

h = 0.05, 0	eth 0.02	<mark>od: Pro</mark> 5, 0.01,	<mark>gramm</mark> i 0.001, o	i <mark>ng Out</mark> l n the in	<mark>line Con</mark> terval ()	$\frac{\mathbf{nparing}}{\leq t \leq 2.}$	g Euler'	s Metho	bd	
* A comp will hav	uter e th	program e follow	n for Eu ving stru	ller's me cture.	ethod wi	th a unif	orm ste	p size		
Step 1.	ha	ve funct	ion f(t, y)), and s	tep size	h				
Step 2 Initialize values t0 and $v0$										
Step 2.	T			and yo						
Step 3.	L1	mit the a	# of step	os n						
Step 5.	for	$r_{j} = 1: n_{j}$						4.5364	1200	
Step 6		k1 =	f(t, v)		the second			y _{aract} -	yanna	
Step 0.			L*L1		F	Relative	Error =	- exuci	- upprox	×100
		y = y	$+ n^{-\kappa} \kappa 1$					y_{ex}	act	
		t = t	+h							
Step 7.	Ou	itput t a	nd v							
		1171								
	100		and the second			R STATIST	Rel Error	Rel Error	Rel Error	Rel Error
	t	h = 0.05	h = 0.025	h = 0.01	h = 0.001	Exact	Rel Error h = 0.05	Rel Error h = 0.025	Rel Error h = 0.01	Rel Error h = 0.001
	t 0.00	h = 0.05 1.0000	h = 0.025 1.0000	h = 0.01 1.0000	h = 0.001 1.0000	Exact 1.0000	Rel Error h = 0.05 0.00	Rel Error h = 0.025 0.00	Rel Error h = 0.01 0.00	Rel Error h = 0.001 0.00
	t 0.00 0.10	h = 0.05 1.0000 1.5475	h = 0.025 1.0000 1.5761	h = 0.01 1.0000 1.5953	h = 0.001 1.0000 1.6076	Exact 1.0000 1.6090	Rel Error h = 0.05 0.00 3.82	Rel Error h = 0.025 0.00 2.04	Rel Error h = 0.01 0.00 0.85	Rel Error h = 0.001 0.00 0.09
	t 0.00 0.10 0.20	h = 0.05 1.0000 1.5475 2.3249	h = 0.025 1.0000 1.5761 2.4080	h = 0.01 1.0000 1.5953 2.4646	h = 0.001 1.0000 1.6076 2.5011	Exact 1.0000 1.6090 2.5053	Rel Error h = 0.05 0.00 3.82 7.20	Rel Error h = 0.025 0.00 2.04 3.88	Rel Error h = 0.01 0.00 0.85 1.63	Rel Error h = 0.001 0.00 0.09 0.17
	t 0.00 0.10 0.20 0.30	h = 0.05 1.0000 1.5475 2.3249 3.4334	h = 0.025 1.0000 1.5761 2.4080 3.6144	h = 0.01 1.0000 1.5953 2.4646 3.7390	h = 0.001 1.0000 1.6076 2.5011 3.8207	Exact 1.0000 1.6090 2.5053 3.8301	Rel Error h = 0.05 0.00 3.82 7.20 10.36	Rel Error h = 0.025 0.00 2.04 3.88 5.63	Rel Error h = 0.01 0.00 0.85 1.63 2.38	Rel Error h = 0.001 0.00 0.17 0.25
	t 0.00 0.10 0.20 0.30 0.40	h = 0.05 1.0000 1.5475 2.3249 3.4334 5.0185	h = 0.025 1.0000 1.5761 2.4080 3.6144 5.3690	h = 0.01 1.0000 1.5953 2.4646 3.7390 5.6137	h = 0.001 1.0000 1.6076 2.5011 3.8207 5.7755	Exact 1.0000 1.6090 2.5053 3.8301 5.7942	Rel Error h = 0.05 0.00 3.82 7.20 10.36 13.39	Rel Error h = 0.025 0.00 2.04 3.88 5.63 7.34	Rel Error h = 0.01 0.00 0.85 1.63 2.38 3.12	Rel Error h = 0.001 0.00 0.09 0.17 0.25 0.32
