised in a symbol-by-
symbol manner, with the decoder inferring the rules from the com-
pressed message stream. But because Sequitur processes the message
in a left-to-right manner, and maintains its two invariants (uniqueness
and utility) at all times, it does not necessarily choose as grammar rules
the phrases that might eventually lead to the most compact represen-
tation. Hence, Sequitur is best categorized as an online algorithm with
strong links to the LZ-78 family, and the obvious question is whether a
holistic approach to constructing a grammar to represent the message
can yield better compression.

Our scheme also has some points in common with the compres-
sion regime described by Manber [46]. To obtain fast searching of
compressed text, Manber considers a simple compression mechanism
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based upon character digrams, and then compresses a search string us-
ing the same rules, so that the two compressed representations can
be directly compared using standard pattern matching algorithms. We
also replace frequent pairs, but continue the process recursively un-
til no more pairs of symbols can be reduced. Hence the name of our
program, Re-pair, for recursive pairing.

Apostolico and Lonardi [7] present an offline compression scheme
with a phrase derivation scheme that uses a suffix tree. The suffix
tree is augmented to maintain statistics for contexts without overlap,
which requires superlinear O(n log n) construction time. However, al-
though this scheme involves offline phrase derivation, the transmis-
sion of the dictionary is performed incrementally. Thus, it is not fully
offline in the sense of our algorithm, and does not offer the same po-
tential for random access searching in the compressed data.

The same is true for the work of Nakamura and Murashima [55].
They independently propose a compression scheme that comprises
the same phrase generation scheme as ours, but has a different ap-
proach to the representation of the dictionary as well as and message
encoding. Similarly to the other mentioned previous approaches, the
dictionary is transmitted adaptively.

Another independent work based on a similar phrase generation
scheme is that of Cannane and Williams [17]. Their approach is spe-
cialized for processing very large files using limited primary storage. It
involves scanning through the input in multiple passes during dictio-
nary construction. Hence, their algorithm requires a multiply longer
encoding time than a single-pass encoding algorithm would, but on
the other hand does not require that large inputs are split into sep-
arate blocks.

7.2 Recursive Pairing

The phrase derivation algorithm used in Re-pair consists of replacing
the most frequent pair of symbols in the source message by a new sym-
bol, reevaluating the frequencies of all of the symbol pairs with respect
to the extended alphabet, and then repeating the process until there
is no pair of adjacent symbols that occurs twice. Algorithm R on the
facing page captures this mechanism. Although this simple scheme
is not among the more well known compression algorithms, similar
techniques have, as noted in §7.1, appeared as components of several
independent works [17, 55, 58].

The message is reduced to a new sequence of symbols, each of
which represents either a unit symbol or a pair of recursively defined
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1 Identify symbols a and b such that ab is the most frequent pair of
adjacent symbols in the message. If no pair appears more than once,
stop.

2 Introduce a new symbol A and replace all occurrences of ab with A.
3 Repeat from step 1.

Algorithm R,
the basic pair
replacement
mechanism.

symbols. That is, each of these final symbols is a phrase; the phrase set
is organized in the form of hierarchical graph structure with unit sym-
bols at the lowest level. A zero-order entropy code for the reduced
message is the final step in the compression process; and the penulti-
mate step is, of course, transmission of the dictionary of phrases.

We have not specified in which order pairs should be scheduled
for replacement when there are several pairs of equal maximum fre-
quency. While this does influence the outcome of the algorithm, in
general it appears to be of minor importance. The current implemen-
tation resolves ties by choosing the least recently accessed pair for re-
placement, which avoids skewness in the hierarchy by discriminating
against recently created pairs.

7.3 Implementation

We sketch a phrase derivation implementation that takes O(n) time
and space. Many options are available, but for brevity only a single set
of choices is described here, and a number of alternatives are omitted.

Data Structures Our implementation involves three data structures 7.3.1
to access pairs in the input sequence:

• An array storing the sequence of symbol numbers – initially, the char-
acters of the input message. Each record in the array contains three
words: one that holds the symbol number, and two that are used as
threading pointers.

• A hash table with an entry for each active pair, which denotes a com-
bination of two adjacent symbols in a pair that is still under consid-
eration for replacement by a single symbol; and a pointer to the first
appearance of each active pair in the symbol array.

• A specialized priority queue, implemented as an array of roughly
√

n

linked lists recording the active pairs that occur less than that number
of times, and one final list recording the more frequent ones.

The figure on the next page shows the full structure of our sug-
gested implementation. The two pointers of each record in the se-
quence array are used to thread records together in a series of doubly
linked lists, one for each active pair. In combination with the hash ta-
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Priority queue

Array of three-word (pointer, symbol, pointer) triples

x a b y a b a

ab

Hash table

2 3 4 5 6 > 6

2 4 7

2 8

Data structures
during phrase
construction.
Pair ab is
assumed to be
one of two
symbol pairs
that appear
more than six
times; with the
first appearance
of ab being the
one illustrated,
in context xaby.
Pair xa is
assumed to
appear twice,
with the one
shown being the
first.

ble, this gives us direct access to all positions of the sequence array
that hold a given active pair.

As pairs are aggregated, some positions of the array become empty,
as one of the two records combined is left vacant. To allow skipping
over sequences of adjacent records in constant time, the empty space
is also threaded: in the first record in a sequence of empty records,
the forward thread points to the first nonempty record beyond this
sequence. Analogously, in the last record, the backward thread points
to the last nonempty record before the sequence.

The hash table and priority queue make use of the same set of
underlying records, each of which holds a counter for the number of
occurrences of that active pair, and the pointer to the first location
at which that pair occurs.

Note that the count of any existing active pair never increases.
When the count of a pair decreases as a result of its left or right
part being absorbed in a pair replacement, that pair either remains
on the final priority list or is moved to a list residing at a lower index
in the array. Moreover, the count of any new active pairs introduced
during the replacement process cannot exceed the count of the pair
being replaced. Hence, the maximum count is a monotonically de-
creasing entity, and locating the next most frequent active pair can
be done in constant time per pairing operation. When the last list of
frequent items is non-empty, it is scanned in O(

√
n) time to find the
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greatest frequency pair, and when this is identified at least
√

n pairs
are replaced as a result. Once all the pairs on the final list have been
dealt with, the rest of the priority array is walked from its last position
(roughly

√
n) down to position one, using O(n) total time.

The priority queue is initialized in linear time by scanning the orig-
inal sequence and updating counts and entry lists through hash table
lookups. The total time consumed by all executions of step 1 of Al-
gorithm R on page 95 is thus O(n).

Pair Replacement Operation To account for the replacement opera- 7.3.2
tion in step 2 of Algorithm R, observe that since the length of the se-
quence decreases for each replacement, the total number of replace-
ments is O(n). Replacement of a single appearance of pair ab by a
new symbol A involves the following sequence of operations, each of
which must be accomplished in constant time:

I Locate the first or next sequence entry associated with ab. Identify
the adjacent symbols x and y to establish the context xaby.

II Decrement the counts of the adjacent pairs xa and by. If any of the
pairs reaches a count of one, delete its priority queue record.

III Replace ab in the sequence, leaving xAy.
IV Increase the counts of the pairs xA and Ay. This involves creating

records for them and adding them to the hash table and priority queue
if necessary (see §7.3.4).

Care must be taken for sequences of identical symbols, since these
introduce overlapping pairs. For example, replacing aa with A in the
subsequence aaaa should yield two occurrences of A, not three. If the
initial scanning for pairs as well as replacements is done in strict left-to-
right order (which is natural), this is a simple matter of remembering
the last few positions encountered in scanning or replacing pairs, and
excluding any pair that overlaps one that was just counted.

Operations I and III can be accomplished in O(1) time using the
threading pointers of the sequence array.

In steps II and IV, entries are moved from one linked list in the
priority queue to another. These movements take O(1) time, because
each pair record includes the index of the list that contains it, and the
lists are doubly linked. Hence, total processing time is O(1) per sym-
bol.

Memory Space Initially, each symbol in the input message is stored as 7.3.3
a three-word triple in an array of 3n words. One word is used to store
a symbol number, and the other two are pointers threading together
equal pairs of symbols in the sequence.
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c

x C a

a

a

x A y A a

b

x B A a

d

x C

Spanning the
gaps between
sequence
records.
a: after pair ab

is reduced to A

(in two places,
see the figure on
page 96);
b: after Ay is
reduced to B;
c: after BA is
reduced to C;
d: after a
compaction
phase. The
normal thread
pointers are
omitted.

The priority queue structure requires an array of
⌈√

n + 1
⌉

− 1

words, plus a record for each distinct pair that appears twice or more
in the source message. Each record stores the frequency of that pair,
plus a pointer to the first appearance in the sequence of that pair.
Moreover, the lists are doubly linked, so two further words per record
are required for the list pointers.

Prior to any pair replacements there can be at most k2 distinct pairs
in the priority lists. Thereafter, each pair replacement causes at most
one new item to be added to the priority lists – both left and right
combinations (xA and Ay in the figure on page 96) might be new,
but each must occur twice before they need to be added to the pri-
ority lists, and so in an amortized sense, it is at most one new active
pair per pair replaced. Each of these new records requires a further
four words of space.

With careful attention to detail, it is possible to limit the amount
of extra memory required by priority list nodes to just n words.

