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The Structure of Crystalline
Solids



FUNDAMENTAL CONCEPTS

* Solid materials may be classified according to the
regularity with which atoms or ions are arranged
with respect to one another.

* A crystalline material is one in which the atoms
are situated in a repeating or periodic array over
large atomic distances; that is, long-range order
exists, such that upon solidification, the atoms
will position themselves in a repetitive three-
dimensional pattern



* All metals, many ceramic materials, and
certain polymers form crystalline structures
under normal solidification conditions. For
those that do not crystallize, this long-range
atomic order is absent; these noncrystalline or
amorphous materials are discussed briefly at
the end of this chapter



UNIT CELLS

* The atomic order in crystalline solids indicates
that small groups of atoms form a repetitive
pattern.Thus, in describing crystal structures,
it is often convenient to subdivide the

structure into small repeat entities called unit
cells.



 When describing crystalline structures, atoms (or
ions) are thought of as being solid spheres having
well-defined diameters. This is termed the atomic
hard sphere model in which spheres representing
nearest-neighbor atoms touch one another.

* An example of the hard sphere model for the
atomic arrangement found in some of the
common elemental metals is displayed in Figure
3.1c.

* In this particular case all the atoms are identical.
Sometimes the term lattice is used in the context
of crystal structures; in this sense “lattice” means
a three-dimensional array of points coinciding with
atom positions (or sphere centers).



(a)

Figure 3.1 For the face-
centered cubic crystal
structure, (@) a hard
sphere unit cell
representation, (b) a
reduced-sphere unit cell,
and (c) an aggregate of
many atoms. [Figure

(c) adapted from W. G.
Moffatt, G. W. Pearsall.
and J. Wulff, The Structure
and Properties of
Materials, Vol. 1, Structure,
p. 51. Copyright © 1964 by
John Wiley & Sons, New
York. Reprinted by
permission of John Wiley
& Sons, Inc.]



METALLIC CRYSTAL STRUCTURES

* The Face-Centered Cubic Crystal Structure

* The crystal structure found for many metals
has a unit cell of cubic geometry, with atoms
located at each of the corners and the centers
of all the cube faces.

 |tis aptly called the face-centered cubic (FCC)
crystal structure. Some of the familiar metals
having this crystal structure are copper,
aluminum, silver, and gold



* Figure 3.1a shows a hard sphere model for the
FCC unit cell.

 The spheres or ion cores touch one another
across a face diagonal; the cube edge length a
and the atomic radius R are related through

a = 2R



Table 3.1 Atomic Radii and Crystal Structures for 16 Metals
Atomic Atomic
Crysial Radius® Crvstal Radius
Meial Struciure” {irm ) Meral Niruciure { i)
Aluminum FCC (.1431 Molvbdenum BCC (.1363
Cadmium HCP 0.1490 Mickel FCC (0.1246
Chromium BCC 0.1249 Platinum FCC 0.1387
Cobalt HCP (L1233 Silver FCC (0.1445
Copper FCC 0.1278 Tantalum BCC 0.1430
Gold FCC 0.1442 Titanium | e) HCP (1.1445
Iron (e) BCC 0.1241 Tungsten BCC (0.1371
Lead FCC 01750 Zinc HCP (0.1332

* FCC = face-centered cubic; HCP = hexagonal close-packed; BCC = body-centered cubic.

5 A nanometer (nm) equals 107" m; to convert from nanometers to angstrom units (A).
multiply the nanometer value by 10,



 Two other important characteristics of a
crystal structure are the coordination number
and the atomic packing factor (APF).

 For metals, each atom has the same number
of nearest-neighbor or touching atoms, which
is the coordination number.

* For face-centered cubics, the coordination
number is 12.



* The APF is the sum of the sphere volumes of
all atoms within a unit cell (assuming the

atomic hard sphere model) divided by the
unit cell volume—that is

volume of atoms i a unmit cell

APEF =

total unit cell volume



* For the FCC structure, the atomic packing
factor is 0.74, which is the maximum

* packing possible for spheres all having the
same diameter.