	t 0.00 0.10 0.20 0.30 0.40 0.50	h = 0.05 1.0000 1.5475 2.3249 3.4334 5.0185 7.2902	h = 0.025 1.0000 1.5761 2.4080 3.6144 5.3690 7.9264	h = 0.01 1.0000 1.5953 2.4646 3.7390 5.6137 8.3767	h = 0.001 1.0000 1.6076 2.5011 3.8207 5.7755 8.6771	Exact 1.0000 2.5053 3.8301 5.7942 8.7120	Rel Error h = 0.05 0.00 3.82 7.20 10.36 13.39 16.32	Rel Error h = 0.025 0.00 2.04 3.88 5.63 7.34 9.02	Rel Error h = 0.01 0.00 0.85 1.63 2.38 3.12 3.85	Rel Error h = 0.001 0.00 0.09 0.17 0.25 0.32 0.40
	t 0.00 0.10 0.20 0.30 0.40 0.50 1.00	h = 0.05 1.0000 1.5475 2.3249 3.4334 5.0185 7.2902 45.5884	h = 0.025 1.0000 1.5761 2.4080 3.6144 5.3690 7.9264 53.8079	h = 0.01 1.0000 1.5953 2.4646 3.7390 5.6137 8.3767 60.0371	h = 0.001 1.0000 1.6076 2.5011 3.8207 5.7755 8.6771 64.3826	Exact 1.0000 2.5053 3.8301 5.7942 8.7120 64.8978	Rel Error h = 0.05 0.00 3.82 7.20 10.36 13.39 16.32 29.75	Rel Error h = 0.025 0.00 2.04 3.88 5.63 7.34 9.02 17.09 17.09	Rel Error h = 0.01 0.00 0.85 1.63 2.38 3.12 3.85 7.49	Rel Error h = 0.001 0.00 0.09 0.17 0.25 0.32 0.40 0.79
	t 0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.50	h = 0.05 1.0000 1.5475 2.3249 3.4334 5.0185 7.2902 45.5884 282.0719	h = 0.025 1.0000 1.5761 2.4080 3.6144 5.3690 7.9264 53.8079 361.7595	h = 0.01 1.0000 1.5953 2.4646 3.7390 5.6137 8.3767 60.0371 426.4082	h = 0.001 1.0000 1.6076 2.5011 3.8207 5.7755 8.6771 64.3826 473.5598	Exact 1.0000 1.6090 2.5053 3.8301 5.7942 8.7120 64.8978 479.2592	Rel Error h = 0.05 0.00 3.82 7.20 10.36 13.39 16.32 29.75 41.14	Rel Error h = 0.025 0.00 2.04 3.88 5.63 7.34 9.02 17.09 24.52	Rel Error h = 0.01 0.00 0.85 1.63 2.38 3.12 3.85 7.49 11.03	Rel Error h = 0.001 0.00 0.09 0.17 0.25 0.32 0.40 0.79 1.19
	t 0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00	h = 0.05 1.0000 1.5475 2.3249 3.4334 5.0185 7.2902 45.5884 282.0719 1745.6662	h = 0.025 1.0000 1.5761 2.4080 3.6144 5.3690 7.9264 53.8079 361.7595 2432.7878	h = 0.01 1.0000 1.5953 2.4646 3.7390 5.6137 8.3767 60.0371 426.4082 3029.3279	h = 0.001 1.0000 1.6076 2.5011 3.8207 5.7755 8.6771 64.3826 473.5598 3484.1608	Exact 1.0000 1.6090 2.5053 3.8301 5.7942 8.7120 64.8978 479.2592 3540.2001	Rel Error h = 0.05 0.00 3.82 7.20 10.36 13.39 16.32 29.75 41.14 50.69	Rel Error h = 0.025 0.00 2.04 3.88 5.63 7.34 9.02 17.09 24.52 31.28	Rel Error h = 0.01 0.00 0.85 1.63 2.38 3.12 3.85 7.49 11.03 14.43	Rel Error h = 0.001 0.00 0.09 0.17 0.25 0.32 0.40 0.79 1.19 1.58 1.58