Suppose that the pair reduction process is commenced with 3n

words in the sequence array, and 4k2 words in use for the k2 initial
priority list items. When n/4 pair replacements have taken place, and
at most n/4 new priority list items (taking a total of n words of mem-
ory) have been created, the processing is temporarily suspended, and
a compaction phase (illustrated above) commenced. The purpose of
compaction is to pack all sequence records still being used into a single
section of the sequence array, and free the memory occupied by empty
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sequence records for other use. Since n/4 replacements have taken
place, the first compaction phase frees a block of at least 3n/4 words.

Pair replacement then resumes. The memory freed is sufficient for
the construction of another 3n/16 priority list nodes, which in turn
can only happen after a minimum of 3n/16 further pair replacements
have taken place. A second compaction, this time over only 3/4 of
the length of the original 3n-word array, then takes place, and frees
up 9n/16 words, which is enough to allow the replacement process to
resume and reduce another 9n/64 pairs.

This alternating sequence of compactions and reductions continues
until all pairs have been resolved, and, by construction, the ith com-
paction will take place (at the earliest) after 3i−1n/4i pair replace-
ments, and will be required to pack 3i−1n/4i−1 three-word records
into 3in/4i three-word spaces, and in doing so frees space for

n ·
(

3i−1

4i
−

3i

4i+1

)

· 3

4
= n · 3i

4i+1

list records, since each sequence record is 3/4 the size of a list record.
That is, the memory freed by one compaction is exactly sufficient to
accept all newly created priority lists records generated prior to the
next compaction, and apart from the n words added during the first
phase, no more memory needs to be allocated.

Moreover, since the time taken by each compaction operation is
linear in the number of records scanned, the total cost of all com-
pactions is:

O

(

n ·
∞∑

i=0

(3/4)i

)

= O(n).

Pair Record Considerations Our arrangement supposes that records 7.3.4
are not created for new pairs unless it is clear that they will appear
in the reduced sequence more than once. For this reason, when re-
placing ab with A, we scan the list of occurrences for ab twice:

In the first pass, we do not increment any counts. Instead, we check,
for each occurrence of ab in the context xaby, if there is already a
hash table entry for xA and Ay respectively. If not, we need to find
out if the current position is the first or second appearance of that new
pair along the ab list. We allocate one special bit per hash table en-
try to record this. At the first appearance of xA we set this bit in the
hash table entry for xa, and for Ay analogously in the entry for by.
If either of these hash table entries does not exist, we know immedi-
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ately that the corresponding new pair cannot occur twice, and skip it.
(For example, if xa is not in the hash table, this means that it occurs
only once in the sequence, and therefore xA will occur only once as
well). If we find the bit already set, we know that this is the second
appearance of that pair and allocate a new priority queue entry for
xA or Ay, which we link into the hash table and priority queue. The
first-occurrence bit can then be reset.

In the second pass, we increment counts in the priority queue en-
tries for pairs that have entries in the hash table. The processing in the
first pass guarantees that these are the active pairs.

The hash table structure contains a pointer to the priority list record
for each pair, from whence the pair itself can be identified by following
the pointer in that record into the symbol sequence array. The num-
ber of entries in the hash table never exceeds n/2, since each entry
corresponds to a pair of adjacent symbols in the message that appears
at least twice, and there are at most n symbols in the message. If it
is supposed that a peak loading of 1/2 is appropriate, the hash table
must have space for n pointers.

To allow deletion to be handled, linear probing is used to resolve
collisions [39, page 526]. When a record is deleted, rather than sim-
ply tag it as such in the hash table, all of the records between its lo-
cation and the next empty cell are reinserted. The cost of this minia-
ture rehashing is asymptotically less than the square of the cost of
an unsuccessful search, which is O(1) expected time for a given ta-
ble loading. Hence, all of lookup, insertion, and deletion require O(1)

expected time.
A fourth data structure not already described is the hierarchical

phrase graph. Each record in this directed acyclic graph requires two
words of memory, indicating the left and right components of this par-
ticular phrase, and is required at exactly the same time as the priority
list item for that particular pair is being processed. Hence, that space
can be reused, and no additional space is required.

Total Dictionary Space Summed over all data structures, the memory7.3.5
required is never more than 5n + 4k2 + 4k ′ +

⌈√
n + 1

⌉

− 1 words,
where n is the number of symbols in the source message, k is the
cardinality of the source alphabet; and k ′ is the cardinality of the fi-
nal dictionary. This requirement is dominated by the 5n component
except in pathological situations in which k ′ might be large.

Hence, we can summarize our findings regarding the complexity of
the dictionary construction algorithm in the following statement:
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Theorem Dictionary creation through recursive pair replacement with 7A

an input of n symbols from an alphabet of size k, generating a total of
k ′ phrases, is accomplished in expected O(n) time, using 5n + 4k2 +

4k ′ +
⌈√

n + 1
⌉

− 1 words of primary storage.

In the decoder, two words of memory are required for each phrase
in the hierarchy. As is demonstrated by the experiments in §7.7, this
is a very modest requirement.

7.4 Compression Effectiveness

We now consider the manner in which the phrase derivation scheme
described in §7.2 achieves compression, when phrases in the input are
represented as references to the table, using a zero-order entropy code.
Transmission of the dictionary of phrases is disregarded in this section.

Symbolwise Equivalent To understand the structure of a dictionary- 7.4.1
based model, it is helpful to consider the structure of its symbolwise
equivalent model – a model that process one character at a time with
an entropy coder [12, 41].

Consider the final sequence of phrases. Suppose that there are k ′

distinct phrases in the sequence, and n′ phrases in total. Then each
occurrence of a phrase that appears l times in the final sequence gen-
erates approximately − log(l/n′) bits in the compressed message, since
the final phrases are entropy coded. Let one such phrase, of length r,
be described by x1x2 . . . xr$, where $ represents an end of phrase sym-
bol, and let l be its frequency. Let N(c | s) be the number of phrases
in the final sequence (of the n′) which have sc as a prefix. For exam-
ple, N(a | ε) is the count of the number of phrases that commence
with character ‘a’ (ε is the empty string) and N(b | a) is the number
of phrases that commence with ‘ab’.

Now consider the expression

− log
N(x1 | ε)

n′
− log

N(x2 | x1)

N(x1 | ε)
− · · · − log

N($ | x1x2 . . . xr)

N(xr | x1x2 . . . xr−1)
,

which telescopes to

− log
N($ | x1x2 . . . xr)

n′
= − log

l

n′
,

since N($ | x1x2 . . . xr) = l, the number of times the phrase x1x2 . . . xr

appears. That is, the overall code for each phrase can be interpreted
as a zero-order code for the first symbol, with probabilities evaluated

101



§ 7.4.1

relative to the commencing letters of the set of phrases; followed by a
first-order probability for the second symbol, with probabilities evalu-
ated in the context of first letters of the set of phrases, and so on.

Sources of Redundancy Given the symbolwise equivalent, it is unlikely7.4.2
that the Re-pair mechanism can outperform a well-tuned context-
based model, since the latter uses a high-order prediction for every
character in the message, whereas, like other dictionary-based meth-
ods, Re-pair essentially resets its prior context to the empty string at
the start of each phrase. However, the same improvements that have
been suggested for other dictionary-based models can be used if com-
pression effectiveness is to be maximized. For example, Gutmann and
Bell [29] suggest that the probability for each phrase be conditioned
upon the last character of the previous phrase. (A full first-order model
on phrases is, of course, pointless.)

Another way in which compression effectiveness can be improved
is to note that, by virtue of the way in which phrases are constructed,
the final sequence contains no repeated symbol pairs, nor any pairs
that constitute phrases in the dictionary. That is, if phrase pair AB has
previously appeared in the final message, or if C = AB is in the phrase
table (for some C), then, when phrase A appears, the next phrase
cannot be B. In this case phrase B, and any others that match the
criteria, can be excluded from consideration at the next coding step,
and the remaining probabilities adjusted upwards, in the same way
that in PPM-style methods characters can be excluded because they
are known to not be possible (see §5.5.2).

Both conditioning and exclusions are complex to implement, and if
compression effectiveness (rather than compression efficiency) is the
goal, then a full context-based mechanism is a better basic choice of
algorithm. Our current implementation includes neither of these two
improvements.

7.5 Encoding the Dictionary

The hierarchical organization of the phrase table offers a natural way
to encode it compactly as backward-referring pairs. This is achieved by
encoding the phrases in generations. The first generation is the set of
phrases that consist of two primitive symbols, the second generation
the phrases constructed by combining first-generation objects, etc.

Let the primitive symbols be generation 0, and the number of items
up to and including generation i be ki. Define ki for i < 0 to be zero,
k = k0 to be the size of the input alphabet, and si to be the size of
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generation i. That is, ki =
∑

j≤i sj. Finally, note that each phrase in
generation i can be assumed to have at least one of its components in
generation i−1, as otherwise it could have been placed in a earlier gen-
eration. Therefore, the universe from which the phrases in generation i

are drawn has size k2
i−1 −k2

i−2. Items are numbered from 0, so that the
primitives have numbers 0 through k − 1, and generation i has num-
bers ki−1 through ki − 1. Each item is a pair (l, r) of integers, where l

and r are the ordinal symbol numbers of the left and right components.
Given this enumeration, the task of transmitting the dictionary be-

comes the problem of identifying and transmitting the generations;
and to transmit the ith generation, a subset of size si = ki − ki−1,
drawn from the range k2

i−1 − k2
i−2, must be represented. This section

considers three strategies for the low-level encoding of the genera-
tions: arithmetic coding with a Bernoulli model, spelling out the pairs
literally, and binary interpolative encoding.

