Answers of the Midterm Exam Math 255, by Dr. M. Sakalli, CSE, Marmara Univ. Nov. 24, 2009
Differential Equations. Duration given was: 1hr 45 minutes. Good luck.
At the last 10-14 min a group of students were allowed to couple.
Note 1: Any question or objection welcomes.

1. Prove that the difference of any two particular solutions to inhomogeneous DE is also a solution to its homogeneous version.
$\mathrm{D}\left(\mathrm{y}_{\mathrm{p} 1}\right)=\mathrm{f}(\mathrm{t}), \mathrm{D}\left(\mathrm{y}_{\mathrm{p} 2}\right)=\mathrm{f}(\mathrm{t})$
$\mathrm{D}\left(\mathrm{y}_{\mathrm{p} 1}-\mathrm{y}_{\mathrm{p} 2}\right) .=\mathrm{D}\left(\mathrm{y}_{\mathrm{p} 1}\right)-\mathrm{D}\left(\mathrm{y}_{\mathrm{p} 2}\right)=\mathrm{f}(\mathrm{t})-\mathrm{f}(\mathrm{t})=0$.
2. Reduction of order: You have a second order homogeneous DE,
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$,
and suppose you are given the first ($n o n t r i v i a l$) solution as, $y_{1}(x)$.
a) Show that the second solution (non-proportional to $y_{1}(x)$) can be related by a variable $u(x)$ to the first solution which will end up with an equation of reduced order and yielding the solution of $y_{2}(x)$ as a function of y_{1}.

Answer:
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, y_{1}(x)$ is proposed

And suppose $y_{2}=u(x) y_{1}(x)$.
Then insert
a) $y 2$, b) $\left.y 2^{\prime}=v 1^{\prime} y 1+v 1 y 1^{\prime}, ~ c\right) ~ y 2^{\prime \prime}=v 1^{\prime \prime y} 1+2 y 1^{\prime} v 1^{\prime}+v 1 y 1^{\prime \prime}$, into the equation given above. Then
$=v 1^{\prime \prime} y 1+2 y 1^{\prime} v 1^{\prime}+v 1 y 1^{\prime \prime}+v 1^{\prime} y 1 p+v 1 y 1^{\prime} p+q v 1 y 1$
$=v 1^{\prime \prime} y 1+2 y 1^{\prime} v 1^{\prime}+v 1^{\prime} y 1 p+v 1 y 1^{\prime \prime}+v 1 y 1^{\prime} p+q v 1 y 1$
$=v 1^{\prime \prime} y 1+\left(2 y 1^{\prime}+y 1 p\right) v 1^{\prime}+\left(y 1^{\prime \prime}+y 1^{\prime} p+q y 1\right) v 1$
$=v 1^{\prime \prime} y 1+\left(2 y 1^{\prime}+y 1 p\right) v 1^{\prime}+\quad 0 \quad v 1 / / F r o m$ the first
equation
$=v 1^{\prime \prime} y 1+\left(2 y 1^{\prime}+y 1 p\right) v 1^{\prime}=0$
This is linear and separable.
Substitute $v 1^{\prime}=u ; d v 1^{\prime} / d x=d u / d x$, which reduces the second order equation into the first order of
$u^{\prime} y 1+\left(2 y 1^{\prime}+y 1 p\right) u=0$

The form of the equation is
$A u^{\prime}+B u=0 ; d u / u=-(B / A) d x$
Finding the general equation, $u=e^{\wedge}\{(-B / A) x\}+c \rightarrow v(x)=$ int $(u(x)) d x$
Another way to figure out the equation $u^{\prime} y 1+\left(2 y 1^{\prime}+y 1 p\right) u=0$ is Bernoulli
$u^{\prime}+P(x) u=0 \rightarrow u(x)=u(0) e^{\wedge}\{$ int $P(x) d x\}$
Then substitute $\rightarrow v(x)=$ int $(u(x)) d x$
$u=e^{\wedge}(-B / A)+c=C, C$ is another constant.
is $u^{\prime} y l=-\left(2 y l^{\prime}+y 1 p\right) u$
$u^{\prime} / u=-2 y l^{\prime} / y 1+p$
$\ln u=-2 \ln y 1+\operatorname{int}(p) d x$
$y 1^{\wedge} 2 u=e^{\wedge} p$.
b) This is an application of the question given above. DE you are given is $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$, and the first solution is $y_{1}=x^{2}$.
i) Show that if $y_{1}=x^{2}$ is a solution.