Backward Euler Formula

Dr. M.Sakalli

×

The backward Euler formula is derived as follows. Let $y = \phi(t)$ be the solution of y' = f(t, y). At $t = t_n$, we have $\phi' = f(t_n, \phi(t_n))$

Using a backward difference quotient for
$$\phi'$$
, it follows that

$$\frac{\phi(t_n) - \phi(t_{n-1})}{t_n - t_{n-1}} \cong f(t_n, \phi(t_n))$$

Replacing $\phi(t_n)$ and $\phi(t_{n-1})$ by their approximations y_n and y_{n-1} , and solving for y_n , we obtain the backward Euler formula

 $y_n = y_{n-1} + f(t_n, y_n) \cdot h \iff y_{n+1} = y_n + f(t_{n+1}, y_{n+1}) \cdot h$

** Note that this equation implicitly defines y_{n+1} , and must be solved in order to determine the value of y_{n+1} .

Investigating more accurate methods Forward Difference Quotient: $y = \phi(t)$ $\frac{\phi(t_{n+1}) - \phi(t_n)}{t_{n+1} - t_n} \cong f(t_n, \phi(t_n)) = \phi'$ An integral equation since $y = \phi(t)$ is a solution of y' = f(t, y), $y(t_0) = y_0$ $\int_{t_n}^{t_{n+1}} \phi'(t) dt = \int_{t_n}^{t_{n+1}} f(t, \phi(t)) dt$ Approximating the above integral $\phi(t_{n+1}) \cong \phi(t_n) + f(t_n, \phi(t_n))(t_{n+1} - t_n)$ $\phi(t_{n+1}) = \phi(t_n) + \int_{t_n}^{t_{n+1}} f(t, \phi(t)) dt$ Replacing $\phi(t_{n+1})$ and $\phi(t_n)$ by their approximations y_{n+1} and y_n ; $y_{n+1} = y_n + f(t_n, y_n) \cdot (t_{n+1} - t_n)$, n = 0, 1, 2, ... Dr. M.Sakalli

3

Taylor Series Analysis * Assuming the solution $y = \phi(t)$ has a Taylor series $about t = t_n$. $\phi(t) = \phi(t_n) + \phi'(t_n)(t - t_n) + \frac{1}{2!}\phi''(t_n)(t - t_n)^2 + \cdots$ * Since $h = t_{n+1} - t_n$ and $\phi' = f(t, \phi)$, it follows that $\phi(t_{n+1}) = \phi(t_n) + f(t_n, \phi(t_n))h + \frac{1}{2!}\phi''(t_n)h^2 + \cdots$ * Take the 1st order apprx, and substitute y_{n+1} and y_n , for $\phi(t_{n+1})$ and $\phi(t_n)$, respectively. Again Euler's formula: $y_{n+1} = y_n + f(t_n, y_n) \cdot (t_{n+1} - t_n), n = 0, 1, 2, \ldots$ * Estimate the magnitude of error in this formula. Local Truncation Error for Euler Method

** Assumption is that $y = \phi(t)$ is a solution to $\phi' = f(t, \phi)$, $y(t_0) = y_0$ and that f, f_t and f_y are continuous. Then ϕ'' is continuous, where $\phi''(t) = f_t(t, \phi(t)) + f_y(t, \phi(t))f(t, \phi(t))$ ** Using a Taylor expansion with a remainder to $\phi(t)$ about $t = t_n$, $\phi(t) = \phi(t_n) + \phi'(t_n)(t - t_n) + \frac{1}{2!}\phi''(\tau_n)(t - t_n)^2$ where τ_n is some point in the interval $t_n < \tau_n < t_{n+1}$. ** Since $h = t_{n+1} - t_n$ and $\phi' = f(t, \phi)$, it follows that $\phi(t_{n+1}) = \phi(t_n) + f(t_n, \phi(t_n))h + \frac{1}{2!}\phi''(\tau_n)h^2$ Recalling the Euler formula $y_{n+1} = y_n + f(t_n, y_n)h$, ** Error t_{n+1} $\phi(t_{n+1}) - y_{n+1} = [\phi(t_n) - y_n] + [f(t_n, \phi(t_n)) - f(t_n, y_n)]h + \frac{1}{2!}\phi''(\tau_n)h^2$ ** To compute the LTE e_{n+1} , take $y_n = \phi(t_n)$ and hence $e_{n+1} = \phi(t_{n+1}) - y_{n+1} = \frac{1}{2!}\phi''(\tau_n)h^2$ Dr. M.Sakalli

