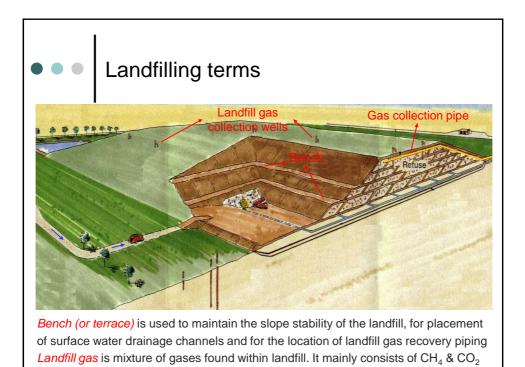
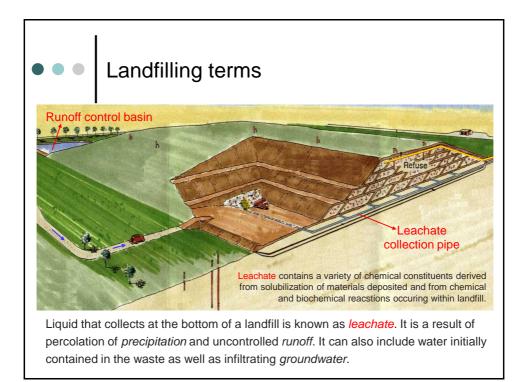
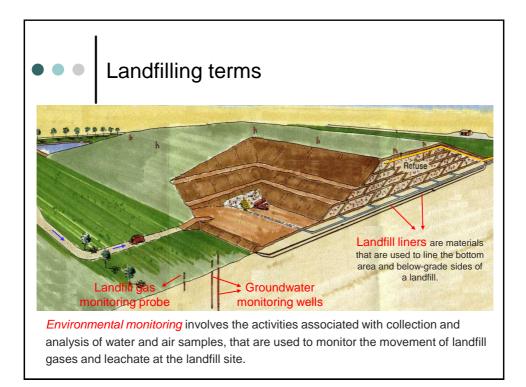
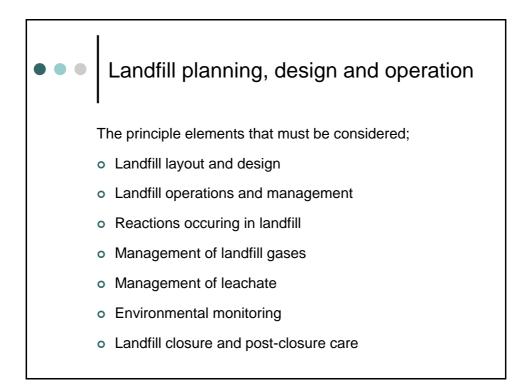
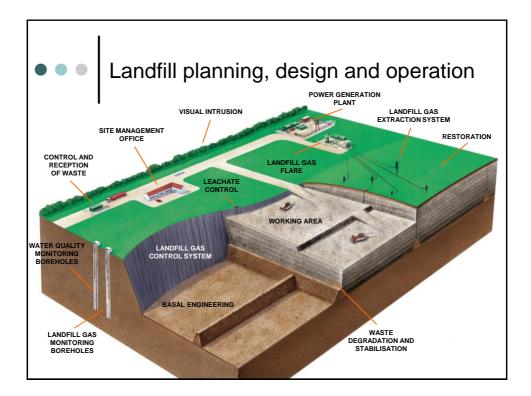

Chapter 11

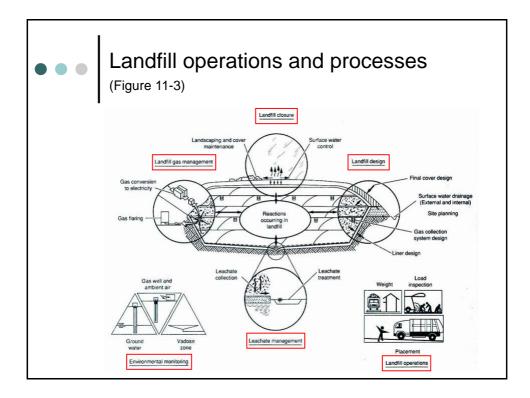

Disposal of Solid Wastes and Residual Material

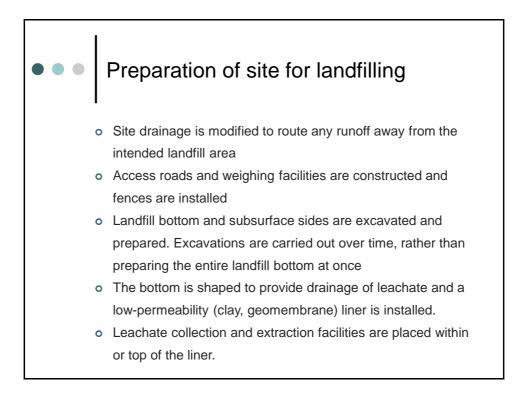

Landfilling Process

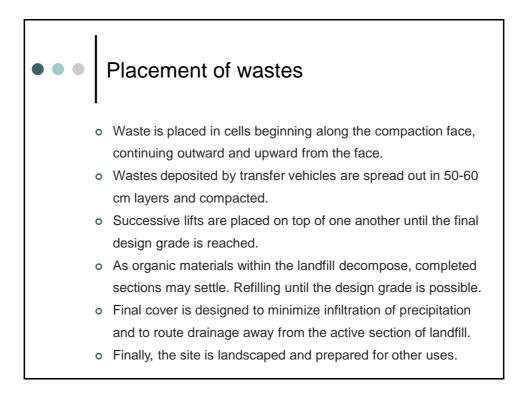

- *Landfills* are physical facilities used for the disposal of residual solid wastes in the surface soils of earth.
- Sanitary landfill is an engineered facility for the disposal of MSW, designed and operated to minimize public health and environmental impacts.
- Landfilling is the process by which residual solid waste is placed in a landfill. It includes;
 - Monitoring of the incoming waste stream
 - Placement and compaction of waste, and
 - Installation of landfill environmental monitoring and control facilities.