Answer:
This indicates that $x^{\wedge} 2 * 2-3 x(2 x)+4 x^{\wedge} 2=0 ; y_{1}$ is a solution.
ii) If it is, then find y_{2} by reducing the order. If it is not suggest a solution. And then proceed.
Answer:
Then $\mathrm{y} 2=\mathrm{v} y 1=v x^{\wedge} 2 ; \mathrm{y} 2^{\prime}=v^{\prime} y 1+v \mathrm{y} 1^{\prime}=v^{\prime} \mathrm{x}^{\wedge} 2+2 \mathrm{vx}$;
$y 2^{\prime \prime}=v^{\prime}>1+2 v^{\prime} y 1^{\prime}+v y 1^{\prime \prime}=v^{\prime} x^{\wedge} 2+4 v^{\prime} x+2 v$
Plug all into the equation under question.
$x^{\wedge} 2 y^{\prime \prime}-3 x y^{\prime}+4 y=0 \rightarrow$
$x^{\wedge} 4 v^{\prime \prime}+4 v^{\prime} x^{\wedge} 3+2 v x^{\wedge} 2-3 v^{\prime} x^{\wedge} 3-6 v x^{\wedge} 2+4 v x^{\wedge} 2=$
$x^{\wedge} 4 v^{\prime \prime}+v^{\prime}\left(4 x^{\wedge} 3-3 x^{\wedge} 3\right] v^{\prime}+\left[2 x^{\wedge} 2-6 x^{\wedge} 2+4 x^{\wedge} 2\right] v=$
$x^{\wedge} 4 v^{\prime \prime}+v^{\prime}\left(4 x^{\wedge} 3-3 x^{\wedge} 3\right)=0 \rightarrow v^{\prime \prime}+1 / x v^{\prime}=0 ;$
Substitute $u=v^{\prime} ; u^{\prime}=v^{\prime \prime}$;
$\mathrm{du} / \mathrm{dx}+\mathrm{u} / \mathrm{x}=0$ eventually $\ln |\mathrm{u}|=-\ln |\mathrm{x}|+\mathrm{c} \rightarrow \ln |\mathrm{u}|=-\ln |\mathrm{x}|+\ln |\mathrm{c}|=\mathrm{u}=\mathrm{C} / \mathrm{x}$
$\mathrm{v}(\mathrm{x})=\operatorname{int}\{\mathrm{u}(\mathrm{x})\} \mathrm{dx} \rightarrow \mathrm{v}(\mathrm{x})=\operatorname{int}\{\mathrm{C} / \mathrm{x}\} \mathrm{dx}=\mathrm{C} \ln (\mathrm{x})+\mathrm{C} 2$
$y 2=C x^{\wedge} 2 \ln |x|+C 2 x^{\wedge} 2$

This is also general equation to the question, since the second part is the solution $y 1=x^{\wedge}{ }^{2}$,
3. Apply derivation operator on \boldsymbol{y} to solve $\left(D-r_{1}\right)\left(D-r_{2}\right) \boldsymbol{y}=0$, hint reduce equation to the first order by substitution.
Answer:
(D-r2) $\mathrm{y}=\mathrm{u}$;
(D-r1) $u=0$ gives $u=c 1 e^{\wedge}(r 1 t)$, rearranging equation offers a Bernoulli structure (D-r2) y $=c 1 \mathrm{e}^{\wedge}(\mathrm{r} 1 \mathrm{t})$, which is solved

```
d[e^(-r2 t) y ] = c1 e^(r1 t) e^(-r2 t), .
e^(-r2 t) y = int{ c1 e^(r1 t) e^(-r2 t)}dt+c2
y = {c1 e^(r2 t) * e^(r1-r2)t }/(r1-r2)+ c2 e^(r2 t)
y={c1/(r1-r2}) e^(r21t) +c2 e^(r2 t)
```

4. $y^{\prime \prime}-3 y^{\prime}+2 y=\mathrm{e}^{\mathrm{x}}$

Answers:
a) Solve the reduced (homogeneous) version of this DE.
$y h=c 1 e^{\wedge} x+c 2 e^{\wedge} 2 x$;
b) Solve particular solution of non-homogeneous DE by using the method of undetermined coefficients.
$y p=A e^{\wedge} x$ vanishes, therefore next possible candidate solution must be in the form of for yp is $\mathrm{Axe}^{\wedge} \mathrm{x}$,
$y p^{\prime}=A e^{\wedge} x+A x e^{\wedge} x=A(1+x) e^{\wedge} x ; y p^{\prime \prime}=A e^{\wedge} x+A(1+x) e^{\wedge} x=A(2+x) e^{\wedge} x$
$A(2+x) e^{\wedge} x-3 A(1+x) e^{\wedge} x+2 A x e^{\wedge} x=e^{\wedge} x$
$A=-1$;
c) Solve the same particular solution by using ESL.
$p(D)=D^{\wedge} 2-3 D+2, p(D)^{\prime}=2 D-3$
RHS $e^{\wedge} x$, where alpha is 1 ,
since $p($ alpha $)=0, p(\text { alpha })^{\prime}=-1$
$y p=x e^{\wedge} x / p($ alpha' $)=-x e^{\wedge} x$;
5. Find the particular solution of DE: $\boldsymbol{y}^{(4)}+5 y^{\prime \prime}+2 y=2-5 e^{(3 x)}$ simply by using ESL.

Hint: represent the equation in the form of operators and then apply ESL step by step.

Hints: write as operator, and then apply ESL
$p(D)=D^{\wedge 4+5 *} \mathrm{D}^{\wedge 2+2}$
$\mathrm{e}^{\wedge} 0 \mathrm{x} \rightarrow$ alpha $=0$, and $\mathrm{p}(\mathrm{D})=2 ; 2 / \mathrm{p}($ alpha $) \rightarrow 1$
$\mathrm{e}^{\wedge} 3 \mathrm{x} \rightarrow$ alpha $=3$, and $p(\mathrm{D})=81+45+2=128 \rightarrow \mathrm{e}^{\wedge} 3 \mathrm{x} / 128$
From the superposition of both solutions, 1-5e^(3x)/128