Uniform Bound for LTE and h and Estimating GTE Thus the LTE, e_{n+1} is proportional to the square of the step size h, and the proprtionlity constant depends on ϕ'' , and hence is typically different for each step (ie t dpnc). * A uniform bound, valid on an interval [a, b], which is the worst possible case, (may well be an overestimate in the interval of [a, b]. And How to choose h for a desired LTE smaller than *ɛ*. $|e_n| \leq \frac{M}{2}h^2$, $M = \max\{\phi''(t): a < t < b\}$ * This $\frac{M}{2}h^2 \le \varepsilon \implies h \le \sqrt{\frac{2\varepsilon}{M}}$ ***** It can be difficult estimating $|\phi''(t)|$ or *M*. However, the central fact is that LTE e_n is proportional to h^2 . Thus the x smaller the h, the x squared times the better the accuracy. **GTE:** E_n for the Euler method - a **first order method**: Taking *n* steps, from t_0 to $T = t_0 + nh$, the error at each step is at most $Mh^2/2$, and hence error in n steps is at most $nMh^2/2$. $\left|E_{n}\right| \leq \frac{nM}{2}h^{2} = \left(T - t_{0}\right)\frac{M}{2}h$ Dr. M.Sakalli

Example: LTE The same problem, y' = 1 - t + 4y, y(0) = 1; $0 \le t \le 2$ $\phi(t) = (4t - 3 + 19e^{4t})/16 \implies \phi''(t) = 19e^{4t}$ Using the solution $\phi(t)$, we have The LTE e_{n+1} at step n + 1 is given by $e_{n+1} = \frac{\phi''(\tau_n)}{2}h^2 = \frac{19e^{4\tau_n}}{2}h^2, \ t_n < \tau_n < t_n + h$ The presence of the factor 19 and the rapid growth of e^{4t} explains why the numerical approximations in this section with h = 0.05 were not very accurate. For h = 0.05, the error in the first step is $e_1 = \frac{19e^{4\tau_0}}{2}(0.0025), \ 0 < \tau_0 < 0.05$ Since $1 < e^{4\tau 0} < e^{4(0.05)} = e^{0.02}$, it follows that $0.02375 \cong \frac{19}{2}(0.0025) < e_1 < \frac{19e^{0.2}}{2}(0.0025) \cong 0.02901$ It can be shown that the actual error is 0.02542. $1.0617 < e_{20} < 1.2967 \quad (0.95 < t < 1.0)$ Similar computations give the following bounds: $57.96 < e_{40} < 70.80$ (1.95 < t < 2.0) To reduce lte throughout $0 \le t \le 2$, choose an h based on an analysis near t = 2.

To achieve $e_n < 0.01$, at $0 \le t \le 2$, note that $M = 19e^{4(2)}$, and hence the required step size *h* is $h \le \sqrt{2\varepsilon/M} \cong 0.00059$