Bernoulli Model If the si combinations that comprise the ith genera- 7.5.1
tion are randomly scattered over the k2

i−1 − k2
i−2 possible locations,

then an arithmetic coder and a Bernoulli model will code the ith
generation in

log
(

k2
i−1 − k2

i−2

ki − ki−1

)

bits.

For efficiency reasons we do not advocate the use of arithmetic cod-
ing for this application; nevertheless, calculating the cost of doing so
over all generations gives a good estimate of the underlying entropy
of the dictionary, and is reported as a reference point in the experi-
mental results in §7.7. (The cost of transmitting the input alphabet
is disregarded in this estimate).

Literal Pair Enumeration On the other hand, the most straightforward 7.5.2
way of encoding the generations is as pairs of numbers denoting the or-
dinal numbers of the corresponding left and right elements, encoding
(l1, r1), (l2, r2), . . . as the number sequence l1, r1, l2, r2, . . . . A few
optimizations to limit the range of these integers, and thereby reduce
the required number of bits to encode them, are immediately obvious:

• Numbers are contained in previous generations. The maximum element
when encoding generation i is ki−1.

• Pairs must have one of their elements in the immediately prior generation.
If, in generation i, the left element of a pair is less than or equal to
ki−2, then the right element is greater than ki−2.
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• The pairs in each generation may be coded in lexicographically sorted
order. The left elements will then appear in monotonically increasing
order, and when the left element is the same as the previous one, the
right element is strictly larger than in the previous pair.

Given these observations, the left elements of the pairs in the se-
quence grow slowly, with long sequences of equal elements, while the
right elements are more varied. Experimentally, the most efficient en-
coding – of those tested – is to use a zero-origin gamma code (see,
for instance, Witten, Moffat, and Bell [70, §3.3] for details of this
representation) for transmitting the input alphabet as well the dif-
ferences between successive left elements in the pair sequence; and a
binary code for the corresponding right elements, tracking the remain-
ing range (for the current left element), so that a minimal number
of bits can be used.

Interpolative Encoding There are many other ways of representing a7.5.3
subset of values over a constrained range [70, Chapter 3]. When the
subset is expected to be non-random over the range – as is the case
here because, intuitively at least, some symbols are more likely to
form pairs than others – the interpolative coding method of Moffat
and Stuiver [53] can be used. In this method a sorted list of inte-
ger values in a known range is represented by first coding the middle
item as a binary number, and then recursively transmitting the left and
right sublists, both within the narrowed range established by the now-
available knowledge of the value of the middle item. When the middle
item lies towards one of the ends of the range, all subsequent codes in
that section of the list will thus be shorter than if a normal gap-based
mechanism such as Golomb coding had been used. In extreme cases
of clustering, values can be transmitted in less than one bit each.

To actually encode the phrases with interpolative coding the two-
dimensional pairs data must be converted to single numbers. A direct
approach is to enumerate the possible pairs using the same lexico-
graphically sorted ordering as the literal pairs. This means that pair
(l, r) in generation i is assigned the number

φ(l, r) =

{
l (ki−1 − ki−2) + r − ki−2 for l < ki−2,
lki−1 + r − k2

i−2 for l ≥ ki−2.

The resulting enumeration, which we call horizontal slide, is shown in
the left half of the figure on the facing page.

The function φ(l, r) is not symmetric in its arguments, and any two-
dimensional clusters in the matrix are broken up into several parts.
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l

6 33 34 35 36 37 38 39

5 26 27 28 29 30 31 32

4 19 20 21 22 23 24 25

3 12 13 14 15 16 17 18
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5 6 14 22 29 34 37 36
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0 3 2 1 0
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Pair enumera-
tion of the
horizontal and
chiastic slides
respectively,
when ki−1 = 7

and ki−2 = 3.

Furthermore, the lower left part of the matrix can be expected to
have the higher density, and the interpolative coding should be able
to exploit this clustering. This leads to the enumeration shown in the
right part of the figure above, which we refer to as the chiastic slide.
With this scheme, (l, r) in generation i gets number

χ(l, r) =






2l (ki−1 − ki−2) + ki−1 − r − 1 for l < ki−2,
(2r + 1)(ki−1 − ki−2) + l − ki−2 for r < ki−2,
l (2ki−1 − l) + ki−1 − r − k2

i−1 − 1 for ki−2 ≤ l ≤ r,
r (2ki−1 − r − 2) + ki−1 − l − k2

i−1 − 1 for ki−2 ≤ r < l.

Calculating χ(l, r) is a costly operation if performed for each pair,
and the closed form for χ−1(x), for decoding, includes division as
well as a square root. Fortunately, since the encoding is performed
generation-wise and numbers are strictly increasing, values can be pre-
computed or accumulated, and incremental processing is fast. In par-
ticular, decoding requires only a constant number of multiplications
per generation plus a constant number of additions and subtractions
per pair.

7.6 Tradeoffs

The Re-pair mechanism offers a number of tradeoffs between time
and space. This section briefly canvasses some of these.

Encoder The description of Algorithm R in §7.2 stipulated that pair 7.6.1
replacement should continue until no pair occurs twice, but this all the
way threshold can be modified if faster encoding, or a tighter bound
on the dictionary space requirement, is required. At the potential ex-
pense of compression effectiveness, we can bring pair replacement to
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a premature halt, stopping when either the dictionary reaches a pre-
determined maximum size or when the count of the most frequent
pair reaches a certain value, and transmit the sequence as it stands at
that time. The decoding algorithm is unaffected by this change, and
acts in exactly the same manner as previously.

A second tradeoff is between encoding space and time. If more
memory space can be allocated then encoding will be faster, since
longer intervals between compaction phases will be possible. In the
limit, if 4n words can be allocated to the priority list records (8n
words in total for all structures), then no compactions at all are re-
quired, even on pathological input sequences.

Decoder The decoder offers a particularly convenient tradeoff regard-7.6.2
ing throughput and memory usage. The simplest – and most com-
pact – decoding data structure is to simply reproduce the phrase hi-
erarchy, and then, for each symbol number decoded, undertake an in-
order traversal of the hierarchy, and output a character as each leaf is
encountered. While compact, this structure leads to relatively slow de-
coding. The alternative is to expand all of the phrases to form strings,
and then output strings directly as symbol numbers are decoded. This
form of decoding is more akin to the mechanism used by LZ-77 de-
coders such as Gzip, and extremely fast decompression results. More-
over, the transition between these two extremes is adjustable. For a
given amount of memory – a parameter that is set at decode time, and
independent of the encoding process – the most frequent (or recent)
strings can be held in full, and others at least partially expanded via
recursive processing of the phrase tree. One possible implementation
of this tradeoff is to retain a sliding window of recently decoded text
(which can be combined with output buffering), in the style of LZ-77
compression mechanisms. Phrases that reappear within the scope of
the window can then be decoded by simply copying characters out of
the window, rather than recursively expanding the phrase.

7.7 Experimental Results

Our prototype implementation of the Re-pair mechanism, with input
partitioned into 1 MB blocks, yields the compression results shown
on the facing page. The six test files are the three files of the Large
Canterbury Corpus or LCC (files and compression results available at
http://corpus.canterbury.ac.nz/); the file WSJ-20 MB which is 20 MB
extracted from the Wall Street Journal (English text, including SGML
markup); the file Random-1 which consists of a random sequence of
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file size (kB) p.-ent. lit. p. hori. chi. stat. total

E.coli 4 529 0.19 0.21 0.14 0.12 2.00 2.12
bible.txt 3 952 0.38 0.38 0.36 0.36 1.53 1.89
world192.txt 2 415 0.42 0.42 0.39 0.38 1.40 1.78

average 1.93

WSJ-20MB 20 480 0.43 0.43 0.41 0.39 1.83 2.22
Random-1 128 0.40 0.82 0.44 0.44 8.13 8.57
Random-2 128 5.33 5.93 5.23 5.02 0.00 5.02

Results for
the Large
Canterbury
Corpus and
three other files,
using a 1 MB
blocksize.
Explained
in §7.7.

8-bit bytes; and the file Random-2 that contains a sequence of 65 536
random 8-bit bytes, followed by an exact repetition of that sequence.

The file column in the table shows the original file sizes in kilobytes;
p.-ent. is the phrase table entropy estimate calculated as described in
§7.5.1; the lit. p., hori., and chi. columns show the space required for
phrase tables encoded as literal pairs (§7.5.2), and with interpolative
coding (§7.5.3) using the horizontal slide and chiastic slide respectively,
measured in bits per symbol of the original file. The stat. column gives
the space for the sequence part of each compressed file compressed
with a static minimum-redundancy code, and total is the sum of the
chi. and stat. columns.