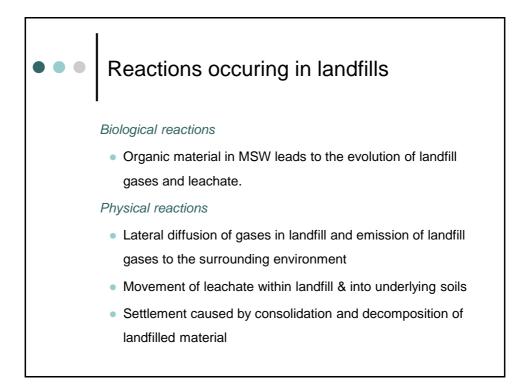


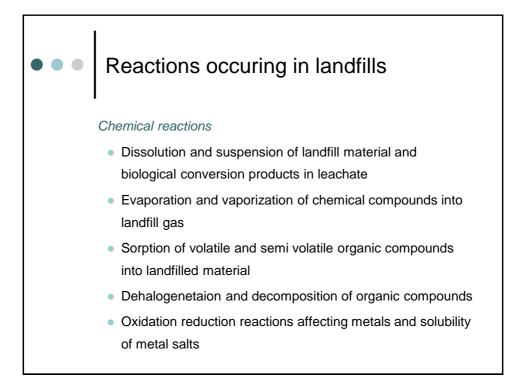


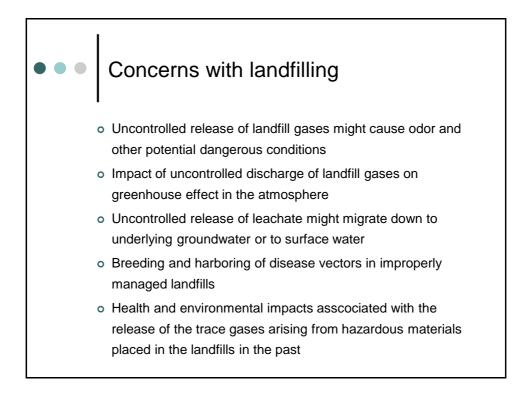


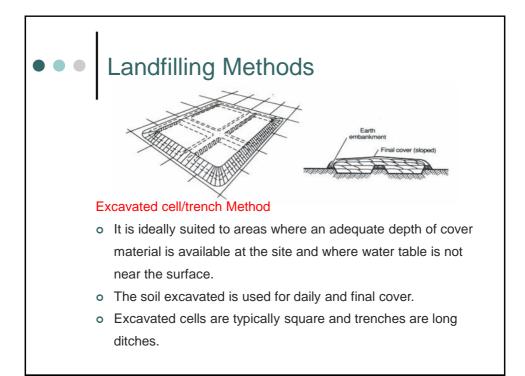


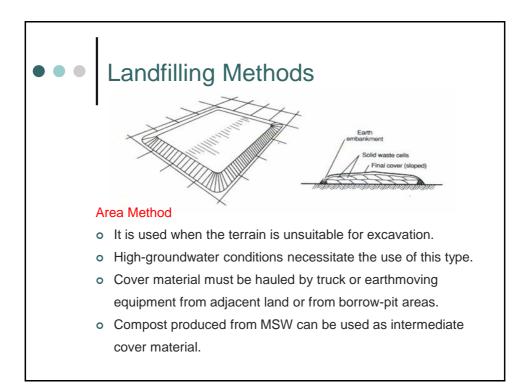


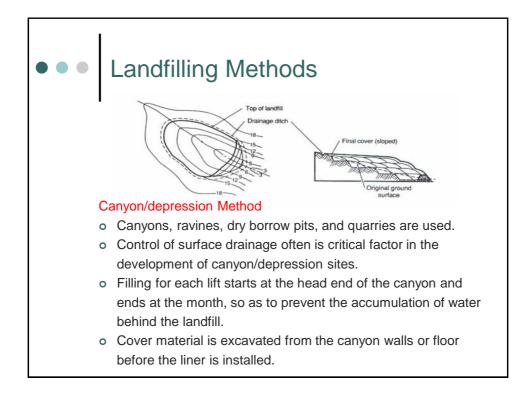


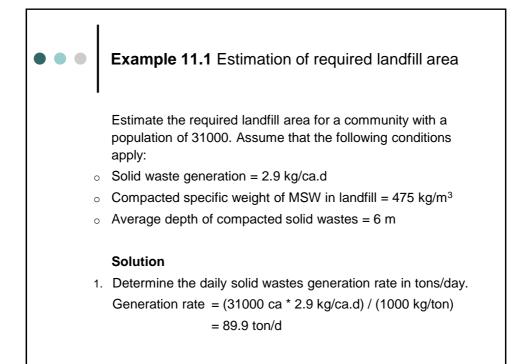


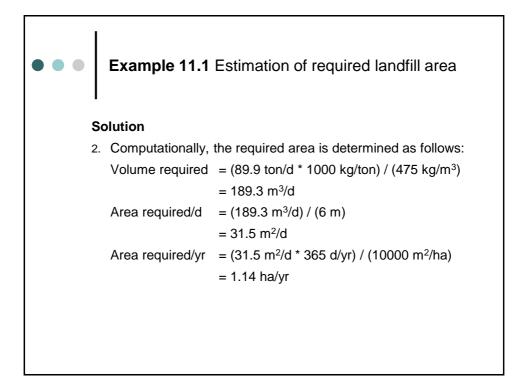


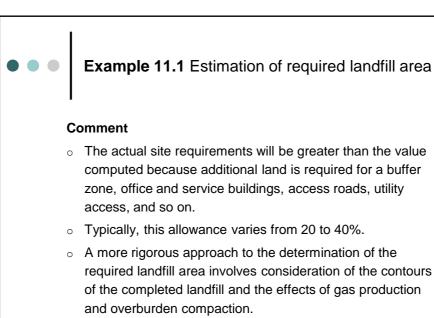


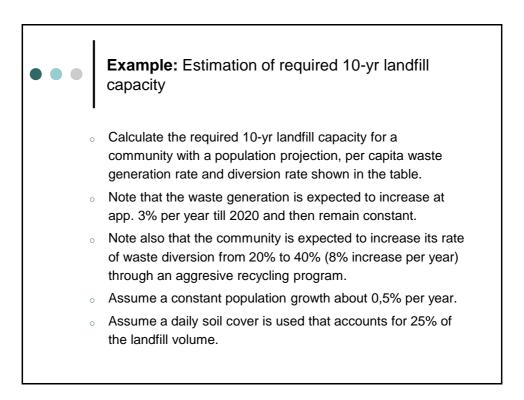


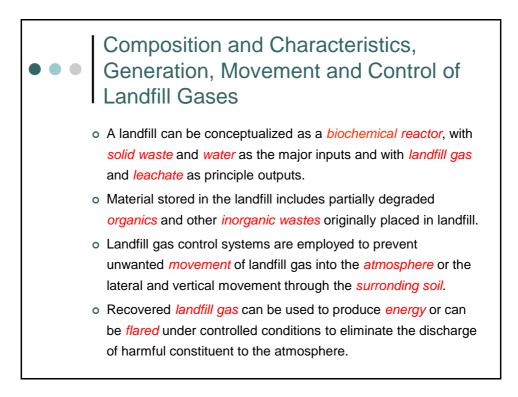


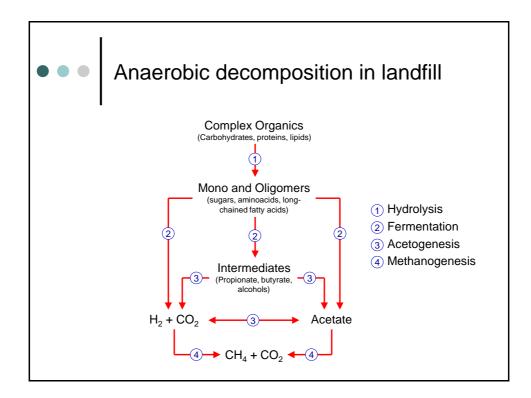


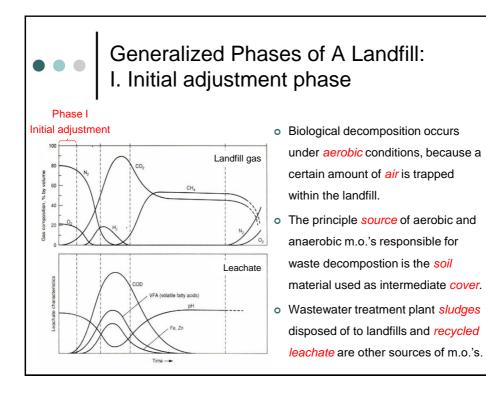


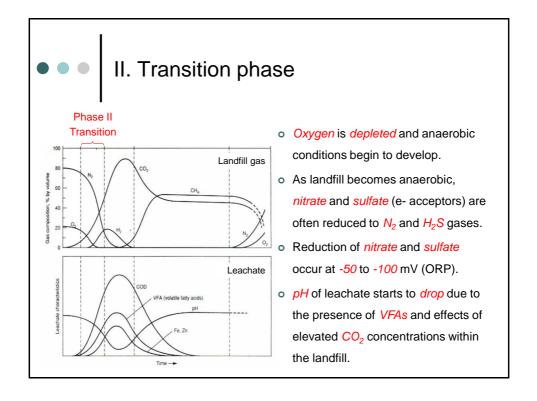


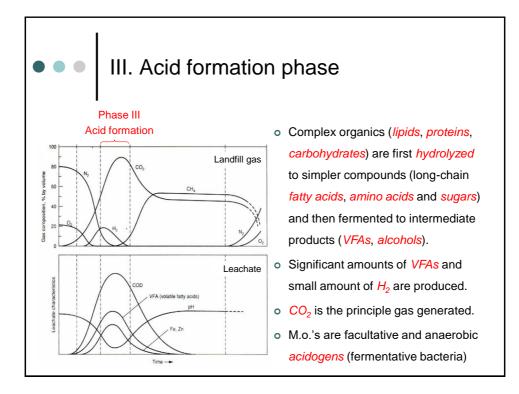


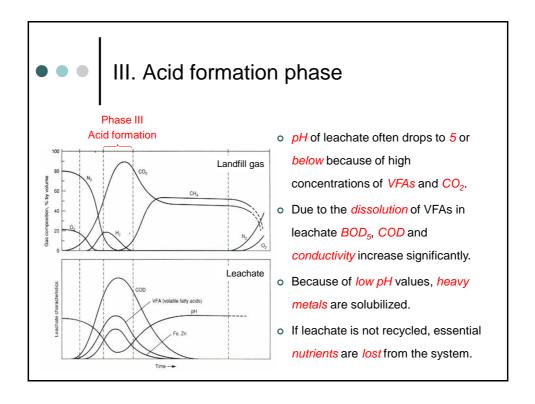


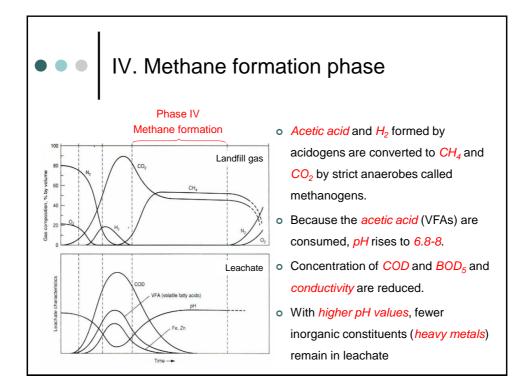


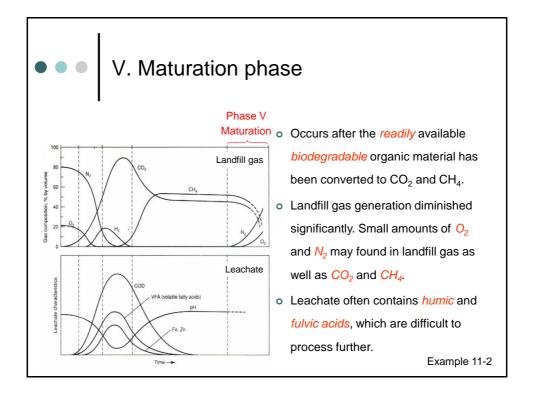



••	ca	pacity	Estimation of acted specific w	·	Ē	
	Year	Population	MSW generation rate, kg/ca.d	Diversion factor	Waste to landfill, tons/yr	Waste to landfill, m ³ /yr
	2016	400000	1,200	20,00%	140160	233600
	2017	402000	1,236	21,60%	142185	236975
	2018	404010	1,273	23,30%	143982	239970
	2019	406030	1,311	25,20%	145330	242217
	2020	408060	1,351	27,20%	146489	244148
	2021	410101	1,351	29,40%	142772	237954
	2022	412151	1,351	31,70%	138811	231352
	2023	414212	1,351	34,30%	134195	223658
	2024	416283	1,351	37,00%	129323	215539
	2025	418364	1,351	40,00%	123781	206302
	1	Fotal volume of	MSW landfilled betwe	en 2016 and 20)25 (m ³)	2311714




		of landfill gas	
•			
	Component	Percent (dry volume basis)	
	Methane	45-60	
	Carbon dioxide	40-60	
	Nitrogen	2-5	
	Oxygen	0,1-1,0	
	Sulfides, disulfides, mercaptanes, etc.	0-1,0	
	Ammonia	0,1-1,0	
	Hydrogen	0-0,2	
	Carbon monoxide	0-0,2	
	Trace constituents	0,01-0,6	
	Characteristics		
	Temperature, °C	38-76	
	Specific gravity	1,02-1,06	
	Moisture content	Saturated	
	High heating values, MJ/m ³	15-20	





Example 11.2 Estimate the chemical composition and the amount of gas that can be derived from the organic constituents in MSW

