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Ch 2.1:  Linear 
Equations

Here if g(t) = 0 homogeneous, non-homogeneous otherwise 
(driving by a force). You know the equations below already.
A linear first order ODE has the general form, where p(t), g(t), can 
be constants and/or variables. 

Constant Coefficient Case: straightforward solution is

Variable Coefficient Case: Method of Integrating Factors. 
Using  the product rule, d(uv)=vdu + udv. Multiplying the 
equation by a function µ(t), so that the entire equation must be 
easily integrated.
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Variable Coefficient Case: Method of Integrating Factors. From 
the  product rule, multiplying the 1st order linear DE by a function 
µ(t), so that the resulting equation must be easily integrated. This 
is the General Case. Proof is an exam question. 
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Method of Integrating Factors: 
Variable Right Side, g(t)
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Example 1:  
Observe that equilibrium solution (of slopes) is shifting due to the t dependence.. 

With µ(t) = e2t, we solve the original equation as follows:
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Example 2:  General Solution of 

Integrating by parts, udv=d(uv)-vdu

Thus
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Equilibrium points y'=0, y= -25 (t=0), and t=5 (y=0)
Needs integrating by parts,
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Example for general case of 1st order DE, IVP probl. EXAM WARNING, linear!!?

First put into standard form:

Integrating Factor

and hence the general and particular solution for y(1) = 2, respectively.  

Integral curves for the differential equation, and a particular solution (in red) for the initial point (1,2).
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Separable DEs:   g(y)dy = f(x)dx or dy/dt = y' = f(x)/g(x). 
Two Examples and implicit solutions and isoclines. Linearity? 
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In 2nd Example,  domain of the solution
Thus the solutions to the initial value problem 

are given by

From explicit representation of y, it follows that

and hence domain of y is x=(-2, ∞).  Smaller than -2 negates 
inside sqrt, and x = -2 yields y = 1, which makes denominator of 
dy/dx zero (vertical tangent). 
Conversely, domain of y can be estimated by locating vertical 
tangents on graph (useful for implicitly defined solutions). 
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Ch 2.4: Differences Between Linear and 
Nonlinear Equations

Recall that a first order ODE has the form y' = f (t,y), and is linear if f
is linear in y, and nonlinear if f is nonlinear in y (regardless of t). 
Examples:  y' = ty - et,   y' = ty2.   

First order linear and nonlinear equations differ in a number of ways:
The theory describing existence and uniqueness of solutions, and
corresponding domains, are different.  
Solutions to linear equations can be expressed in terms of a general 
solution, which is not usually the case for nonlinear equations.  
Linear equations have explicitly defined solutions while nonlinear 
equations typically do not, and nonlinear equations may or may not have 
implicitly defined solutions.

For both types of equations, numerical and graphical construction of 
solutions are important.
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Linearity = multiplicity (scalability) 
and additivity (superposition). 

Linearity Definiton: (with respect to dependent variable, therefore the degree of 
the independent variables as coefficients of the derivations is nor a concern.)

Scalability af(x)=f(ax); 

Superposition, y=u+v, f(u)+f(v)?, f(u+v)=f(u)+f(v)

f(au + bv) = f(au) + f(bv) = af(u) + bf(v)

Example: L(z) =  z''' – z + k3z
((a + b)z)''' – (a + b)z + k3(a + b)z = (az)''' + (bz)''' – az – bz + k3az + k3bz = af(z)+bf(z)
So its’s linear. 

We can find it to look degree of functions f z too.  Degree of z is 1 and not any 
trig combinations is involved.
L(y) = y' – y + y2

(a + b)y'- (a + b)y + ((a + b)y)2 ≠ ay' + by' – ay – by + (ay)2 + (by)2

So it’s not linear.and the degree of y is 2, indicating nonlinearity.
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Theorem 2.4.1

Consider the linear first order initial value problem:

If the functions p and g are continuous on an open interval 
(α, β) containing the point t = t0, then there exists a unique 
solution y = φ(t) that satisfies the IVP for each t in (α, β).
Proof:
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Theorem 2.4.2
Consider the nonlinear first order initial value problem:

Suppose f and ∂f/∂y are continuous on some open 
rectangle (t, y) ∈ (α, β) x (γ, δ) containing the point (t0, 
y0).  Then in some interval (t0 - h, t0 + h) ⊆ (α, β) there 
exists a unique solution y = φ(t) that satisfies the IVP.
Since there is no general formula for the solution of 
arbitrary nonlinear first order IVPs, this proof is difficult, 
and beyond the scope of this course.  
It turns out that conditions stated in Thm 2.4.2 are 
sufficient but not necessary to guarantee existence of a 
solution, and continuity of f ensures existence but not 
uniqueness of φ.
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Example 1:  Linear IVP
Recall the initial value problem from Chapter 2.1 slides:

The solution to this initial value problem is defined for 
t > 0, the interval on which p(t) = -2/t is continuous. 
If the initial condition is y(-1) = 2, then the solution is given 
by same expression as above, but is defined on t < 0.
In either case, Theorem 2.4.1 
guarantees that solution is unique
on corresponding interval.

Question what is the interval 
here for thr 2.41.
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Example 2:  Nonlinear IVP 

Consider nonlinear initial value problem from Ch 2.2:

The functions f and ∂f/∂y are given by

and are continuous except on line y = 1.
Thus possible to draw an open rectangle about (0, -1) on which 
f and ∂f/∂y are continuous, as long as it doesn’t cover y = 1. 
How wide is rectangle?  Recall solution defined for x > -2, 
with
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Example 2:  Change Initial Condition SKIP  

Our nonlinear initial value problem is

with

which are continuous except on line y = 1.
If we change initial condition to y(0) = 1, then Theorem 2.4.2 
is not satisfied.  Solving this new IVP, we obtain

Thus a solution exists but is not unique.
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Example 3: (!!!linear) IVP (Very simple to draw tangents)

Consider initial value problem

The functions f and ∂f/∂y are given by

Thus f continuous everywhere, but ∂f/∂y doesn’t exist at y = 0,
and hence Theorem 2.4.2 is not satisfied. Solutions exist but are 
not unique. Separating variables and solving, we obtain

Positive since t cannot be negative due to sqrt
If initial condition is not on t-axis where y=0, then Theorem 
2.4.2 does guarantee existence and uniqueness.
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SKIP to exactness. 
Example 4:  !!!linear IVP

Consider initial value problem

The functions f and ∂f/∂y are given by

Thus f and ∂f/∂y are continuous at t = 0, so Thm 2.4.2 
guarantees that solutions exist and are unique.
Separating variables and solving, we obtain

The solution y(t) is defined on (-∞, 1). Note that the singularity 
at t = 1 is not obvious from original IVP statement. 
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Interval of Definition:  Linear and Nonlinear Cases
By Theorem 2.4.1, the solution of a linear initial value 
problem exists throughout any interval about t = t0 on which p
and g are continuous.  
Vertical asymptotes or other discontinuities of solution can 
only occur at points of discontinuity of p or g. However, 
solution may be differentiable at points of discontinuity of p 
or g.  

In the nonlinear case, the interval on which a solution exists 
may be difficult to determine. The solution y = φ(t) exists as 
long as (t,φ(t)) remains within rectangular region indicated in 
Theorem 2.4.2.  This is what determines the value of h in that 
theorem. Since φ(t) is usually not known, it may be 
impossible to determine this region. Furthermore, any 
singularities in the solution may depend on the initial 
condition as well as the equation. 
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General Solutions

For a first order linear equation, it is possible to obtain a 
solution containing one arbitrary constant, from which all 
solutions follow by specifying values for this constant.
For nonlinear equations, such general solutions may not 
exist.  That is, even though a solution containing an arbitrary 
constant may be found, there may be other solutions that 
cannot be obtained by specifying values for this constant.   
Consider Example 4: The function y = 0 is a solution of the 
differential equation, but it cannot be obtained by specifying 
a value for c in solution using separation of variables: 
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Explicit Solutions: Linear Equations

By Theorem 2.4.1, a solution of a linear initial value 
problem

exists throughout any interval about t = t0 on which p and g
are continuous, and this solution is unique.
The solution has an explicit representation,

and can be evaluated at any appropriate value of t, as long 
as the necessary integrals can be computed. 
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Explicit Solution Approximation

For linear first order equations, an explicit representation 
for the solution can be found, as long as necessary 
integrals can be solved.  
If integrals can’t be solved, then numerical methods are 
often used to approximate the integrals.  