The final column in the table above shows the overall compression
attained when the chiastic slide dictionary representation is combined
with a semi-static minimum-redundancy coder for the reduced mes-
sage [54, 66]. As expected, compression is good, but not quite as good
as the PPM context-based mechanism. As a reference point, Gzip and
a fifth-order PPM obtain average compression of 2.30 and 1.70 bits per
character respectively over the LCC; and 2.91 and 1.76 bits per char-
acter on the file WSJ-20 MB. On the two random files PPM achieves
9.35 and 5.13 bits per character.

The illustration on the next page shows the phrases isolated for
the first few verses of the Bible, based upon a dictionary built for a
block consisting of the first 1 MB of the file. Quite remarkably, in the
same 1 MB section, the longest phrase constructed (and used a to-
tal of five times) was

offered: \nHis offering was one silver charger, the weight whereof was an
hundred and thirty shekels, one silver bowl of seventy shekels, after the
shekel of the sanctuary; both of them full of fine flour mingled with oil for
a meat offering: \nOne golden spoon of ten shekels, full of incense: \nOne
young bullock, one ram, one lamb of the first year, for a burnt offering:
\nOne kid of the goats for a sin offering: \nAnd for a sacrifice of peace offer-
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In the beginning God creat ed the heaven and the earth

. And the earth was without form , and void ; and

darkness was upon the face of the deep . And the

Spirit of God moved upon the face of the water s. \nAnd God

said, Let there be light : and there was light . \n And God

saw the light , that it was good : and God divided the

light from the darkness . \n And God called the light D ay

, and the darkness he called N ight

. And the evening and the morning were the first

day. \n And God said, Let there be a firmament

in the midst of the water s, and let it divide the waters

from the water s. \n And God made the firmament , and

divided the water s which were under the firmament

from the water s which were above the firmament

: and it was so. \nAnd God called the firmament He aven

. And the evening and the morning were the second

day. \nAnd God said, Let the waters under the heaven

be gathered together unto one place, and let the dry land

appear : and it was so. \nAnd God called the dry land

Phrase
representation
for the first few
verses of the
King James
Bible.

file max. pairs av. phr. longest av. len.

E.coli 39 778 16 587 1 800 6.2
bible.txt 28 681 26 994 548 9.3
world192.txt 29 112 24 072 393 10.2
WSJ-20MB 32 069 31 318 1 265 7.8
Random-1 38 878 14 471 4 9.1
Random-2 48 262 53 931 65 534 26 214

Phrase statistics
when using
1 MB blocksize.

ings, two oxen, five rams, five he goats, five lambs of the first year: this was
the offering of

in which \n indicates a newline character.
The table above gives some detailed statistics for the Re-pair mech-

anism, again using 1 MB blocks. The max. pairs column shows the
maximum number of pairs formed during the processing of any of the
blocks; av. phr. is the average number of phrases constructed per block;
longest is the length in characters of the longest phrase constructed in
any of the blocks; and av. len. column is the average number of char-
acters in each symbol of the reduced message. The number of pairs
formed is considerably smaller than the length of the block, and the
phrases isolated on the non-random files can be very long indeed.
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The diagram above shows the compression rate attained by Re-pair
on file WSJ-20 MB as a function of blocksize. The three components
for Re-pair are the cost of specifying the pairs; the cost of transmitting
the codeword lengths; and the cost of coding the reduced message.

Even with a relatively small blocksize, the compression obtained
is as good as that of Gzip (which always operates with a blocksize
of 64 kB), and for large blocksizes the compression approaches the
target set by the fifth-order PPM implementation (here using 32 MB
for its model, and escape method D [32]). Because of the memory
overheads incurred by the current Java version of the encoder we have
been unable to apply Re-pair to the entire 20 MB file, but expect,
when we are in a position to do so, that the resultant compression will
be excellent, and perhaps comparable to the 1.76 bits per character
attained by the PPM implementation.

The prototype implementation of Re-pair was undertaken in Java,
compiled and tested with Sun JDK version 1.1.6, to take advantage of
the favourable extensibility properties of this object-oriented environ-
ment during the development of our program. This experimental pro-
gram, which was written before the implementation described in §7.3
was completed (and hence does not conform to that representation),
and makes extensive use of dynamic memory, runs slowly compared to
other compressors, which are written in C and compiled into efficient
machine code. However the Re-pair decoder has been implemented
in C as well as Java, and executes approximately 50 times faster, when
compiled with the Gnu C compiler (achieving a decoding times far
smaller than PPM). Hence, we believe that a C implementation of the
encoder will operate at speeds comparable to Gzip and PPM encoding.

Execution time of the three compression processes on the file WSJ-
20 MB are shown on the next page. These times are CPU seconds for
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method language encoding decoding

Gzip C 40 3
PPM C 64 70
Re-pair Java 3 181 254
Re-pair C — 5

Experimental
time for
encoding and
decoding.

encoding and decoding the file on a 266 MHz Intel Pentium II with
256 MB RAM and 512 kB cache. For Re-pair, the times listed include
the cost of the entropy coder, a program that was supplied by Andrew
Turpin of Melbourne University, and based on techniques presented
by Turpin and Moffat [66]. This requires 6 seconds for encoding and
1 second for decoding. The PPM implementation uses a fifth-order
context; Gzip was used with the –9 option.

7.8 Future Work

A number of areas for further development remain. One track that
is worth following is exploiting the fact that our dictionary is static
so as to yield efficient access operations when searching in the com-
pressed data.

We are also interested in exploring the possible correlations be-
tween blocks of text in a large file. It may be that the dictionary used in
one block can most economically be transmitted as a variant of the dic-
tionary used in the previous block, rather than encoded from scratch.

Also, a less resource demanding implementation of the Re-pair pro-
gram than our prototype compressor clearly needs to be written. Our
findings in §7.3 in combination with an efficient compiler should yield
such a program.

Finally, following the lead shown by Sequitur, it will be interesting
to assess the extent to which the dictionary construction technique
used in Re-pair generates a sensible structural decomposition for com-
plex sequences of a non-textual nature.
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Sliding Window Suffix Tree
Implementation

This appendix presents an implementation of a suffix tree sliding win-
dow index (described in chapter two) as source code in the C pro-
gramming language [38]. It can also be used as an implementation of
Ukkonen’s construction algorithm [67] of a regular suffix tree, sim-
ply by not calling the function advancetail, which advances the left
endpoint of the window.

The interface to this code comprises the following functions:
• initslide Initialization routine. A pointer to a memory area used as

a circular buffer is passed to this function. The user is responsible
for filling up this area with input data, and calling advancefront and
advancetail for sliding the window over the buffer. The size of the
buffer is also the maximum size of the sliding window.

• releaseslide Releases the memory allocated by initslide.
• advancefront Moves the right endpoint of the window, expanding the

tree, by the given number of positions. The corresponding positions of
the circular buffer must have been filled with input data before this
function is called.

• advancetail Moves the left endpoint of the window by the given num-
ber of positions, resulting in nodes being removed from the tree.

• longestmatch Uses the tree to search for the longest string in the win-
dow that matches a given pattern.

The user must ensure that the size of the window stays in the legal
range [ 0, M ], where M is the size of the circular buffer.
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The implementation conforms to the representation presented in
§1.3.2. It follows the algorithms given in chapter two, but includes a
few low-level speed optimizations.

For further details, see comments in the source code.

#include <stdlib.h>
#include <limits.h>
#include <time.h>

#define RANDOMIZE_NODE_ORDER 1
#define K (UCHAR_MAX+1)

typedef unsigned char SYMB;
enum { SLIDE_OK, SLIDE_PARAMERR, SLIDE_MALLOCERR };

/* Node numbering:

Node 0 is nil.
Node 1 is root.
Nodes 2...mmax-1 are non-root internal nodes.
Nodes mmax...2*mmax-1 are leaves.*/

struct Node {
int pos; /* edge label start.*/
int depth; /* string depth.*/
int suf; /* suffix link; sign bit is cred.*/
SYMB child; /* number of children minus one, except

for the root which always has
child==1.*/

};

static int mmax; /* max size of window.*/
static int hashsz; /* number of hash table slots.*/
static SYMB *x; /* the input string buffer.*/
static struct Node *nodes; /* array of internal nodes.*/
static int *hash; /* hash table slot heads.*/
static int *next; /* next in hash table or free list.*/
static int freelist; /* list of unused nodes.*/
static SYMB *fsym; /* first symbols of leaf edges*/

static int ins, proj; /* active point.*/
static int front, tail; /* limits of window.*/
static int r, a; /* preserved values for canonize.*/

/* Sign bit is used to flag cred bit and end of hash table slot.*/
#define SIGN INT_MIN

/* Macros used to keep indices inside the circular buffer (avoiding
modulo operations for speed). M0 is for subtractions to stay
nonnegative, MM for additions to stay below mmax.*/

#define M0(i) ((i)<0 ? (i)+mmax : (i))
#define MM(i) ((i)<mmax ? (i) : (i)-mmax)

/* Hash function. If this is changed, the calculation of hashsz in
initslide must be changed accordingly.*/

#define HASH(u, c) ((u)^(c))
#define UNHASH(h, c) ((h)^(c))
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/* Macro to get child from hashtable, v=child(u, c). This macro does not
support the implicit outgoing edges of nil, they must be handled
specially.*/