The Body-Centered Cubic Crystal
Structure

* Figures 3.2a and 3.2b are diagrams of BCC
unit cells with the atoms represented by hard
sphere and reduced-sphere models,
respectively. Center and corner atoms touch
one another along cube diagonals, and unit
cell length a and atomic radius R are related

through
4R

=
LA

a —
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The Simple (primitive) Cubic Crystal
Structure

Figure 3.23 Hard-sphere unit cell representation of the
simple cubic crystal structure.




The Hexagonal Close-Packed Crystal
Structure

Figure 3.3a shows a reduced-sphere unit cell
for this structure, which is termed hexagonal
closepacked (HCP).

The top and bottom faces of the unit cell
consist of six atoms that form regular hexagons
and surround a single atom in the center.
Another plane that provides three additional
atoms to the unit cell is situated between the
top and bottom planes.



* The atoms in this midplane have as nearest
neighbors atoms in both of the adjacent two
planes. The equivalent of six atoms is
contained in each unit cell; one-sixth of each
of the 12 top and bottom face corner atomes,
one-half of each of the 2 center face atoms,
and all 3 midplane interior atoms



* |f a and c represent, respectively, the short
and long unit cell dimensions of Figure 3.3a,
the c/a ratio should be 1.633; however, for
some HCP metals this ratio deviates fromthe

ideal value.

* The coordination number and the atomic
packing factor for the HCP crystal structure are
the same as for FCC: 12 and 0.74, respectively



DENSITY COMPUTATIONS

A knowledge of the crvstal structure of a metallic solid permits computation of its
theoretical density p through the relationship

nA .
(3.5)
V::‘:P‘!Irﬁ %

p:

where
n = number of atoms associated with each unit cell

A = atomic weight
Ve = volume of the unit cell

Na = Avogadro’s number (6.023 % 107 atoms/mol)



POLYMORPHISM AND ALLOTROPY

 Some metals, as well as nonmetals, may have
more than one crystal structure, a phenomenon
known as polymorphism. When found in
elemental solids, the condition is often termed
allotropy.

e Pure iron has a BCC crystal structure at room
temperature, which changes to FCCiron at 912 C
Most often a modification of the density and
other physical properties accompanies a
polymorphic transformation.



CRYSTAL SYSTEMS

* The unit cell geometry is completely defined
in terms of six parameters: the three edge
lengths a, b, and ¢, and the three interaxial
angles, , and .

* These are indicated in Figure 3.4, and are
sometimes termed the lattice parameters of a
crystal structure.



On this basis there are seven different possible combinations of a, b, and ¢, and
a, 3. and v, each of which represents a distinct crystal system. These seven crystal
svstems are cubic, tetragonal, hexagonal, orthorhombic, rhombohedral.” monoclinic,
and triclinic. The lattice parameter relanonships and unit cell sketches for each are
represented in Table 3.2. The cubic system, forwhicha = b = canda = 8 = y = 90F,
has the greatest degree of symmetry. Least svmmetrv 1s displayved bv the triclinic
svstem. since a ¥ b Fcand a # B F v



Figure 5.4 A unit cell with x, v, and z coordinate axes,
showing axial lengths (a, b, and <) and interaxial angles

(e, B, and ).



Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell
Geometries for the Seven Crystal Systems

Axial
Crysial System Relationships Interaxvial Angles Unit Cell Geomertry
Cubic a=h=¢ a=p=y=0F
= il
i
.F-'-T-__J‘_-'-TI"-\.
g
| I
Hexagonal a=b#c a=f="9Fy=12° ¢ ! !i
iy
a “a

Tetragonal a=h#c a=fp=y=0F .




Ehombohedral
{Trigonal)

Orthorhombic

Monoclhinic

Trichnic

a#b#c

a#Fxh#c

a¥Fb#c

a=f=yF00F

a=f=y="00F

a=y=4r=+4

aF G FyF0F




Crystallographic Points,
Directions, and Planes

POINT COORDINATES

z Figore 3.5 The manner in which the g, r.
and s coordinates at point F within the
unit cell are determined. The g coordinate
(which is a fraction) corresponds to the
distance ga along the x axis, where a is the
unit cell edge length. The respective r and
s coordinates for the y and z axes are
determined similarly.