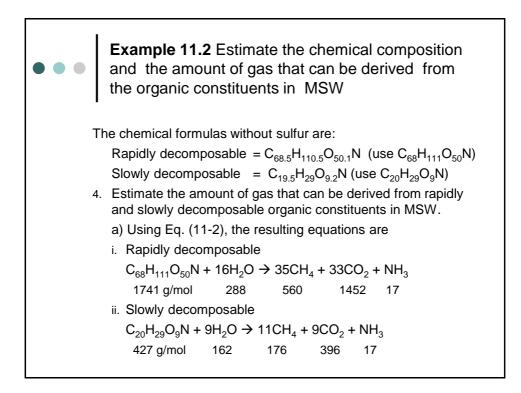
 Determine the chemical compostion and the amount of gas that can be derived from the rapidly and slowly decomposable organic constituents in MSW as given in Table 3-4. Assume that 60% of the yard waste will decompose rapidly.

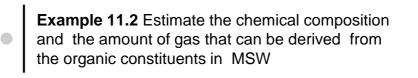
Solution

 Set up a computational table to determine the percentage distribution of the major elements composing the waste. The necessary computations for the rapidly and slowly decomposable organic constituents are presented below. The moisture content of the waste constituents is taken from Table 4-1.

• • an the	ample 1 d the am e organic = 9.0-(9.0*70%)	nount of g	gas tha	at car	n be de W		d fror	
	Wet	Dry _		C	omposit	ion, kg		
Component	weight, kg	1-	С	н	0	N	S	Ash
Ē	Rapidly	decomposa	able orga	nic con	stituent	s		
Food wastes	9.0	2.7	1.30	0.17	1.02	0.07	0.01	0.14
Paper	34.0	32.0	13.92	1.92	14.08	0.10	0.06	1.92
Cardboard	6.0	5.7	2.51	0.34	2.54	0.02	0.01	0.29
Yard wastes 18.	5*60%= 11.1	4.4	2.10	0.26	1.67	0.15	0.01	0.20
Total	60.1	44.8	19.83	2.69	19.31	0.34	0.09	2.55
	Slo	wly decomp	osable o	constitu	ents			
Textiles	2.0	1.8	0.99	0.12	0.56	0.08	-	0.05
Rubber	0.5	0.5	0.39	0.05	-	0.01	-	0.05
Leather	0.5	0.4	0.24	0.03	0.05	0.04	-	0.04
Yard wastes 18	.5-11.1= 7.4	3.0	1.43	0.18	1.14	0.10	0.01	0.13
Wood	2.0	1.6	0.79	0.10	0.69	_		0.02
Total	12.4	7.3	3.84	0.48	2.44	0.23	0.01	0.29

e e a

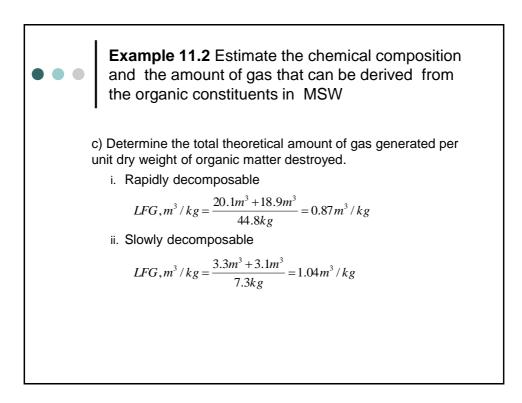

Example 11.2 Estimate the chemical composition and the amount of gas that can be derived from the organic constituents in MSW

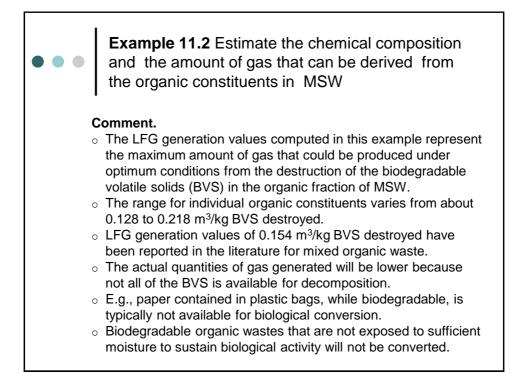

2. Compute the molar composition of the elements neglecting the ash. $= 19.83^{*}1000/12.01$

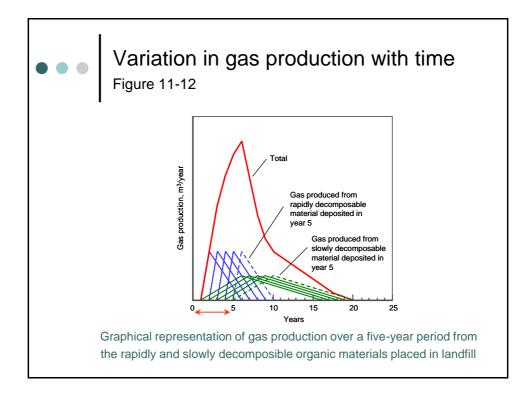
	_ = 19.	= 19.83 1000/12.01			
	С	/ н	0	Ν	S
Atomic weight, g/mol	12.01	/ 1.01	16.00	14.01	32.06
Total Moles	/				
Rapidly decomp.	1651.1	2663.4	1206.9	24.1	2.8
Slowly decomp.	319.7	475.2	152.5	16.4	0.3