#define GETCHILD(v, u, c) { \
v=hash[HASH(u, c)]; \
while (v>0) { \

if ((v<mmax ? x[nodes[v].pos] : fsym[v-mmax])==(c)) \
break; \

v=next[v]; \
} \

}

/* Macro to get parent from hashtable. c is the first symbol of the
incoming edge label of v, u=parent(v).*/

#define GETPARENT(u, v, c) { \
int gp_w=(v); \
while ((gp_w=next[gp_w])>=0) \

; \
u=UNHASH(gp_w&~SIGN, c); \

}

/* Macro to insert edge (u, v) into hash table so that child(u, c)==v.*/
#define CREATEEDGE(u, v, c) { \

int ce_h=HASH(u, c); \
next[v]=hash[ce_h]; \
hash[ce_h]=(v); \

}

/* Macro to remove the edge (u, v). c is the first symbol of the edge
label. Makes use of the fact that the hash and next arrays are located
next to each other in memory.*/

#define DELETEEDGE(u, v, c) { \
int de_w, de_i, de_h=HASH(u, c); \
de_w=hash[de_i=de_h]; \
while (de_w!=(v)) { \

de_i=de_w+hashsz; \
de_w=next[de_w]; \

} \
hash[de_i]=next[v]; \

}

/* Function initslide:

Initialize empty suffix tree. The buffer parameter should point to an
array of size max_window_size which is used as a circular buffer. */

int initslide(int max_window_size, SYMB *buffer)
{

int i, j, nodediff, nodemask;

mmax=max_window_size;
if (mmax<2)

return SLIDE_PARAMERR;
x=buffer; /* the global buffer pointer.*/

/* calculate the right value for hashsz, must be harmonized with the
definition of the hash function.*/

if (mmax>K) { /* i=max{mmax, K}-1; j=min{mmax, K}-1.*/
i=mmax-1;
j=K-1;
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} else {
i=K-1;
j=mmax-1;

}
while (j) { /* OR in all possible one bits from j.*/

i|=j;
j>>=1;

}
hashsz=i+1; /* i is now maximum hash value.*/

/* allocate memory.*/
nodes=malloc((mmax+1)*sizeof *nodes);
fsym=malloc(mmax*sizeof *fsym);
hash=malloc((hashsz+2*mmax)*sizeof *hash);
if (! nodes || ! fsym || ! hash)

return SLIDE_MALLOCERR;
next=hash+hashsz; /* convenient for DELETEEDGE.*/

#if RANDOMIZE_NODE_ORDER
/* Put nodes into free list in random order, to avoid degenaration of

hash table. This method does NOT yield a uniform distribution over
the permutations, but it’s fast, and random enough for our
purposes.*/

srand(time(0));
nodediff=(rand()%mmax)|1;
for (i=mmax>>1, nodemask=mmax-1; i; i>>=1)

nodemask|=i; /* nodemask is 2^ceil(log_2(mmax))-1.*/
j=0;
do {

i=j;
while ((j=(j+nodediff)&nodemask)>=mmax || j==1)

;
next[i]=j;

} while (j);
freelist=next[0];

#else
/* Put nodes in free list in order according to numbers. The risk of

the hash table is larger than if the order is randomized, but this
is actually often faster, due to caching effects.*/

freelist=i=2;
while (i++<mmax)

next[i-1]=i;
#endif

for (i=0; i<hashsz; ++i)
hash[i]=i|SIGN; /* list terminators used by GETPARENT.*/

nodes[0].depth=-1;
nodes[1].depth=0;
nodes[1].suf=0;
nodes[1].child=1; /* stays 1 forever.*/

ins=1; /* initialize active point.*/
proj=0;
tail=front=0; /* initialize window limits.*/
r=0;

return 0;
}
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/* Function releaseslide:*/
void releaseslide()
{

free(nodes);
free(fsym);
free(hash);

}

/* Macro for canonize subroutine:

r is return value. To avoid unnecessary access to the hash table, r is
preserved between calls. If r is not 0 it is assumed that
r==child(ins, a), and (ins, r) is the edge of the insertion point.*/

#define CANONIZE(r, a, ins, proj) { \
int ca_d; \
if (proj && ins==0) { \

ins=1; --proj; r=0; \
} \
while (proj) { \

if (r==0) { \
a=x[M0(front-proj)]; \
GETCHILD(r, ins, a); \

} \
if (r>=mmax) \

break; \
ca_d=nodes[r].depth-nodes[ins].depth; \
if (proj<ca_d) \

break; \
proj-=ca_d; ins=r; r=0; \

} \
}

/* Macro for Update subroutine:

Send credits up the tree, updating pos values, until a nonzero credit
is found. Sign bit of suf links is used as credit bit.*/

#define UPDATE(v, i) { \
int ud_u, ud_v=v, ud_f, ud_d; \
int ud_i=i, ud_j, ud_ii=M0(i-tail), ud_jj; \
SYMB ud_c; \
while (ud_v!=1) { \

ud_c=x[nodes[ud_v].pos]; \
GETPARENT(ud_u, ud_v, ud_c); \
ud_d=nodes[ud_u].depth; \
ud_j=M0(nodes[ud_v].pos-ud_d); \
ud_jj=M0(ud_j-tail); \
if (ud_ii>ud_jj) \

nodes[ud_v].pos=MM(ud_i+ud_d); \
else { \

ud_i=ud_j; ud_ii=ud_jj; \
} \
if ((ud_f=nodes[ud_v].suf)>=0) { \

nodes[ud_v].suf=ud_f|SIGN; \
break; \

} \
nodes[ud_v].suf=ud_f&~SIGN; \
ud_v=ud_u; \

} \
}
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/* Function advancefront:

Moves front, the right endpoint of the window, forward by positions
positions, increasing its size.*/

void advancefront(int positions)
{

int s, u, v; /* nodes.*/
int j;
SYMB b, c;

while (positions--) {
v=0;
c=x[front];
while (1) {

CANONIZE(r, a, ins, proj);
if (r<1) { /* if active point at node.*/

if (ins==0) { /* if ins is nil.*/
r=1; /* r is child of ins for any c.*/
break; /* endpoint found.*/

}
GETCHILD(r, ins, c);
if (r>0) { /* if ins has a child for c.*/

a=c; /* a is first symbol in (ins, r) label.*/
break; /* endpoint found.*/

} else
u=ins; /* will add child below u.*/

} else { /* active point on edge.*/
j=(r>=mmax ? MM(r-mmax+nodes[ins].depth) : nodes[r].pos);
b=x[MM(j+proj)]; /* next symbol in (ins, r) label.*/
if (c==b) /* if same as front symbol.*/

break; /* endpoint found.*/
else { /* edge must be split.*/

u=freelist; /* u is new node.*/
freelist=next[u];
nodes[u].depth=nodes[ins].depth+proj;
nodes[u].pos=M0(front-proj);
nodes[u].child=0;
nodes[u].suf=SIGN; /* emulate update (skipped below).*/
DELETEEDGE(ins, r, a);
CREATEEDGE(ins, u, a);
CREATEEDGE(u, r, b);
if (r<mmax)

nodes[r].pos=MM(j+proj);
else

fsym[r-mmax]=b;
}

}
s=mmax+M0(front-nodes[u].depth);
CREATEEDGE(u, s, c); /* add new leaf s.*/
fsym[s-mmax]=c;
if (u!=1) /* don’t count children of root.*/

++nodes[u].child;
if (u==ins) /* skip update if new node.*/

UPDATE(u, M0(front-nodes[u].depth));
nodes[v].suf=u|(nodes[v].suf&SIGN);
v=u;
ins=nodes[ins].suf&~SIGN;
r=0; /* force getting new r in canonize.*/

}
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nodes[v].suf=ins|(nodes[v].suf&SIGN);
++proj; /* move active point down.*/
front=MM(front+1);

}
}

/* Function advancetail:

Moves tail, the left endpoint of the window, forward by positions
positions, decreasing its size.*/

void advancetail(int positions)
{

int s, u, v, w; /* nodes.*/
SYMB b, c;
int i, d;

while(positions--) {
CANONIZE(r, a, ins, proj);
v=tail+mmax; /* the leaf to delete.*/
b=fsym[tail];
GETPARENT(u, v, b);
DELETEEDGE(u, v, b);
if (v==r) { /* replace instead of delete?*/

i=M0(front-(nodes[ins].depth+proj));
CREATEEDGE(ins, mmax+i, b);
fsym[i]=b;
UPDATE(ins, i);
ins=nodes[ins].suf&~SIGN;
r=0; /* force getting new r in canonize.*/

} else if (u!=1 && --nodes[u].child==0) {
/* u has only one child left, delete it.*/
c=x[nodes[u].pos];
GETPARENT(w, u, c);
d=nodes[u].depth-nodes[w].depth;
b=x[MM(nodes[u].pos+d)];
GETCHILD(s, u, b); /* the remaining child of u.*/
if (u==ins) {

ins=w;
proj+=d;
a=c; /* new first symbol of (ins, r) label*/

} else if (u==r)
r=s; /* new child(ins, a).*/

if (nodes[u].suf<0) /* send waiting credit up tree.*/
UPDATE(w, M0(nodes[u].pos-nodes[w].depth))

DELETEEDGE(u, s, b);
DELETEEDGE(w, u, c);
CREATEEDGE(w, s, c);
if (s<mmax)

nodes[s].pos=M0(nodes[s].pos-d);
else

fsym[s-mmax]=c;
next[u]=freelist; /* mark u unused.*/
freelist=u;

}
tail=MM(tail+1);

}
}
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/* Function longestmatch:

Search for the longest string in the tree matching pattern. maxlen is
the length of the pattern (i.e. the maximum length of the match);
*matchlen is assigned the length of the match. The returned value is
the starting position of the match in the indexed buffer, or -1 if the
match length is zero.