* The position of any point located within a unit
cell may be specified in terms of its
coordinates as fractional multiples of the unit
cell edge lengths (i.e., in terms of a, b, and c).

e Toillustrate, consider the unit cell and the
point P situated therein as shown in Figure 3.5



* We specify the position of P in terms of the
generalized coordinates q, r, and s where q is
some fractional length of a along the x axis, r is
some fractional length of b along the y axis, and
similarly for s.

* Thus, the position of P is designated using
coordinates g r s with values that are less than
or equal to unity.

* Furthermore, we have chosen not to separate
these coordinates by commas or any other
punctuation marks (which is the normal
convention).



Point coordinates for position number 1 are 0 0 0; this position 1s located
at the origin of the coordinate system, and. as such, the fractional unit cell
edge lengths along the x, v, and z axes are, respectivelv, Oa, Oa, and Oa. Fur-
thermore, for position number 2, since it lies one unit cell edge length along
the x axis, its fractional edge lengths are a, Oa, and Oa, respectivelv, which vield
point coordinates of 1 0 0. The following table presents fractional unit cell
lengths along the x, v, and z axes, and their corresponding point coordinates
for each of the nine points in the above figure.

Point Fractional Lengths Point
Number X axis ¥ axis I axis Coordinaies
0 0 0oo
100
110
010

111
IxZ

001
101
111
011

R=R e B R S S
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CRYSTALLOGRAPHIC DIRECTIONS

* A crystallographic direction is defined as a line
between two points, or a vector. The following
steps are utilized in the determination of the three
directional indices:

* 1. A vector of convenient length is positioned
such that it passes through the origin of the
coordinate system. Any vector may be translated
throughout the crystal lattice without alteration, if
parallelism is maintained.

e 2. The length of the vector projection on each of
the three axes is determined; these are measured
in terms of the unit cell dimensions a, b, and c.



* 3. These three numbers are multiplied or
divided by a common factor to reduce them
to the smallest integer values.

* 4. The three indices, not separated by
commas, are enclosed in square brackets,
thus: [uvw]. The u, v, and w integers
correspond to the reduced projections along
the x, y, and z axes, respectively.



Figure 3.6  The [100], [110], and [111] directions within a
unit cell.
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Figore 3.7 Coordinate axis system for a hexagonal unit cell
(Miller—Bravais scheme).



Conversion from the three-index system to the four-index system,
['v'w' | — [uvnw]

15 accomplished by the following formulas:

1
w=—2u" —v’

.

1
v=—(2v' —u')

-
t=—(u+uv)
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Figure 3.8 For the
hexagonal crvstal svstem,
(a) [0001], [1700], and [1120]
directions, and (k) the
(0001}, (1011}, and (1010}
planes.



CRYSTALLOGRAPHIC PLANES

 The procedure employed in determination of the h, k,
and | index numbers is as follows:

* 1. If the plane passes through the selected origin,
either another parallel plane must be constructed
within the unit cell by an appropriate translation, or a
new origin must be established at the corner of another
unit cell.

e 2. At this point the crystallographic plane either
intersects or parallels each of the three axes; the length
of the planar intercept for each axis is determined in
terms of the lattice parameters a, b, and c.



* 3. The reciprocals of these numbers are
taken. A plane that parallels an axis may be
considered to have an infinite intercept, and,
therefore, a zero index.

e 4. If necessary, these three numbers are
changed to the set of smallest integers by
multiplication or division by a common factor.3

e 5. Finally, the integer indices, not separated

by commas, are enclosed within parentheses,
thus: (hkl).



(0010 Plane referanced to

/ tha origin at point O
{110} Plane referancad to the
origin at point O

0 ¥
i
[
Pl
;o
[
[
.I Othar equivalant
_;"""' i001) planes
/ .
,r" Cther nﬁruivalent
e (110} planas
fa) i)
4
(111) Plana raferancad to

tha origin at point O

! H"“Dthar aquiva Inannt»'I
(111} planes



e A “family” of planes contains all those planes
that are crystallographically equivalent.