DI	.	M.	S	ak	12
-	_	_	_	_	-

by Erica McEvoy, Using Matlab to integrate ODEs	s, coupledodes.pdf
y'=-5y; y(0)=1.43, real solution = y=1.43 exp(-5t)	$d^2\Theta/dt^2 = -w^2 \sin(\Theta); w = sqrt(L/g);$
function $dy = ilovecats(t,y)$	$\Theta = v_1 d\Theta/dt = dv_1/dt = v_1' = v_2;$
dy = zeros(1,1); dy = -5 * y;	$d^2 \Theta/dt^2 - dv_0/dt - v_0' - v_0 dv_0/dt - w^2 \sin(v_1)$
[t,y] = ode45('ilovecats', [0 10], 1.43);	$[V'] = A [V] \cdot [v_1 + v_2] = [0, 1; v_2^{2} \sin(x) 0] [v_1 + v_2]$
plot(t,y,'-');	$[1] - A [1], [y_{11}, y_2] = [0, 1, -w - \sin(t), 0][y_1, y_2]$
xlabel('time');	function $dy = pendulum cats(t, y, L, g)$
title('This plot dedicated to kitties everywhere'):	dy = zeros(2,1); w = 1;
error = $abs(y - realsolution);$	$dy = [y(2); -w^2*\sin(y(1))];$
figure;	return
subplot(221)	[t,y] = ode45('pendulumcats', [0 25], [1.0 1.0]);
plot(t,y,'-');	plot(t,v(:,1),'-'):
xlabel('time');	xlabel('time')
ylabel('y(t) computed numerically'); title('Numerical Solution');	$vlabel(v, \{1\}(t))$
subplot(222)	$y_{10} = (y_{1}, y_{1}),$
plot(t.realsolution.'-'):	title(\theta(t));
xlabel('time');	figure; plot(t,y(:,2),'-');
ylabel('y(t) computed analytically');	xlabel('time');ylabel('y_{2}(t)');
title('Analytical Solution');	title('d \theta / dt (t)');
subplot(223)	figure: $plot(v(:,1),v(:,2),'-')$: $xlabel('\theta(t)')$:
plot(t,error,'-');	$vlabel('d \theta / dt (t)')$
xlabel('time');	title ('Dhase Dlane Dertreit for undermed nendulum'):
yiabel (Erior);	cal solutions').
subplot(224)	<i>a</i> solutions <i>)</i> ,
plot(0,0,'.');	
xlabel('time')	
ylabel('Kitties!!!!');	
title('Kitties are SO QUSEKati	

- "Strange attractor", or the "Lorenz attractor." Strange attractors appear in phase spaces of chaotic dynamical systems. Edward Lorenz is the first person to report such bizarre endings, and as such, he is often considered the father (or founder) of Chaos Theory. The "buttery effect". The idea is that chaotic systems have a sensitive dependence on initial conditions { if you were to play around with the initial conditions for x(t), y(t) and z(t) in these equations and plot phase space portraits, the tiniest changes in initial conditions can lead to a crazy huge difference in position in phase space at some later time (which is not what you'd expect if the equations were
- considered "deterministic" {you'd expect that equations that were almost identical to give you almost identical trajectories and phase space portraits at any time! but). Because of this, chaotic systems like the weather are difficult to predict past a certain time range since you can't measure the starting atmospheric conditions completely accurately.
- Coupled equations: Edward Lorenz, a mathematician and weather forecaster for the US Army Air Corps, and MIT prof. Interested in solving a simple set of 3 coupled de because he wanted to estimate weather a week earlier. Equations of convection rolls??? rising in the atmosphere.
- x' = -p x + p y

x y' = r x - y - xz

$$\mathbf{x}' = \mathbf{x} \mathbf{y} - \mathbf{b} \mathbf{z}$$

** where P, r, and b are all constants (P represents the Prandtl number, and r is the ratio of Rayleigh number to the critical Rayleigh number), and x, y and z are all functions of time. (You can read more about what these equations represent in Lorenz's classic paper, Deterministic nonperiodic flow:J:Atmos:Sci:20 : 130