The parameters wrappos and wrapto support searching for a pattern
residing in a circular buffer: wrappos should point to the position
just beyond the end of the buffer, and wrapto to the start of the
buffer. If the pattern is not in a circular buffer, call with zero
values for these parameters.*/

int longestmatch(SYMB *pattern, int maxlen, int *matchlen,
SYMB *wrappos, SYMB *wrapto)

{
int u=1, /* deepest node on the search path.*/

ud=0, /* depth of u.*/
l=0, /* current length of match.*/
e=0, /* positions left to check on incoming

edge label of u.*/
start=-1, /* start of the match.*/
p, v, vd;

SYMB c;

while (l<maxlen) {
c=*pattern;
if (e==0) { /* if no more symbols in current label.*/

if (u>=mmax)
break; /* can’t go beyond leaf, stop.*/

GETCHILD(v, u, c); /* v is next node on search path.*/
if (v<1)

break; /* no child for c, stop.*/
if (v>=mmax) { /* if v is a leaf.*/

start=v-mmax; /* start of string represented by v.*/
vd=M0(front-start); /* depth of v.*/
p=MM(v+ud); /* first position of edge label.*/

} else { /* v is an internal node.*/
vd=nodes[v].depth; /* depth of v.*/
p=nodes[v].pos; /* first position of edge label.*/
start=M0(p-ud); /* start of string represented by v.*/

}
e=vd-ud-1; /* symbols left in current label.*/
u=v; /* make the switch for next iteration.*/
ud=vd;

} else { /* symbols left to check in same label.*/
p=MM(p+1); /* next position in current label.*/
if (x[p]!=c)

break; /* doesn’t match, stop.*/
--e; /* one less symbol left.*/

}
++l; /* match length.*/
if (++pattern==wrappos) /* wrap if reached end of buffer.*/

pattern=wrapto;
}
*matchlen=l;
return start;

}
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Suffix Sorting Implementation

In this appendix, we present the full C implementation of the suffix
sorting algorithm described in chapter four.

The function suffixsort should be passed a pointer to an array of
integers representing the input string, which is replaced by the suffix
array. A second array of integers must be supplied to hold the inverse
array. Furthermore, limits for the input alphabet must be supplied,
which should be as tight as possible for the algorithm to operate with
maximum efficiency. For details, see comments inside the code.

#include <limits.h>

static int *I, /* group array, becomes suffix array.*/
*V, /* inverse array, ultimately inverse I.*/
r, /* symbols aggregated by transform.*/
h; /* length of already sorted prefixes.*/

#define KEY(p) (V[*(p)+(h)])
#define SWAP(p, q) (tmp=*(p), *(p)=*(q), *(q)=tmp)
#define MED3(a, b, c) (KEY(a)<KEY(b) ? \

(KEY(b)<KEY(c) ? (b) : KEY(a)<KEY(c) ? (c) : (a)) \
: (KEY(b)>KEY(c) ? (b) : KEY(a)>KEY(c) ? (c) : (a)))

/* Function update_group:

Subroutine for select_sort_split and sort_split. Sets group numbers
for a group whose lowest position in I is pl and highest position is
pm.*/

static void update_group(int *pl, int *pm)
{

int g;

g=pm-I; /* group number.*/
V[*pl]=g; /* update first position group number.*/
if (pl==pm)

*pl=-1; /* one element, sorted group.*/
else
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do /* more than one elt, unsorted group.*/
V[*++pl]=g; /* update group numbers.*/

while (pl<pm);
}

/* Function select_sort:

Quadratic sorting method to use for small subarrays. To be able to
update group numbers consistently, a variant of selection sorting is
used.*/

static void select_sort_split(int *p, int n) {
int *pa, *pb, *pi, *pn;
int f, v, tmp;

pa=p; /* start of group being picked out.*/
pn=p+n-1; /* last position of subarray.*/
while (pa<pn) {

for (pi=pb=pa+1, f=KEY(pa); pi<=pn; ++pi)
if ((v=KEY(pi))<f) {

f=v; /* f is smallest key found.*/
SWAP(pi, pa); /* place smallest element at beginning.*/
pb=pa+1; /* position for elements equal to f.*/

} else if (v==f) { /* if equal to smallest key.*/
SWAP(pi, pb); /* place next to other smallest elts.*/
++pb;

}
update_group(pa, pb-1); /* update group values for new group.*/
pa=pb; /* continue sorting rest of subarray.*/

}
if (pa==pn) { /* check if last part is single elt.*/

V[*pa]=pa-I;
*pa=-1; /* sorted group.*/

}
}

/* Function choose_pivot:

Subroutine for sort_split, taken from algorithm by Bentley & McIlroy
whose main part is below.*/

static int choose_pivot(int *p, int n) {
int *pl, *pm, *pn;
int s;

pm=p+(n>>1); /* small arrays, middle element.*/
if (n>7) {

pl=p;
pn=p+n-1;
if (n>40) { /* big arrays, pseudomedian of 9.*/

s=n>>3;
pl=MED3(pl, pl+s, pl+s+s);
pm=MED3(pm-s, pm, pm+s);
pn=MED3(pn-s-s, pn-s, pn);

}
pm=MED3(pl, pm, pn); /* midsize arrays, median of 3.*/

}
return KEY(pm);

}
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/* Function sort_split:

Sorting routine called for each unsorted group. Sorts the array of
integers (suffix numbers) of length n starting at p. The algorithm is
a ternary-split quicksort taken from Bentley & McIlroy, "Engineering a
Sort Function", Software -- Practice and Experience 23(11), 1249-1265
(November 1993). This function is based on Program 7.*/

static void sort_split(int *p, int n)
{

int *pa, *pb, *pc, *pd, *pl, *pm, *pn;
int f, v, s, t, tmp;

if (n<7) { /* special sort for smallest arrays.*/
select_sort_split(p, n);
return;

}

v=choose_pivot(p, n);
pa=pb=p;
pc=pd=p+n-1;
while (1) { /* split-end partition.*/

while (pb<=pc && (f=KEY(pb))<=v) {
if (f==v) {

SWAP(pa, pb);
++pa;

}
++pb;

}
while (pc>=pb && (f=KEY(pc))>=v) {

if (f==v) {
SWAP(pc, pd);
--pd;

}
--pc;

}
if (pb>pc)

break;
SWAP(pb, pc);
++pb;
--pc;

}
pn=p+n;
if ((s=pa-p)>(t=pb-pa))

s=t;
for (pl=p, pm=pb-s; s; --s, ++pl, ++pm)

SWAP(pl, pm);
if ((s=pd-pc)>(t=pn-pd-1))

s=t;
for (pl=pb, pm=pn-s; s; --s, ++pl, ++pm)

SWAP(pl, pm);
s=pb-pa;
t=pd-pc;
if (s>0)

sort_split(p, s);
update_group(p+s, p+n-t-1);
if (t>0)

sort_split(p+n-t, t);
}
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/* Function bucketsort:

Bucketsort for first iteration.

Input: x[0...n-1] holds integers in the range 1...k-1, all of which
appear at least once. x[n] is 0. (This is the corresponding output of
transform.) k must be at most n+1. p is array of size n+1 whose
contents are disregarded.

Output: x is V and p is I after the initial sorting stage of the
refined suffix sorting algorithm.*/

static void bucketsort(int *x, int *p, int n, int k)
{

int *pi, i, c, d, g;

for (pi=p; pi<p+k; ++pi)
*pi=-1; /* mark linked lists empty.*/

for (i=0; i<=n; ++i) {
x[i]=p[c=x[i]]; /* insert in linked list.*/
p[c]=i;

}
for (pi=p+k-1, i=n; pi>=p; --pi) {

d=x[c=*pi]; /* c is position, d is next in list.*/
x[c]=g=i; /* last position equals group number.*/
if (d>=0) { /* if more than one element in group.*/

p[i--]=c; /* p is permutation for the sorted x.*/
do {

d=x[c=d]; /* next in linked list.*/
x[c]=g; /* group number in x.*/
p[i--]=c; /* permutation in p.*/

} while (d>=0);
} else

p[i--]=-1; /* one element, sorted group.*/
}

}

/* Function transform:

Transforms the alphabet of x by attempting to aggregate several
symbols into one, while preserving the suffix order of x. The alphabet
may also be compacted, so that x on output comprises all integers of
the new alphabet with no skipped numbers.

Input: x is an array of size n+1 whose first n elements are positive
integers in the range l...k-1. p is array of size n+1, used for
temporary storage. q controls aggregation and compaction by defining
the maximum value for any symbol during transformation: q must be at
least k-l; if q<=n, compaction is guaranteed; if k-l>n, compaction is
never done; if q is INT_MAX, the maximum number of symbols are
aggregated into one.

