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GTE, LTE. 

The source is Boyce, DiPrima chpt 8.
CSE, 255, Marmara University 

Dr. M.Sakalli

HW
RLC, series and parallel, suppose homogeneous 
solutions in the form of r=s=σ+- j w. exp(s).. 
Matlab codes in Coupled.pdf.  

Study chapter 7 boyce or Paul Dawkins.  
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Euler’s Method
1st and 2nd order DE 

with integration 
by power series methds, in a week 

time. 
However, for many problems in eng. 
and science, especially nonlinear ones, 
these methods do not apply or become 
complicated.
Apprach is Numerical approximation, 
where he concern is the how close to 
approach to the analytical (actual) 
solution if not known. 

An IVP prbl. 
if f and fy are continuous then has a 

unique solution y in some 
interval about t0. And Euler’s 
method. Example.

y = φ(t).
fn = f (tn, yn).  For a uniform step size h
= tn – tn-1, Euler’s method becomes yn-1

Forward Difference Quotient: y = φ(t)
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Euler’s Method: Programming Outline Comparing Euler’s Method  
h = 0.05, 0.025, 0.01, 0.001, on the interval 0 ≤ t ≤ 2.  

A computer program for Euler’s method with a uniform step size 
will have the following structure.
Step 1.  have function f (t,y), and step size h
Step 2.  Initialize values t0 and y0
Step 3.  Limit the # of steps n
Step 5.  for j =1: n,
Step 6.     k1 = f (t,y)

y = y + h*k1
t = t + h

Step 7.  Output t and y
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t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact
Rel Error 
h = 0.05

Rel Error 
h = 0.025

Rel Error 
h = 0.01

Rel Error 
h = 0.001

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00
0.10 1.5475 1.5761 1.5953 1.6076 1.6090 3.82 2.04 0.85 0.09
0.20 2.3249 2.4080 2.4646 2.5011 2.5053 7.20 3.88 1.63 0.17
0.30 3.4334 3.6144 3.7390 3.8207 3.8301 10.36 5.63 2.38 0.25
0.40 5.0185 5.3690 5.6137 5.7755 5.7942 13.39 7.34 3.12 0.32
0.50 7.2902 7.9264 8.3767 8.6771 8.7120 16.32 9.02 3.85 0.40
1.00 45.5884 53.8079 60.0371 64.3826 64.8978 29.75 17.09 7.49 0.79
1.50 282.0719 361.7595 426.4082 473.5598 479.2592 41.14 24.52 11.03 1.19
2.00 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001 50.69 31.28 14.43 1.58
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Backward Euler Formula
The backward Euler formula is derived as follows. Let y = φ(t) be 
the solution of y' = f(t,y).  At t = tn, we have

Using a backward difference quotient for φ', it follows that

Replacing φ(tn) and φ(tn -1) by their approximations yn and yn-1, and 
solving for yn, we obtain the backward Euler formula

Note that this equation implicitly defines yn+1, and must be solved 
in order to determine the value of yn+1. 
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Investigating more accurate methods 
Forward Difference Quotient: y = φ(t)

An integral equation since y = φ(t) is a solution of y' = f (t, y), y(t0) = y0

Approximating the above integral 

Replacing φ(tn+1) and φ(tn) by their 
approximations  yn+1 and yn,:
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Global and Local Truncation Error Round-off Err

The global truncation error GTE is defined as 
En = φ(tn) – yn

Difference between actual and numerical solutions at tn. This 
error arises from two causes: 

• Remember approximation of integration to determine yn+1.
• And the approximated  yn =~φ(tn).

Local truncation error en. LTE
Assume an accurate yn = φ(tn) at step n, the error at step n +1 is 

due to the approximation formula.  

Round-off error occurs 
Rn = yn - Yn.

Tn = φ(tn) - Yn.
From the triangle inequality, 

|a + b| ≤ |a| + |b|, it follows that nn
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Taylor Series Analysis
Assuming the solution y = φ(t) has a Taylor series 
about t = tn.  