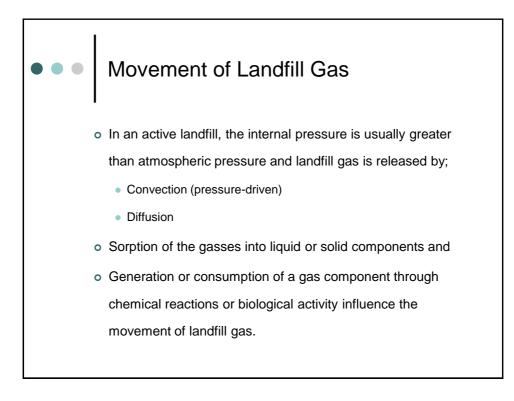
3. Determine an approximate chemical formula without sulfur. Set up a computation table to determine normalized mol ratios

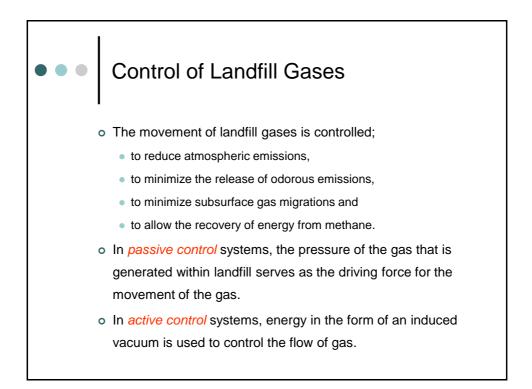
	Mol. Ratio (Nitrogen=1)				
Component	Rapidly decomposable	Slowly decomposable			
Carbon	68.5	19.5			
Hydrogen	110.5	29.0			
Oxygen	50.1	9.2			
Nitrogen	1.0	1.0			

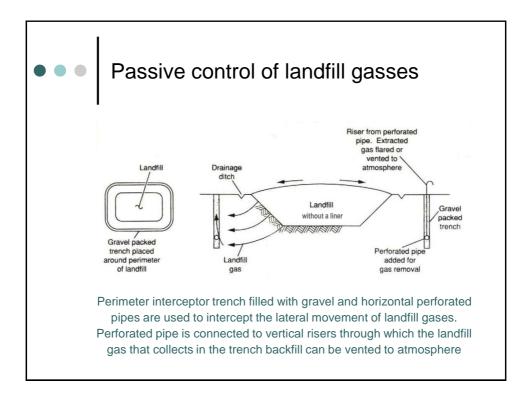

b) Determine the volume of CH_4 and CO_2 produced. The specific weights of CH_4 and CO_2 are 0.718 and 1.978 kg/m³, respectively.

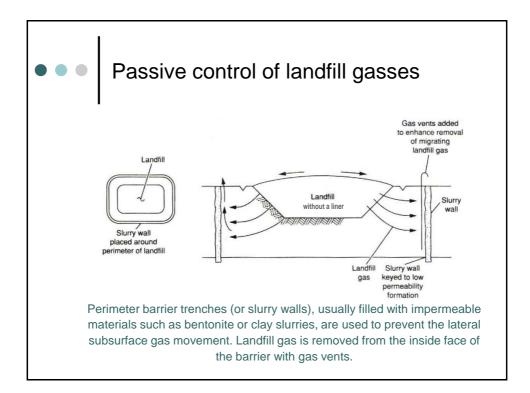

i. Rapidly decomposable

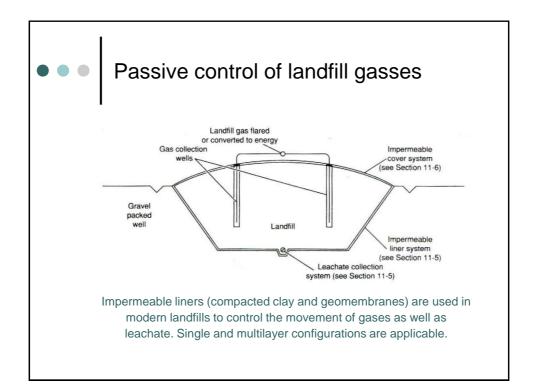

$$CH_4 = \frac{(560)(44.8kg)}{(1741)(0.718kg/m^3)} = 20.1m^3 at STF$$
$$CO_2 = \frac{(1452)(44.8kg)}{(1741)(1.978kg/m^3)} = 18.9m^3 at STP$$

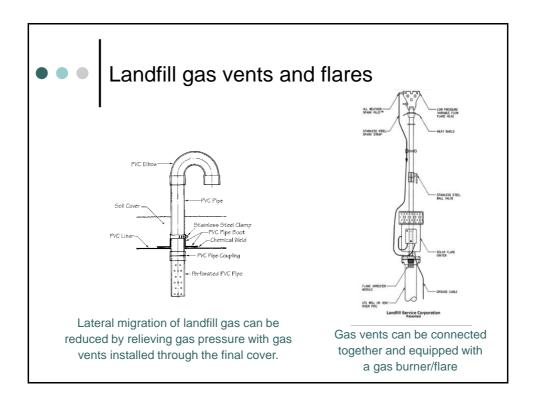

ii. Slowly decomposable

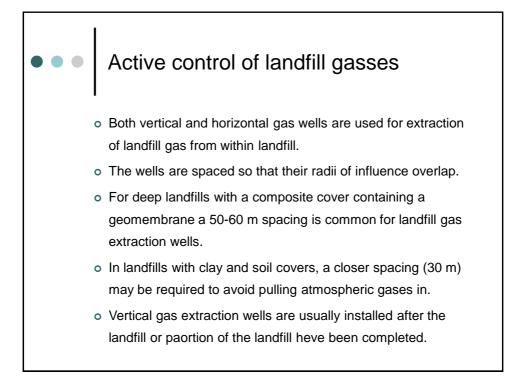

$$CH_4 = \frac{(176)(7.3kg)}{(427)(0.718kg/m^3)} = 4.2m^3 at STP$$
$$CO_2 = \frac{(396)(7.3kg)}{(427)(1.978kg/m^3)} = 3.4m^3 at STP$$