P = 10; r = 28; b = 8/3
function $dy = lorenz(t,y,P,r,b)$
dy = zeros(3,1);
$dy(1) = P^*(y(2) - y(1));$
dy(2) = -y(1)*y(3) + r*y(1) - y(2);
$dy(3) = y(1)^* y(2) - b^* y(3);$ [4 -1]
[t,y] = 0.0045(10100000, [0.250], [1.0, 1.0]);
subplot(221), plot(y(:,1),y(:,2), -);
xiadei($x(t)$); yiadei($y(t)$);
title Phase Plane Portrait for Lorenz attractor $y(t)$ vs. $x(t)$);
subplot(222), plot(y(:,1),y(:,5), -);
xiabel($\mathbf{x}(t)$); yiabel($\mathbf{z}(t)$);
title (Phase Plane Portrait for Lorenz attractor $Z(t)$ vs. $X(t)$);
subplot(223), $plot(y(:,2),y(:,3), -)$;
xiadei($y(t)$); yiadei($z(t)$);
the Phase Plane Portrait for Lorenz attractor $Z(t)$ vs. $y(t)$;
subplot(224), plot(0,0, .);
Xiabel(Edward Lorenz)
ylabel (Kittles); title (Kittles vs. Lorenz); 1 + 22 + (-1) + (-2) + (
$plot_{3}(y(:,1),y(:,2),y(:,3),-)$
xiabel($x(t)$); yiabel($y(t)$); ziabel($z(t)$);
the (3D phase portrait of Lorenz Attractor);
Dr. M. Sakalli

We can use ode45 to and solutions of the scale factor, a(t), to the Friedmann equations:
* $(a'/a)^2 = [(8\pi G)/3]*P - k/a^2$
≈ (a"/a) = [(-4πG)/3] (P − 3(Pbar))
$m_1d^2x_1/dt^2 = [-Gm_1m_2(r_{12}^3)](x_1-x_2); dx_1/dt = u_1, du_1/dt = -Gm_2(r_{12}^3)](x_1-x_2);$
$m_1d^2y_1/dt^2 = [-Gm_1m_2(r_1^3)](y_1-y_2); dy_1/dt = v_1, dv_1/dt = -Gm_2(r_1^3)](y_1-y_2);$
$m_2d^2x_2/dt^2 = [Gm_1m_2(r_{12}^3)] (x_1-x_2); dx_2/dt=u_2, du_2/dt=Gm_1(r_{12}^3)] (x_1-x_2);$
$m_2d^2y_2/dt^2 = [Gm_1m_2(r_{12}^3)](y_1-y_2); dy_2/dt=v_2, dv_2/dt=Gm_1(r_{12}^3)](y_1-y_2);$
function $dz = twobody(t,z)$
dz = zeros(8,1);
G=2;
m1 = 2;
m2 = 2;
dz(1) = z(2);
$dz(2) = ((G*m2)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^{(3/2)})*(z(5) - z(1));$
dz(3) = z(4);
$dz(4) = ((G*m2)/(((z(1) - z(5))).^{2} + (z(3) - z(7))).^{2}).^{(3/2)})(z(7) - z(3));$
dz(5) = z(6);
$dz(6) = ((G*m1)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^((3/2)))*(z(1) - z(5));$
dz(7) = z(8);
$dz(8) = ((G*m1)/(((z(1) - z(5)).^2 + (z(3) - z(7)).^2).^{(3/2)}))*(z(3) - z(7));$
where $z(1), z(2),$ through $z(8)$ represent the functions $x_1(t), u_1(t), v_1(t), v_2(t), u_2(t), v_2(t), u_2(t), respectively.$
(So that $r_{12}^2 = (z(1) - z(5))^2 + (z(3)-z(7))^2$
[t,z] = ode45('twobody', [0 25], [-1 0 0 -1 1 0 0 1]);
[t,z] = ode45('twobody', [0 25], [-1 0 0 -1 1 0 0 1]);
plot(z(:,1),z(:,3),'-');
xlabel('x_{1}(t)'); ylabel('y_{1}(t)');
title('Particle 1 orbit in xy space first 25 seconds');
figure;
plot(z(:,5),z(:,7),'-');
xlabel('x_{2}(t)'); ylabel('y_{2}(t)');
title('Particle 2 orbit in xy space first 25 seconds'); Dr. M.Sakalli