Since h = tn+1 – tn and φ' = f(t,φ), it follows that

Take the 1st order apprx, and substitute yn+1 and yn, 
for φ(tn+1) and φ(tn), respectively. Again Euler’s 
formula:

Estimate the magnitude of error in this formula. 
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Assumption is that y = φ(t) is a solution to φ' = f (t, φ), y(t0) = y0 and 
that f,  ft and fy are continuous. Then φ'' is continuous, where

Using a Taylor expansion with a remainder to  φ(t) about t = tn, 

where τn is some point in the interval tn < τn < tn+1.  
Since h = tn+1 – tn and φ' = f (t, φ), it follows that

Recalling the Euler formula 
Error tn+1

To compute the LTE en+1 , take yn = φ(tn) and hence
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Uniform Bound for LTE and h and Estimating GTE
Thus the LTE, en+1 is proportional to the square of the step size h, and the proprtionlity

constant depends on φ'', and hence is typically different for each step (ie t dpnc).
A uniform bound, valid on an interval [a, b], which is the worst possible case, (may 
well be an overestimate in the interval of [a, b]. And How to choose h for a desired 
LTE smaller than ε.

This 

It can be difficult estimating |φ''(t)| or M. However, the central fact is that LTE en is 
proportional to h2.  Thus the x smaller the h, the x squared times the better the 
accuracy. 

GTE: En for the Euler method - a first order method: Taking n steps, from t0
to T = t0 + nh, the error at each step is at most Mh2/2, and hence error in n steps is at 
most nMh2/2.  
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Example: LTE The same problem, 

Using the solution φ(t), we have

The LTE en+1 at step n + 1 is given by

The presence of the factor 19 and the rapid growth of e4t explains why the numerical 
approximations in this section with h = 0.05 were not very accurate. 

For h = 0.05, the error in the first step is 

Since 1 < e4τ 0 < e4(0.05) = e 0.02, it follows that

It can be shown that the actual error is 0.02542. 
Similar computations give the following bounds:
To reduce lte throughout 0 ≤ t ≤ 2, 
choose an h based on an analysis near t = 2. 
To achieve en < 0.01, at 0 ≤ t ≤ 2,  
note that M = 19e4(2), and hence the required step size h is
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by Erica McEvoy, Using Matlab to integrate ODEs, coupledodes.pdf
y'=-5y; y(0)=1.43, realsolution = y=1.43 exp(-5t)
function dy = ilovecats(t,y)

dy = zeros(1,1);
dy = -5 * y;

[t,y] = ode45('ilovecats',[0 10], 1.43);
plot(t,y,'-');
xlabel('time');
ylabel('y(t)');
title('This plot dedicated to kitties everywhere');

error = abs(y - realsolution);
figure;
subplot(221)
plot(t,y,'-');
xlabel('time');
ylabel('y(t) computed numerically');
title('Numerical Solution');
subplot(222)
plot(t,realsolution,'-');
xlabel('time');
ylabel('y(t) computed analytically');
title('Analytical Solution');
subplot(223)
plot(t,error,'-');
xlabel('time');
ylabel('Error');
title('Relative error between numerical and analytical solutions');
subplot(224)
plot(0,0,'.');
xlabel('time')
ylabel('Kitties!!!!');
title('Kitties are SO CUTE!');

d2Θ/dt2=-w2sin(Θ); w=sqrt(L/g);
Θ=y1, dΘ/dt=dy1/dt=y1'=y2;

d2Θ/dt2=dy2/dt=y2'=y3.. dy2/dt=-w2sin(y1);
[Y']=A [Y]; [y11'; y2'] = [0 1; -w2sin(.) 0][y1; y2]
function dy = pendulumcats(t, y, L, g)

dy = zeros(2,1); w= 1;
dy = [y(2);  -w^2*sin(y(1))];

return
[t,y] = ode45('pendulumcats', [0 25], [1.0 1.0]);
plot(t,y(:,1),'-');
xlabel('time');
ylabel('y_{1}(t)');
title('\theta (t)');
figure; plot(t,y(:,2),'-');
xlabel('time');ylabel('y_{2}(t)');
title('d \theta / dt (t)');
figure; plot(y(:,1),y(:,2),'-'); xlabel('\theta (t)');
ylabel('d \theta / dt (t)');
title('Phase Plane Portrait for undamped pendulum');
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"Strange attractor", or the "Lorenz attractor." Strange attractors appear in phase 
spaces of chaotic dynamical systems. Edward Lorenz is the first person to report 
such bizarre endings, and as such, he is often considered the father (or founder) of 
Chaos Theory. The "buttery effect“. The idea is that chaotic systems have a 
sensitive dependence on initial conditions { if you were to play around with the 
initial conditions for x(t), y(t) and z(t) in these equations and plot phase space 
portraits, the tiniest changes in initial conditions can lead to a crazy huge 
difference in position in phase space at some later time (which is not what you'd 
expect if the equations were
considered "deterministic" {you'd expect that equations that were almost identical 
to give you almost identical trajectories and phase space portraits at any time! 
but). Because of this, chaotic systems like the weather are difficult to predict past 
a certain time range since you can't measure the starting atmospheric conditions 
completely accurately.
Coupled equations: Edward Lorenz, a mathematician and weather forecaster for 
the US Army Air Corps, and MIT prof. Interested in solving a simple set of 3 
coupled de because he wanted to estimate weather a week earlier. Equations of 
convection rolls??? rising in the atmosphere.
x' =-p x + p y
y' = r x – y – xz
z' = x y – b z
where P, r, and b are all constants (P represents the Prandtl number, and r is the 
ratio of Rayleigh number to the critical Rayleigh number), and x, y and z are all 
functions of time. (You can read more about what these equations represent in 
Lorenz's classic paper, Deterministic nonperiodic flow:J:Atmos:Sci:20 : 130 
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P = 10;r = 28;b = 8/3
function dy = lorenz(t,y,P,r,b)