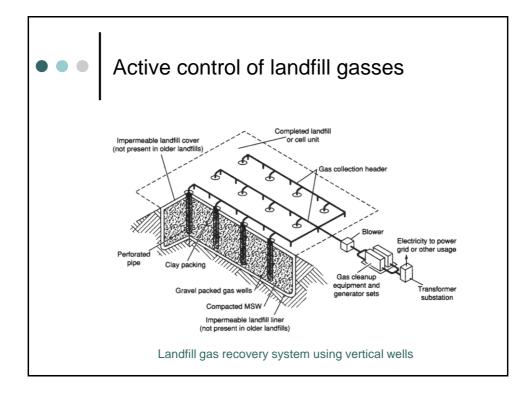


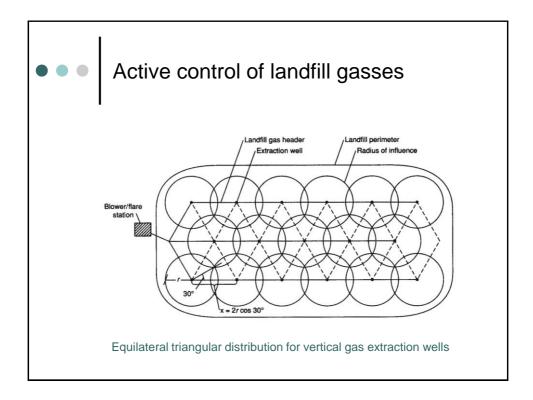


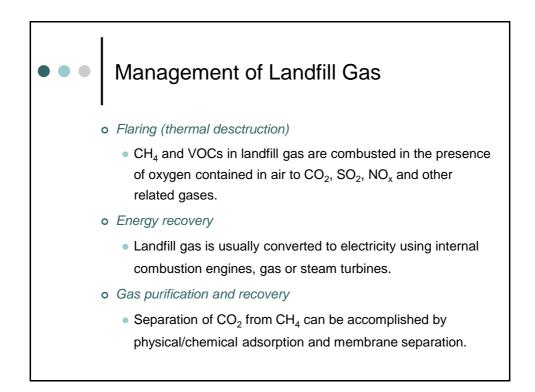


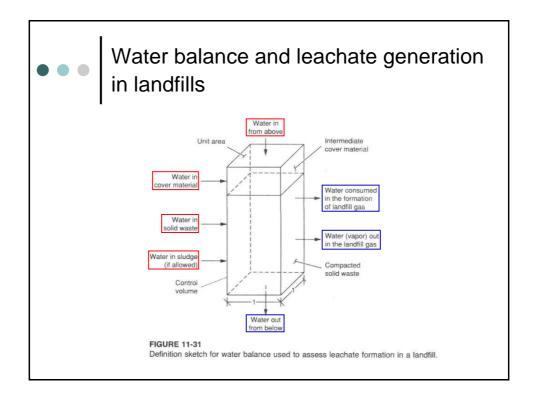


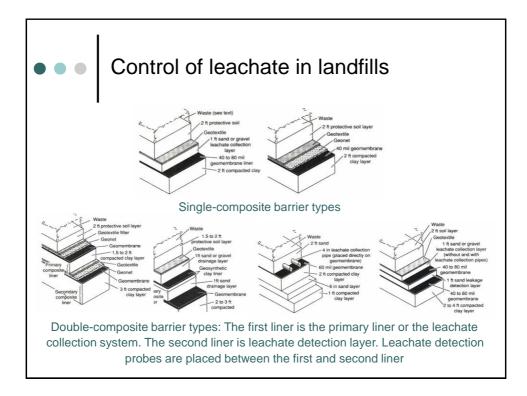


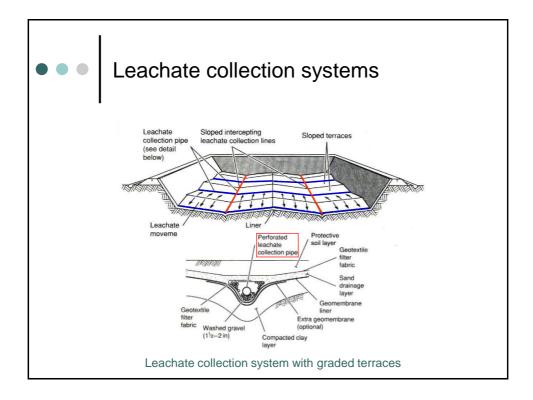


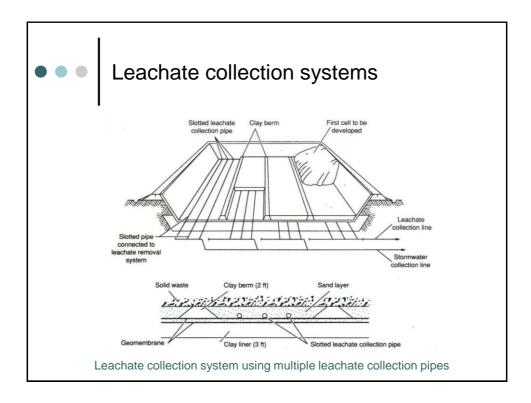


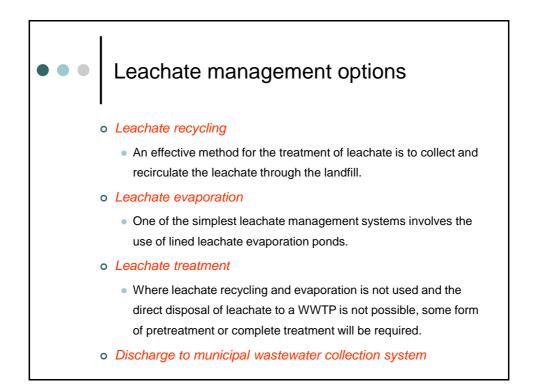


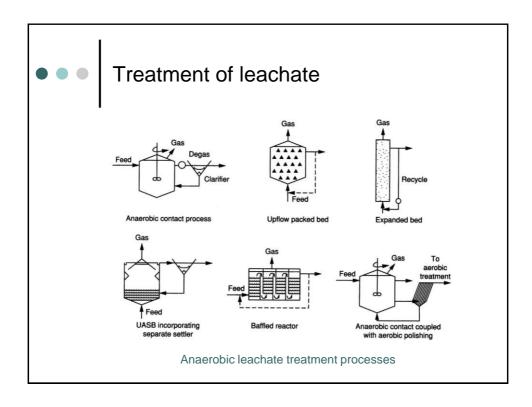

Composition, Formation and Control of Landfill Leachate

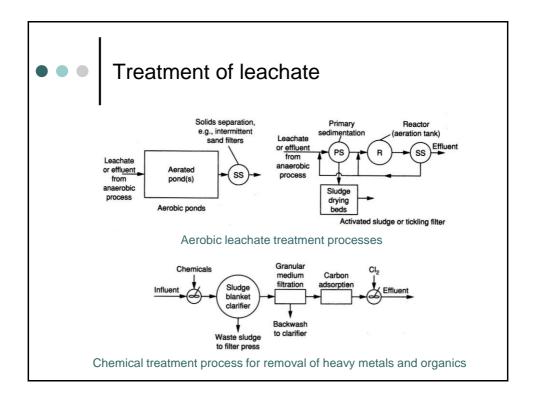

TADI E 11 12

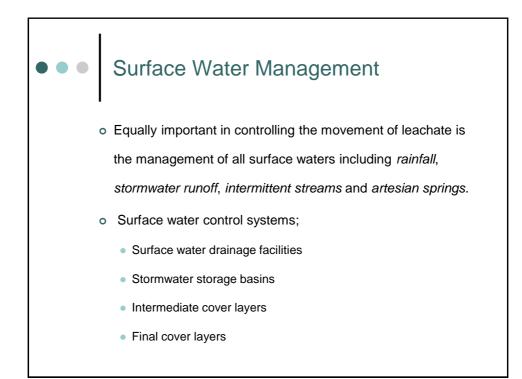

Leachate is the liquid that percolates through solid waste and extracts dissolved and suspended materials

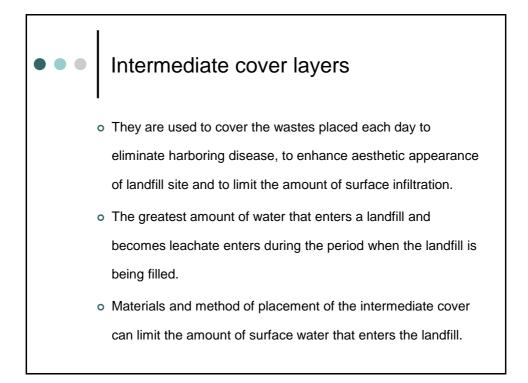

IADLE 11-13			
Tunical data on	the composition of	leachate from new	and mature landfills ^a
Typical uata on	the composition of	leachate nom new	and mature landins