* A family is designated by indices that are
enclosed in braces—such as {100}.



Hexagonal Crystals

i = —(n + k)



Determine the Miller—Bravais indices for the plane shown in the hexagonal
unit cell.




LINEAR AND PLANAR DENSITIES

Linear densitv (LD) 1s defined as the number of atoms per unit length whose
centers lie on the direction vector for a specific crvstallographic direction; that 1s,

number of atoms centered on direction vector I
LD = (3.8)

length of direction vector

Of course, the units of linear densitv are reciprocal length (e.g., nm™!, m™).

2 atoms ]

LDwo = 4R 2R




In an analogous manner, planar densitv (PD) is taken as the number of atoms
per unit area that are centered on a particular crystallographic plane, or

number of atoms centered on a plane )
D= (3.10)

area of plane

The units for planar density are reciprocal area (e.g., nm™ =, m™").

Jatoms 1

SRV 4RM

PDyy =



CLOSE-PACKED CRYSTAL STRUCTURES

Figure 3.13 (a) A portion
of a close-packed plane of
atoms; A. B, and C positions
are indicated. (b) The AB
stacking sequence for close-

packed atomic planes
(Adapted from W. G.

Moffatt, G. W. Pearsall. and
J. Wulff, The Structure and
Properties of Materials, Vol.
L. Structare, p. 50. Copyright
© 1964 by John Wiley &
Sons, New York. Reprinted
by permission of John Wiley
& Sons, Inc.)




Figure 3,14 Close-packed plane stacking
sequence for hexagonal close-packed.
{Adapted from W, G, Moffatt, G W, Pearsall,
and J. Wullf, The Stracture and Properties of
Materials, Vol. 1, Siructure, p. 31. Copyright £
1964 by John Wiley & Sons, Mew York.
Reprinted by permission of John Wiley & Sons
Inc.)



(a; (&

Figure L15 (@) Close-packed stacking sequence for facecentered cubic.

(b) A corner has been removed to show the relation between the stacking of
close-packed planes of atoms and the FCC crystal structure: the heavy tnangle
outlines a (111) plane. [Figure (b) from W. G. Moffatt, G. W. Pearsall, and J. Wulff
The Structure and Properties of Materials, Vol. 1, Struciure, p. 51. Coprright ©
1964 b7 John Wiley & Sons, New York. Reprinted by permission of John Wiley &
Sons, Inc.]



Cryst alline and
Noncryst alline Materials

Figure 3.16
Photograph of a
garnet single crystal
that was found in
Tongbei. Fujian
Province, China.
(Photograph courtesy
of Irockscom, Megan
Foreman photo.)
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Figure 517  Schematic diagrams of the various stages in the solidification of a
polrerrstalline material; the square grids depict unit cells (@) Small crystallite nuclei.
(B Growth of the crystallites; the obstruction of some grains that are adjacent to one
anotheris also shown. (c) Upon completion of solidification, grains having irregular
shapes have formed. (d) The grain structure as it would appear under the microscopss;
dark lines are the grain boundaries. (Adapted from W, Bosenhain, An Iniroduction o
the Study of Physical Metwallurgy, 2nd edition, Constable & Company Ltd., London,

1915.)
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Figure 311 Two-dimensional schemes of the structure of (@) crrstalline silicon dioxide
and {b) noncrystaline sihcon dioxide.



ANISOTROPY

Table 3.3 Maodulus of Elasticity Values for
Several Metals at Various Crystallo-

graphic Orientations
Modwlus of Elasticity (G FPa)

Meral [102] [ 110 [111]
Aluminum 637 726 761
Copper 66T 130.3 191.1
Iron 1250 2105 272.7
Tungsten 386 3BLG 2546

Source: R. W, Hertzberg, Deformation and Fractare

Mechanics of Engineering Materials, 3rd edition.
Coprrght © 1989 by John Wiley & Sons, NMew York.

Eepnnted by permission of John Wiley & Sons Inc.