dy = zeros(3,1);
dy(1) = P*(y(2) - y(1));
dy(2) = -y(1)*y(3) + r*y(1) - y(2);
dy(3) = y(1)*y(2) - b*y(3);

[t,y] = ode45('lorenz',[0 250], [1.0 1.0 1.0]');
subplot(221), plot(y(:,1),y(:,2),'-');
xlabel('x(t)');ylabel('y(t)');
title('Phase Plane Portrait for Lorenz attractor -- y(t) vs. x(t)');
subplot(222), plot(y(:,1),y(:,3),'-');
xlabel('x(t)');ylabel('z(t)');
title('Phase Plane Portrait for Lorenz attractor -- z(t) vs. x(t)');
subplot(223), plot(y(:,2),y(:,3),'-');
xlabel('y(t)');ylabel('z(t)');
title('Phase Plane Portrait for Lorenz attractor -- z(t) vs. y(t)');
subplot(224), plot(0,0,'.');
xlabel('Edward Lorenz')
ylabel('Kitties'); title('Kitties vs. Lorenz');
plot3(y(:,1),y(:,2),y(:,3),'-')
xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)');
title('3D phase portrait of Lorenz Attractor');
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We can use ode45 to and solutions of the scale factor, a(t), to the Friedmann equations:
(a'/a)2 = [(8πG)/3]*Þ – k/a2

(a''/a) = [(-4πG)/3]  (Þ – 3(Pbar))
m1d2x1/dt2=[-Gm1m2(r12

3)] (x1-x2); dx1/dt=u1, du1/dt=-Gm2(r12
3)] (x1-x2); 

m1d2y1/dt2=[-Gm1m2(r12
3)] (y1-y2); dy1/dt=v1, dv1/dt=-Gm2(r12

3)] (y1-y2);
m2d2x2/dt2=[Gm1m2(r12

3)] (x1-x2); dx2/dt=u2, du2/dt=Gm1(r12
3)] (x1-x2); 

m2d2y2/dt2=[Gm1m2(r12
3)] (y1-y2); dy2/dt=v2, dv2/dt=Gm1(r12

3)] (y1-y2);
function dz = twobody(t,z)

dz = zeros(8,1);
G = 2;
m1 = 2;
m2 = 2;
dz(1) = z(2);
dz(2) = ((G*m2)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^(3/2)))*(z(5) - z(1));
dz(3) = z(4);
dz(4) = ((G*m2)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^(3/2)))*(z(7) - z(3));
dz(5) = z(6);
dz(6) = ((G*m1)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^(3/2)))*(z(1) - z(5));
dz(7) = z(8);
dz(8) = ((G*m1)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^(3/2)))*(z(3) - z(7));

where z(1), z(2), ... through z(8) represent the functions x1(t), u1(t), y1(t), v1(t), x2(t), u2(t), y2(t), and v2(t), respectively. 
(So that r12

2 = (z(1) - z(5))2 + (z(3)-z(7))2

[t,z] = ode45('twobody',[0 25], [-1 0 0 -1 1 0 0 1]);
[t,z] = ode45('twobody',[0 25], [-1 0 0 -1 1 0 0 1]);
plot(z(:,1),z(:,3),'-');
xlabel('x_{1}(t)'); ylabel('y_{1}(t)');
title('Particle 1 orbit in xy space -- first 25 seconds');
figure;
plot(z(:,5),z(:,7),'-');
xlabel('x_{2}(t)'); ylabel('y_{2}(t)');
title('Particle 2 orbit in xy space -- first 25 seconds');