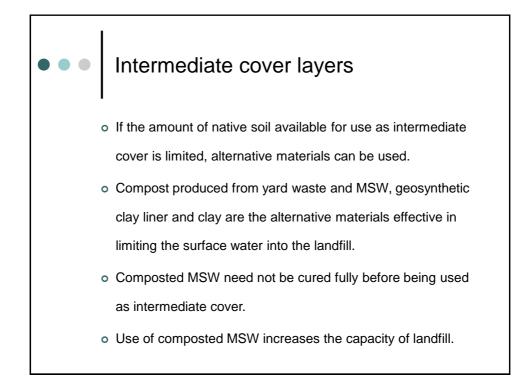

	Value, mg/L ^b				
	New landfill (less t	Mature landfill			
Constituent	Range ^c	Typical	(greater than 10 years)		
BOD ₅ (5-day biochemical oxygen demand)	2,000-30,000	10,000	100-200		
TOC (total organic carbon)	1,500-20,000	6,000	80-160		
COD (chemical oxygen demand)	3,000-60,000	18,000	100-500		
Total suspended solids	200-2,000	500	100-400		
Organic nitrogen	10-800	200	80-120		
Ammonia nitrogen	10-800	200	20-40		
Nitrate	5-40	25	5-10		
Total phosphorus	5-100	30	5-10		
Ortho phosphorus	4-80	20	4-8		
Alkalinity as CaCO ₃	1,000-10,000	3,000	200-1,000		
pH	4.5-7.5	6	6.6-7.5		
Total hardness as CaCO ₃	300-10,000	3,500	200-500		
Calcium	200-3,000	1,000	100-400		
Magnesium	50-1,500	250	50-200		
Potassium	200-1,000	300	50-400		
Sodium	200-2,500	500	100-200		
Chloride	200-3,000	500	100-400		
Sulfate	50-1,000	300	20-50		
Total iron	50-1.200	60	20-200		

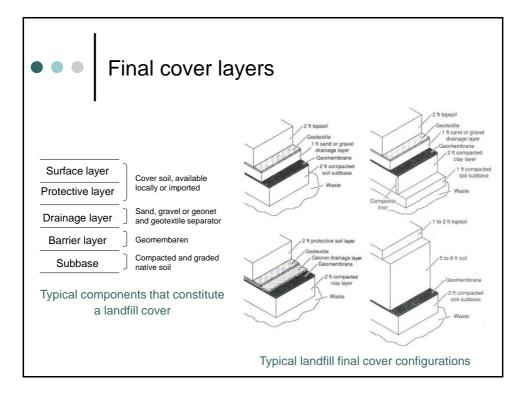


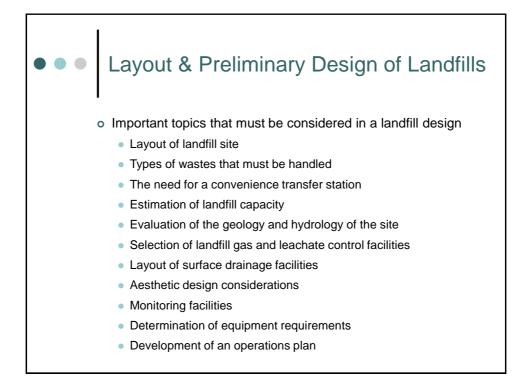


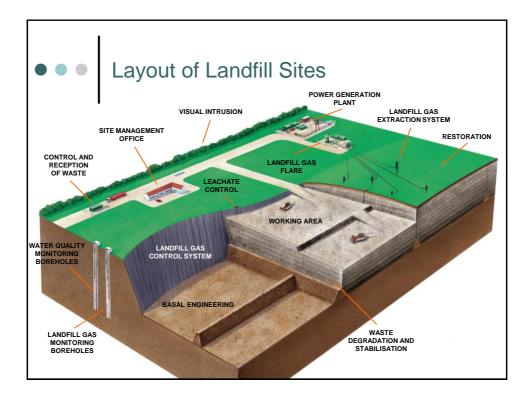


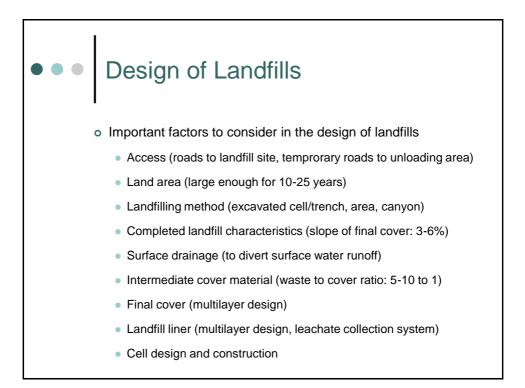

reatment c	of leachate: C	hemical & phys
perations 1	Table 11-18	hemical & phys
Treatment process	Application	Comments
Chemical processes Neutralization	pH control	Of limited applicability to most leachates
Precipitation	Removal of metals and some anions	Produces a sludge, possibly requiring disposal as a hazardous waste
Oxidation	Removal of organics; detoxification of some inorganic species	Works best on dilute waste streams; use of chlorine can result in formation of chlorinated hydrocarbons
Wet air oxidation	Removal of organics	Costly; works well on refractory organics
Physical operations Sedimentation/flotation	Removal of suspended matter	Of limited applicability alone; may be used in conjunction with other treat- ment processes
Filtration	Removal of suspended matter	Useful only as a polishing step
Air stripping	Removal of ammonia or volatile organics	May require air pollution control equipme
Steam stripping	Removal of volatile organics	High energy costs; condensate steam requires further treatment
Adsorption	Removal of organics	Proven technology; variable costs depending on leachate
lon exchange	Removal of dissolved inorganics	Useful only as a polishing step
Ultrafiltration	Removal of bacteria and high molecular weight organics	Subject to fouling; of limited applicability to leachate
Reverse osmosis	Dilute solutions of inorganics	Costly; extensive pretreatment necessary
Evaporation	Where leachate discharge is not permissible	Resulting sludge may be hazardous; can be costly except in arid regions

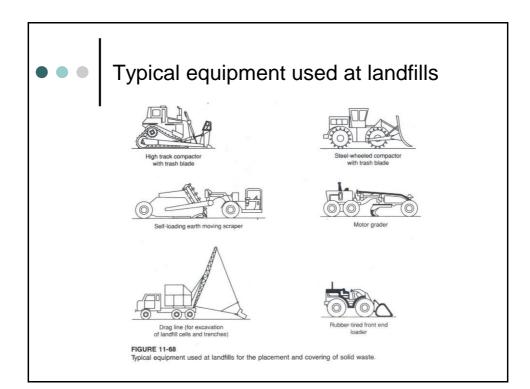

Treatment	of leachate: I	Biological processes
Treatment process	Application	Comments
Biological processes Activated sludge	Removal of organics	Defoaming additives may be necessary; separate clarifler needed
Sequencing batch reactors	Removal of organics	Similar to activated sludge, but no separate clarifier needed; only applicable to relatively low flow rates
Aerated stabilization basins	Removal of organics	Requires large land area
Fixed film processes (trickling filters, rotating biological contactors)	Removal of organics	Commonly used on industrial effluents similar to leachates, but untested on actual landfill leachates
Anaerobic lagoons and contactors	Removal of organics	Lower power requirements and sludge production than aerobic systems; requires heating; greater potential for process instability; slower than aerobic systems
Nitrification/denitrification	Removal of nitrogen	Nitrification/denitrification can be accomplished simultaneously with the removal of organics







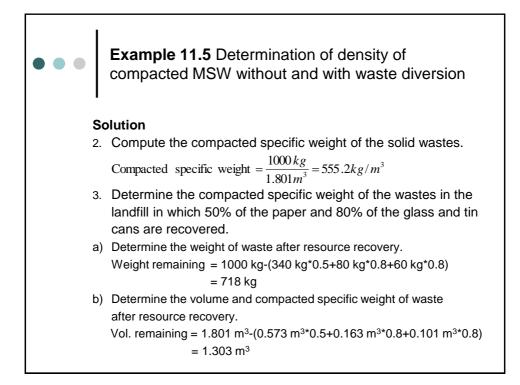


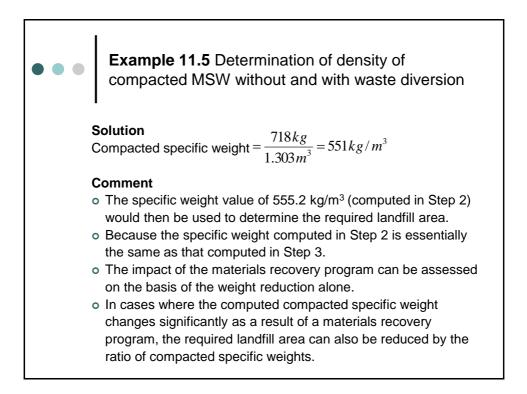


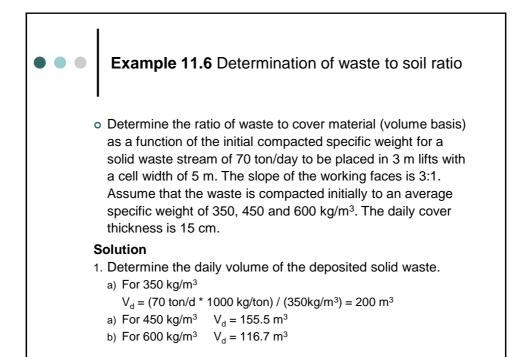
o Important factors to consider in the design of landfills