Output: Returns an integer j in the range 1...q representing the size
of the new alphabet. If j<=n+1, the alphabet is compacted. The global
variable r is set to the number of old symbols grouped into one. Only
x[n] is 0.*/

static int transform(int *x, int *p, int n, int k, int l, int q)
{

int b, c, d, e, i, j, m, s;
int *pi, *pj;
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for (s=0, i=k-l; i; i>>=1)
++s; /* s is number of bits in old symbol.*/

e=INT_MAX>>s; /* e is for overflow checking.*/
for (b=d=r=0; r<n && d<=e && (c=d<<s|(k-l))<=q; ++r) {

b=b<<s|(x[r]-l+1); /* b is start of x in chunk alphabet.*/
d=c; /* d is max symbol in chunk alphabet.*/

}
m=(1<<(r-1)*s)-1; /* m masks off top old symbol of chunk.*/
x[n]=l-1; /* emulate zero terminator.*/
if (d<=n) { /* compact if bucketing possible.*/

for (pi=p; pi<=p+d; ++pi)
*pi=0; /* zero transformation table.*/

for (pi=x+r, c=b; pi<=x+n; ++pi) {
p[c]=1; /* mark used chunk symbol.*/
c=(c&m)<<s|(*pi-l+1); /* shift in next old symbol in chunk.*/

}
for (i=1; i<r; ++i) { /* handle last r-1 positions.*/

p[c]=1; /* mark used chunk symbol.*/
c=(c&m)<<s; /* shift in next old symbol in chunk.*/

}
for (pi=p, j=1; pi<=p+d; ++pi)

if (*pi)
*pi=j++; /* j is new alphabet size.*/

for (pi=x, pj=x+r, c=b; pj<=x+n; ++pi, ++pj) {
*pi=p[c]; /* transform to new alphabet.*/
c=(c&m)<<s|(*pj-l+1); /* shift in next old symbol in chunk.*/

}
while (pi<x+n) { /* handle last r-1 positions.*/

*pi++=p[c]; /* transform to new alphabet.*/
c=(c&m)<<s; /* shift right-end zero in chunk.*/

}
} else { /* can’t bucket, don’t compact.*/

for (pi=x, pj=x+r, c=b; pj<=x+n; ++pi, ++pj) {
*pi=c; /* transform to new alphabet.*/
c=(c&m)<<s|(*pj-l+1); /* shift in next old symbol in chunk.*/

}
while (pi<x+n) { /* handle last r-1 positions.*/

*pi++=c; /* transform to new alphabet.*/
c=(c&m)<<s; /* shift right-end zero in chunk.*/

}
j=d+1; /* new alphabet size.*/

}
x[n]=0; /* end-of-string symbol is zero.*/
return j; /* return new alphabet size.*/

}

/* Function suffixsort:

The main suffix sorting routine. Makes suffix array p of x. x becomes
inverse of p. p and x are both of size n+1. Contents of x[0...n-1] are
integers in the range l...k-1. Original contents of x[n] is
disregarded, the n-th symbol being regarded as end-of-string smaller
than all other symbols.*/

void suffixsort(int *x, int *p, int n, int k, int l)
{

int *pi, *pk;
int i, j, s, sl;
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V=x; /* set global values.*/
I=p;

if (n>=k-l) { /* if bucketing possible,*/
j=transform(V, I, n, k, l, n);
bucketsort(V, I, n, j); /* bucketsort on first r positions.*/

} else {
transform(V, I, n, k, l, INT_MAX);
for (i=0; i<=n; ++i)

I[i]=i; /* initialize I with suffix numbers.*/
h=0;
sort_split(I, n+1); /* quicksort on first r positions.*/

}
h=r; /* no of syms aggregated by transform.*/

while (*I>=-n) {
pi=I; /* pi is first position of group.*/
sl=0; /* sl is neg. length of sorted groups.*/
do {

if ((s=*pi)<0) {
pi-=s; /* skip over sorted group.*/
sl+=s; /* add negated length to sl.*/

} else {
if (sl) {

*(pi+sl)=sl; /* combine sorted groups before pi.*/
sl=0;

}
pk=I+V[s]+1; /* pk-1 is last pos. of unsorted group.*/
sort_split(pi, pk-pi);
pi=pk; /* next group.*/

}
} while (pi<=I+n);
if (sl) /* if the array ends with sorted group.*/

*(pi+sl)=sl; /* combine sorted groups at end of I.*/
h=2*h; /* double sorted-depth.*/

}

for (i=0; i<=n; ++i) /* reconstruct from inverse.*/
I[V[i]]=i;

}
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Notation

General

n input length, p. 11
k input alphabet size, p. 11
X input string, p. 11
xi symbol number i of input, p. 11
ε empty string, p. 11
$ string terminator, p. 11

Suffix Tree Representation (More detailed descriptions are given in the
table on page 16.)

depth(u) string depth of node u, p. 16
pos(u) incoming edge label position of internal node u, p. 16

fsym(u) first symbol of incoming edge label of leaf u, p. 18
leaf (i) leaf representing suffix starting in position i, p. 16

spos(u) starting position of suffix represented by leaf u, p. 16
child(u, c) child of node u for symbol c, p. 17
parent(u) parent of node u, p. 17

suf (u) suffix link target of internal node u, p. 17
h(u, c) hash value of node child(u, c), p. 17
g(i, c) node with hash value i for symbol c, p. 17

hash(i) linked list of nodes with hash value i, p. 18
next(u) successor of node u in hash table list, p. 18
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Sliding Window Indexing

ins lowest node above or at active point, p. 24
proj positions between ins and active point, p. 24

front first position to the right of indexed string, p. 24
tail leftmost position of indexed string, p. 24
M maximum length of indexed string, p. 24

Word-Partitioned Indexing

¢ word delimiter, p. 34
m number of words, p. 34
m′ number of distinct words, p. 34

Suffix Sorting

Si suffix starting at position i, p. 49
I position array, ultimately suffix array, p. 49

V group array, ultimately inverse suffix array, p. 51
L group length array, p. 53

LCP longest common prefix of adjacent suffixes, p. 50
h-order order of suffixes when sorted on h symbols, p. 51

group subarray of equal suffixes when I is in h-order, p. 53
group number last position of group, p. 53

K max. number of occurring symbols in X, p. 61
r number of symbols combined in transform, p. 61

BWT Compression

X ′ BWT transformed string, p. 80
x ′i symbol number i in BWT transformed string, p. 80

X ′′ move-to-front-transformed string, p. 82

Semi-Static Modelling

k ′ dynamic number of symbols used, p. 92
ki number of symbols in generations 0 . . . i, p. 102

126



Bibliography

1 J. Åberg, Yu. M. Shtarkov, and B. J. M. Smeets, Towards understanding and improving
escape probabilities in PPM, Proceedings of the IEEE Data Compression Conference,
March 1997, pp. 22–31.

2 Arne Andersson, Faster deterministic sorting and searching in linear space, Proceedings
of the 37th Annual IEEE Symposium on Foundations of Computer Science, October
1996, pp. 135–141.

3 Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman, Sorting in
linear time?, Journal of Computer and System Sciences 57 (1998), no 1, 74–93.

4 Arne Andersson, N. Jesper Larsson, and Kurt Swanson, Suffix trees on words, Algo-
rithmica 23 (1999), no 3, 246–260.

5 Arne Andersson and Stefan Nilsson, Efficient implementation of suffix trees, Software
– Practice and Experience 25 (1995), no 2, 129–141.

6 Alberto Apostolico, The myriad virtues of subword trees, Combinatorial Algorithms
on Words (Alberto Apostolico and Zvi Galil, eds.), NATO ASI Series, vol. F 12,
Springer-Verlag, 1985, pp. 85–96.

7 Alberto Apostolico and Stefano Lonardi, Greedy off-line textual substitution, Pro-
ceedings of the IEEE Data Compression Conference, March–April 1998, pp. 119–
128.

8 Ziya Arnavut and Spyros S. Magliveras, Block sorting and compression, Proceedings
of the IEEE Data Compression Conference, March 1997, pp. 181–190.

9 Ricardo Baeza-Yates and Gaston H. Gonnet, Efficient text searching of regular expres-
sions, Proceedings of the 16th International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science, vol. 372, Springer-Verlag,
1989, pp. 46–62.

10 Bernhard Balkenhol, Stefan Kurtz, and Yuri M. Shtarkov, Modifications of the Bur-
rows and Wheeler data compression algorithm, Proceedings of the IEEE Data Com-
pression Conference, March 1999, pp. 188–197.

11 Timothy Bell and David Kulp, Longest-match string searching for Ziv-Lempel compres-
sion, Software – Practice and Experience 23 (1993), no 7, 757–771.

12 Timothy C. Bell and Ian H. Witten, The relationship between greedy parsing and sym-
bolwise text compression, Journal of the ACM 41 (1994), no 4, 708–724.

127



Bibliography

13 Jon L. Bentley and M. Douglas McIlroy, Engineering a sort function, Software – Prac-
tice and Experience 23 (1993), no 11, 1249–1265.

14 Jon L. Bentley and Robert Sedgewick, Fast algorithms for sorting and searching strings,
Proceedings of the eighth Annual ACM–SIAM Symposium on Discrete Algorithms,
January 1997, pp. 360–369.

