Homework II

1- (20 pts) $\quad \vec{E}=\frac{A}{R^{3}} \cos \theta \overrightarrow{a_{R}}+\frac{B}{R^{3}} \sin \theta \overrightarrow{a_{\theta}}$

2- (40 pts)

a) (10 pts) Determine the relation between

A and B for the given electrostatic field \vec{E} ?
b) (15 pts) Determine the electrostatic potential V?

Charge Q is located at the origin. Determine the electric flux due to the charge Q through the circle centered at $z=z^{\prime}$ with radius a ? (Circle is parallel to the $x y$ plane)

3- (40 pts) An amount of charge $+Q$ is uniformly distributed over a conducting sphere with radius a. Conducting sphere is coated with a spherical medium with dielectric permittivity $3 \varepsilon_{0}$ bewteen $a<R<b$ region and centered at origin. $\mathrm{R}>\mathrm{b}$ region is free-space with dielectric permittivity ε_{0}.

a) (15 pts) Determine the electric field intensity \vec{E} field in whole space? b) (20 pts) Determine the scalar electric potential V in whole space?
c) (5 pts) Determine the work to be performed to move a charge q from point $(x, y, z)=(0, b, 0)$ to point $(\rho, \phi, z)=(a, 0,0)$?