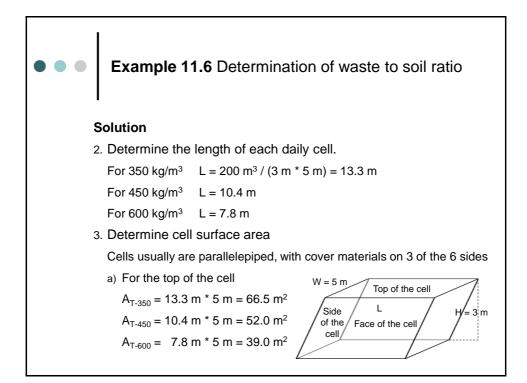
- Groundwater protection (divert any underground springs)
- Landfill gas management (passive and active control)
- Leachate collection (determine Q_{max} and size of collection pipes)
- Leachate treatment (Based on expected leachate flow rate and discharge standards select the appropriate treatment process)
- Environmental requirements (gas and liquid monitoring facilities)
- Equipment requirements
- Fire prevention

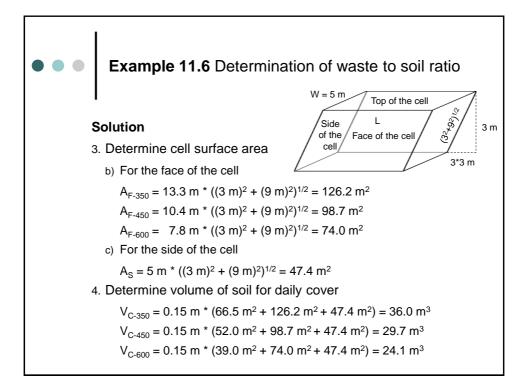
Example 11.5 Determination of density of compacted MSW without and with waste diversion

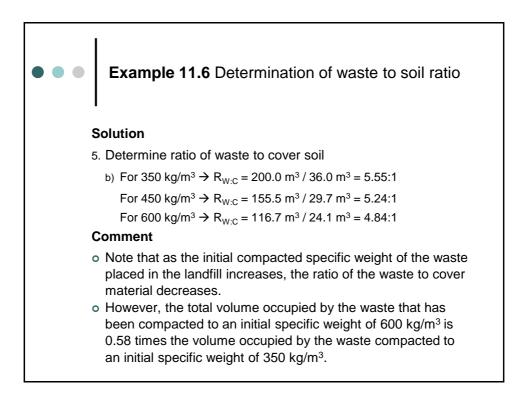

 Determine the specific weight in a well-compacted landfill for MSW with the characteristics given in Table 3-4. Also determine the impact of a resource recovery program on landfill area requirements in which 50% of the paper and 80% of the glass and tin cans are recovered. Assume that the wastes have the characteristics reported in Table 3-4.

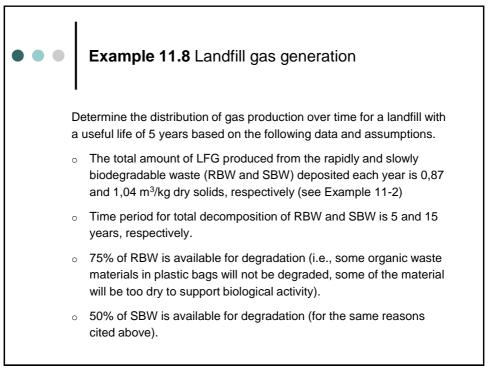

Solution

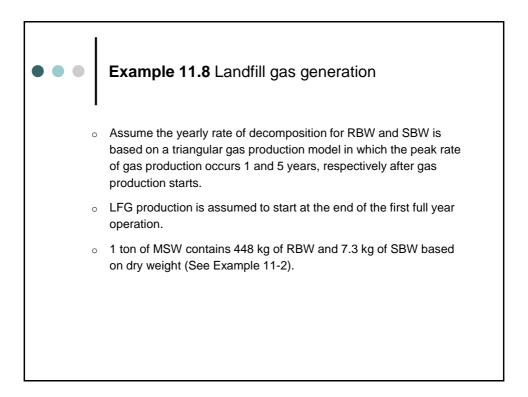

 Set up a computation table with separate columns for (1) the weight of the individual solid waste components, (2) the volume of the wastes as discarded,(3) the compaction factors for well-compacted solid wastes, and (4) the compacted volume in the landfill. The required table, based on a total weight of 1000 kg, is given on the next slide.

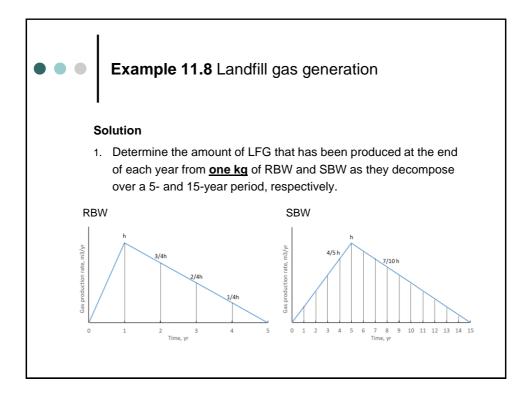

Example 11.5 Determination of density of compacted MSW without and with waste diversion

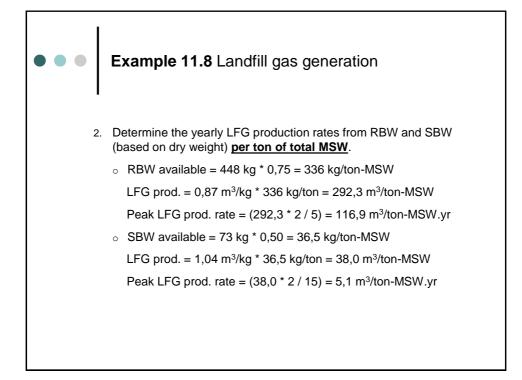

Component	Weight of solid waste, kg	Specific weight, kg/m3	Volume as discarded, m ³	Compaction factor	Compacted vol. in landfill, m ³
Organic					
Food wastes	90	291	0.309	0.330	0.102
Paper	340	89	3.820	0.150	0.573
Cardboard	60	50	1.200	0.180	0.216
Plastics	70	65	1.077	0.100	0.108
Textiles	20	65	0.308	0.150	0.046
Rubber	5	131	0.038	0.300	0.011
Leather	5	160	0.031	0.300	0.009
Yard wastes	185	101	1.832	0.200	0.366
Wood	20	237	0.084	0.300	0.025
Inorganic					
Glass	80	196	0.408	0.400	0.163
Tin cans	60	89	0.674	0.150	0.101
Aluminum	5	160	0.031	0.150	0.005
Other metals	30	320	0.094	0.300	0.028
Dirt, ashes, etc.	30	481	0.062	0.750	0.047
Total	1000		9.969		1.801