15 Suzanne Bunton, On-line stochastic processes in data compression, Ph.D. thesis, De-
partment of Computer Science and Engineering, University of Washington, Seattle,
Washington, USA, December 1996.

16 Michael Burrows and David J. Wheeler, A block-sorting lossless data compression algo-
rithm, Research Report. 124, Digital Systems Research Center, Palo Alto, California,
USA, May 1994.

17 Adam Cannane and Hugh E. Williams, General-purpose compression for efficient re-
trieval, Tech. Report TR-99-6, Department of Computer Science, RMIT University,
Melbourne, Australia, June 1999.

18 John G. Cleary and W. J. Teahan, Unbounded length contexts for PPM, Computer
Journal 40 (1997), no 2/3, 67–75.

19 John G. Cleary and Ian H. Witten, Data compression using adaptive coding and partial
string matching, IEEE Transactions on Communications COM -32 (1984), 396–402.

20 Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to
algorithms, The MIT Press/McGraw-Hill, 1990.

21 Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley &
Sons, 1991.

22 Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert E. Tarjan, Dynamic perfect hashing: Upper and
lower bounds, SIAM Journal on Computing 23 (1994), no 4, 738–761.

23 Martin Farach, Optimal suffix tree construction with large alphabets, Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, October
1997, pp. 137–143.

24 Peter Fenwick, A new data structure for cumulative frequency tables, Software – Prac-
tice and Experience 24 (1994), no 3, 327–336.

25 Peter Fenwick, Block sorting text compression, Proceedings of the 19th Australasian
Computer Science Conference (Melbourne, Australia), January–February 1996.

26 Edward R. Fiala and Daniel H. Greene, Data compression with finite windows, Com-
munications of the ACM 32 (1989), no 4, 490–505.

27 Michael L. Fredman and Dan E. Willard, Surpassing the information theoretic bound
with fusion trees, Journal of Computer and System Sciences 47 (1993), 424–436.

28 Gaston H. Gonnet and Ricardo A. Baeza-Yates, Handbook of algorithms and data
structures, Addison-Wesley, 1991.

29 Peter C. Gutmann and Timothy C. Bell, A hybrid approach to text compression, Pro-
ceedings of the IEEE Data Compression Conference, March 1994, pp. 225–233.

30 Dov Harel and Robert E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM Journal on Computing 13 (1984), no 2, 338–355.

31 C. A. R. Hoare, Quicksort, Computer Journal 5 (1962), no 1, 10–15.
32 Paul Glor Howard, The design and analysis of efficient lossless data compression sys-

tems, Ph.D. thesis, Department of Computer Science, Brown University, Provi-
dence, Rhode Island, USA, June 1993, CS-93-28.

33 Douglas W. Jones, Application of splay trees to data compression, Communications of
the ACM 31 (1988), no 8, 996–1007.

34 Juha Kärkkäinen and Esko Ukkonen, Sparse suffix trees, Proceedings of the 2ndAn-

128



Bibliography

nual International Conference on Computing and Combinatorics, Lecture Notes in
Computer Science, vol. 1090, Springer-Verlag, June 1996, pp. 219–230.

35 Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg, Rapid identification
of repeated patterns in strings, trees and arrays, Proceedings of the 5th Annual IEEE
Symposium on Foundations of Computer Science, May 1972, pp. 125–136.

36 Toru Kasai, Hiroki Arimura, and Setsou Arikawa, Virtual suffix trees: Fast compu-
tation of subword frequency using suffix arrays, Proceedings of the 1999 Winter LA
Symposium, February 1999, in Japanese.

37 Jyrki Katajainen and Erkki Mäkinen, Tree compression and optimization with appli-
cations, International Journal of Foundations of Computer Science 1 (1990), no 4,
425–447.

38 Brian W. Kernighan and Dennis M. Ritchie, The C programming language, second
ed., Prentice Hall, 1988.

39 Donald E. Knuth, Sorting and searching, second ed., The Art of Computer Program-
ming, vol. 3, Addison-Wesley, 1998.

40 Stefan Kurtz, Reducing the space requirement of suffix trees, Tech. Report 98-03, Com-
puter Science, Faculty of Technology, University of Bielefeld, Germany, 1998.

41 Glen G. Langdon, A note on the Ziv-Lempel model for compressing individual se-
quences, IEEE Transactions on Information Theory IT -29 (1983), no 2, 284–287.

42 N. Jesper Larsson, Extended application of suffix trees to data compression, Proceedings
of the IEEE Data Compression Conference, March–April 1996, pp. 190–199.

43 N. Jesper Larsson, The context trees of block sorting compression, Proceedings of the
IEEE Data Compression Conference, March–April 1998, pp. 189–198.

44 N. Jesper Larsson and Alistair Moffat, Offline dictionary-based compression, Proceed-
ings of the IEEE Data Compression Conference, March 1999, pp. 296–305.

45 N. Jesper Larsson and Kunihiko Sadakane, Faster suffix sorting, Tech. Report LU-
CS-TR:99-214, LUNDFD6/(NFCS -3140)/1–20/(1999), Department of Computer
Science, Lund University, Sweden, May 1999.

46 Udi Manber, A text compression scheme that allows fast searching directly in the com-
pressed file, ACM Transactions on Information Systems 15 (1997), no 2, 124–136.

47 Udi Manber and Gene Myers, Suffix arrays: A new method for on-line string searches,
SIAM Journal on Computing 22 (1993), no 5, 935–948.

48 Edward M. McCreight, A space-economical suffix tree construction algorithm, Journal
of the ACM 23 (1976), no 2, 262–272.

49 Peter M. McIlroy and M. Douglas McIlroy, ssort.c, Source Code, 1997, http://
cm.bell-labs.com/cm/cs/who/doug/source.html.

50 Victor S. Miller and Mark N. Wegman, Variations on a theme by Ziv and Lem-
pel, Combinatorial Algorithms on Words (Alberto Apostolico and Zvi Galil, eds.),
NATO ASI Series, vol. F 12, Springer-Verlag, 1985, pp. 131–140.

51 Alistair Moffat, Implementing the PPM data compression scheme, IEEE Transactions
on Communications COM -38 (1990), no 11, 1917–1921.

52 Alistair Moffat, An improved data structure for cumulative probability tables, Software
– Practice and Experience 29 (1999), no 7, 647–659.

53 Alistair Moffat and Lang Stuiver, Exploiting clustering in inverted file compression,
Proceedings of the IEEE Data Compression Conference, April 1996, pp. 82–91.

54 Alistair Moffat and Andrew Turpin, On the implementation of minimum-redundancy
prefix codes, IEEE Transactions on Communications 45 (1997), no 10, 1200–1207.

55 Hirofumi Nakamura and Sadayuki Murashima, Data compression by concatenations
of symbol pairs, Proceedings of the IEEE International Symposium on Information
Theory and its Applications (Victoria, BC, Canada), September 1996, pp. 496–499.

129



Bibliography

56 Craig G. Nevill-Manning and Ian H. Witten, Compression and explanation using hi-
erarchical grammars, Computer Journal 40 (1997), no 2/3, 103–116.

57 Michael Rodeh, Vaughan R. Pratt, and Shimon Even, Linear algorithm for data com-
pression via string matching, Journal of the ACM 28 (1981), no 1, 16–24.

58 Frank Rubin, Experiments in text compression, Communications of the ACM 19

(1976), no 11, 617–623.
59 Kunihiko Sadakane, A fast algorithm for making suffix arrays and for Burrows-Wheeler

transformation, Proceedings of the IEEE Data Compression Conference, March–
April 1998, pp. 129–138.

60 Michael Schindler, Szip, Program, 1998, http://www.compressconsult.com/.
61 A. Schönhage, M. Paterson, and N. Pippenger, Finding the median, Journal of Com-

puter and System Sciences 13 (1976), no 2, 184–199.
62 Julian Seward, Bzip2, Program, 1997–1999, http://www.muraroa.demon.co.uk/.
63 James A. Storer, Data compression: Methods and theory, Computer Science Press,

1988.
64 Wojciech Szpankowski, A generalized suffix tree and its (un)expected asymptotic be-

haviors, SIAM Journal on Computing 22 (1993), no 6, 1176–1198.
65 W. J. Teahan, Modelling english text, Ph.D. thesis, Department of Computer Science,

University of Waikato, Hamilton, New Zealand, October 1998.
66 Andrew Turpin and Alistair Moffat, Housekeeping for prefix coding, IEEE Transactions

on Communications, to appear.
67 Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), no 3,

249–260.
68 Peter Weiner, Linear pattern matching algorithms, Proceedings of the 14th Annual

IEEE Symposium on Switching and Automata Theory, 1973, pp. 1–11.
69 David Wheeler, An implementation of block coding, Tech. report, Cambridge Univer-

sity Computer Laboratory, October 1995.
70 Ian H. Witten, Alistair Moffat, and Timothy C. Bell, Managing gigabytes: Compress-

ing and indexing documents and images, second ed., Morgan Kaufmann, 1999.
71 Jacob Ziv and Abraham Lempel, A universal algorithm for sequential data compres-

sion, IEEE Transactions on Information Theory IT -23 (1977), no 3, 337–343.
72 Jacob Ziv and Abraham Lempel, Compression of individual sequences via variable-

rate coding, IEEE Transactions on Information Theory IT -24 (1978), no 5, 530–536.

130