∑∫

∫

=

∆≈

∫=
+

=

n

k
kkk

t

t

dssp

t

t

ttgtdttgt

et
t

Cdttgt
y

t

t

1

)(

)()()()(

)( where,
)(

)()(

0

00

µµ

µ
µ

µ



13

DE 255 M. Sakalli

Implicit Solutions:  Nonlinear Equations

For nonlinear equations, explicit representations of solutions 
may not exist.  
As we have seen, it may be possible to obtain an equation 
which implicitly defines the solution.  If equation is simple 
enough, an explicit representation can sometimes be found.  
Otherwise, numerical calculations are necessary in order to 
determine values of y for given values of t.  These values can 
then be plotted in a sketch of the integral curve. 
Recall the following example from 
Ch 2.2 slides: 
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Direction Fields

In addition to using numerical methods to sketch the 
integral curve, the nonlinear equation itself can provide 
enough information to sketch a direction field.  
The direction field can often show the qualitative form of 
solutions, and can help identify regions in the ty-plane 
where solutions exhibit interesting features that merit more 
detailed analytical or numerical investigations. 
Chapter 2.7 and Chapter 8 focus on numerical methods. 
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Ch 2.6: Exact Equations (chain rule!!!).  
Consider a first order ODE of the form

Suppose there is a function ψ such that

and such that ψ(x,y) = c defines y = φ(x) implicitly. Then 

and hence the original ODE becomes 

Thus ψ(x,y) = c defines a solution implicitly.  
In this case, the ODE is said to be exact. 
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Suppose an ODE can be written in the form

where the functions M, N, My and Nx are all continuous in the 
rectangular region R: (x, y) ∈ (α, β ) x (γ, δ ). Then Eq. (1) is 
an exact differential equation iff

That is, there exists a function ψ satisfying the conditions

iff M and N satisfy Equation (2). Think here.. How to solve it.  

)1(0),(),( =′+ yyxNyxM

)2(),(),,(),( RyxyxNyxM xy ∈∀=

)3(),(),(),,(),( yxNyxyxMyx yx == ψψ

Theorem 2.6.1- Continuity and Existence of ψ and the 
condition of Exactness.   
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Example 1: Exact Equation   (1 of 4)
Consider the following differential equation. 

Then 
and hence

From Theorem 2.6.1, 
Thus

By Theorem 2.6.1, the solution is given implicitly by 
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Example 2: 

From Theorem 2.6.1, 
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It is sometimes possible to convert a inexact DE into an exact 
equation by treating with a suitable integrating factor µ(x,y):

For this equation to be exact, we need

This partial differential equation may be difficult to solve.  If µ
is a function of x alone, then µy = 0 and hence we solve

provided right side is a function of x only.  Similarly if µ is a 
function of y alone.  See text for more details.

Example 3: Non-Exact Equation Treated by Integrating 
Factors. Interesting therefore potential Exam Question
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Non-Exact Equation Example treated. 

Consider the following non-exact differential equation. 

Seeking an integrating factor, we solve the linear equation

Multiplying our differential equation by µ, we obtain the 
exact equation

which has its solutions given implicitly by

0)()3( 22 =′+++ yxyxyxy

xx
xdx

d
N

NM
dx
d xy =⇒=⇔

−
= )(µµµµµ

,0)()3( 2322 =′+++ yyxxxyyx

cyxyx =+ 223

2
1



17

DE 255 M. Sakalli

Exam question, and HW, 27.b, 29, 29, 30 at 
page 73 and 74, solve bernoullie problems at 
least two to prove that eq reduces to a 1rst 
order linear DE.

DE 255 M. Sakalli

y = dsolve('Dy=1+y^2',) 

y =

tan(t+C1)

>> y = dsolve('Dy=1+y^2','y(0)=1‘, ‘t’) 

y =

tan(t+1/4*pi)

>> diff(y, 't') 

ans =

1+tan(t+1/4*pi)^2