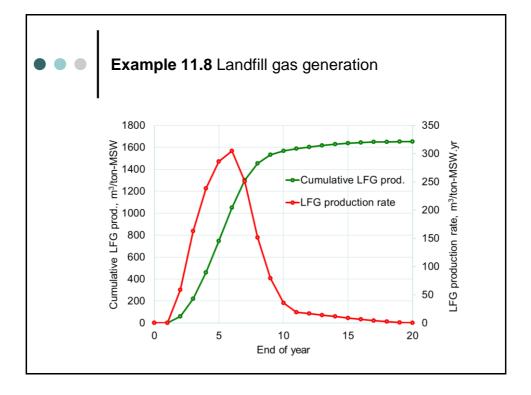


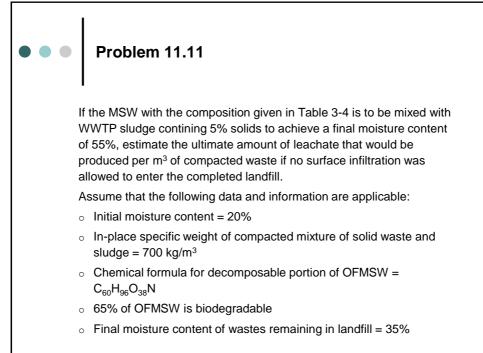


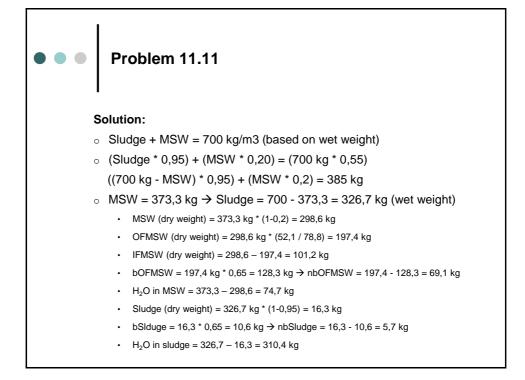


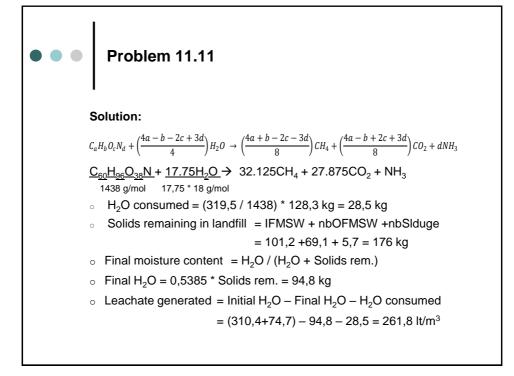




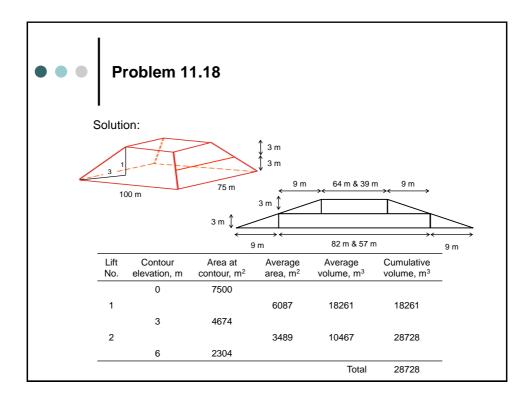


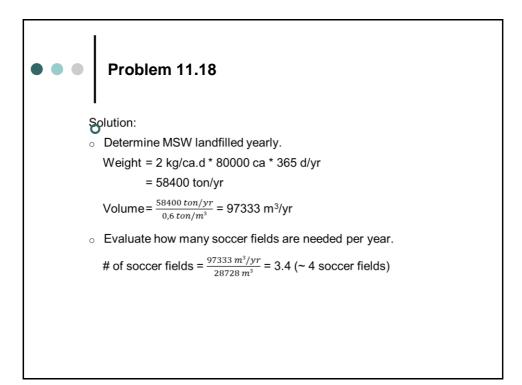

• • •	Ex	ample 11.8	Landfill gas	s gen	eration							
					For SBW	3W						
	Surfac	e area of triangle	$o = \frac{time * h}{b}$	End of	Rate of LFG	LFG						
	production, m ³ /yr	production, m ³										
				1	0,000							
	h of PF	$BW = \frac{0,87m^3 * 2}{5 yr} =$	$0.248 m^{3}/m^{2}$	2	0,028	0,014						
		$500 - \frac{5yr}{5yr}$	3	0,055	0,042							
				4	0,083	0,069						
	h of SF	$3W = \frac{1,04m^3 * 2}{15 yr} =$	5	0,111	0,097							
		15 yr	6	0,139	0,125							
			7	0,125	0,132							
		For RBW		8	0,111	0,118						
	End of	Rate of LFG	LFG	9	0,097	0,104						
	year	production, m ³ /yr	production, m ³	10	0,083	0,090						
	1	0,000		11	0,069	0,076						
	2	0,348	0,174	12	0,055	0,062						
	3	0,261	0,305	13	0,042	0,049						
	4	0,174	0,218	14	0,028	0,035						
	5	0,087	0,131	15	0,014	0,021						
	6	0,000	0,044	16	0,000	0,007						
		Total		Total	1,040							

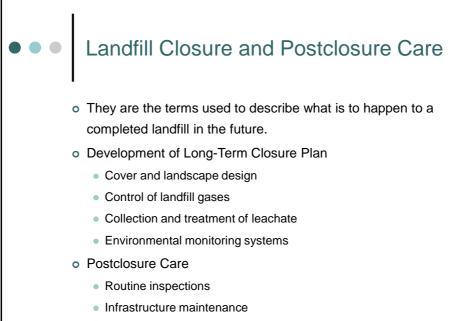



•••	Example 11.8 Landfill gas generation									
		LFG produc	tion-RBW	LFG production-SBW		Total LFG production				
	End of	m ³ /	m ³ /	m ³ /	m³/	m ³ /	m ³ /			
	year	ton-MSW.yr	ton-MSW	ton-MSW.yr	ton-MSW	ton-MSW.yr	ton-MSW			
	0	0,0	0,0	0,0	0,0	0,0	0,0			
	1	0,0	0,0	0,0	0,0	0,0	0,0			
	2	116,9	58,5	1,0	0,5	117,9	59,0			
	3	87,7	102,3	2,0	1,5	89,7	103,8			
	4	58,5	73,1	3,0	2,5	61,5	75,6			
	5	29,2	43,8	4,0	3,5	33,3	47,4			
	6	0,0	14,6	5,1	4,6	5,1	19,2			
	7			4,6	4,8	4,6	4,8			
	8			4,0	4,3	4,0	4,3			
	9			3,5	3,8	3,5	3,8			
	10			3,0	3,3	3,0	3,3			
	11			2,5	2,8	2,5	2,8			
	12			2,0	2,3	2,0	2,3			
	13			1,5	1,8	1,5	1,8			
	14			1,0	1,3	1,0	1,3			
	15			0,5	0,8	0,5	0,8			
	16			0,0	0,3	0,0	0,3			
	Total		292,3		38,0		330,3			


Exa	ampl	e 11.	. 8 Lar			gener			
			LFG pro		Yearly LFG				
End of your	Year 1	Veer 2	m³/ton- Year 3	MSW.yr	Veer E	Total	m ³ /ton-MSW		
End of year		Year 2	rear 3	Year 4	Year 5				
0	0					0	0	0	
1	0,0	0.0				0,0	0,0	0,0	
	117,9	0,0	0.0			117,9	59,0	59,0	
3	89,7	117,9	0,0	0.0		207,7	162,8	221,8	
4	61,5	89,7	117,9	0,0		269,2	238,4	460,2	
5	33,3	61,5	89,7	117,9	0,0	302,4	285,8	746,0	
6	5,1	33,3	61,5	89,7	117,9	307,5	305,0	1051,0	
7	4,6	5,1	33,3	61,5	89,7	194,1	250,8	1301,8	
8	4,0	4,6	5,1	33,3	61,5	108,4	151,3	1453,1	
9	3,5	4,0	4,6	5,1	33,3	50,5	79,5	1532,5	
10	3,0	3,5	4,0	4,6	5,1	20,2	35,4	1567,9	
11	2,5	3,0	3,5	4,0	4,6	17,7	19,0	1586,9	
12	2,0	2,5	3,0	3,5	4,0	15,2	16,4	1603,3	
13	1,5	2,0	2,5	3,0	3,5	12,7	13,9	1617,2	
14	1,0	1,5	2,0	2,5	3,0	10,1	11,4	1628,6	
15	0,5	1,0	1,5	2,0	2,5	7,6	8,9	1637,5	
16	0,0	0,5	1,0	1,5	2,0	5,1	6,3	1643,8	
17	0,0	0,0	0,5	1,0	1,5	3,0	4,0	1647,9	
18	0,0	0,0	0,0	0,5	1,0	1,5	2,3	1650,1	
19	0,0	0,0	0,0	0,0	0,5	0,5	1,0	1651,1	
20	0,0	0,0	0,0	0,0	0,0	0,0	0,3	1651,4	







Environmental monitoring systems