Chapter 9&12 Separation and Processing of Solid Waste

	Item	Function/material processed	Preprocessing
		Unit operations	
Table 9.3	Shredding Hammer mills	Size reduction/all types of wastes	Removal of large bulky items, removal of contaminants
	Flail mills	Size reduction, also used as bag breaker/all types of wastes	Removal of large bulky items, removal of contaminants
	Shear shredder	Size reduction, also used as bag breaker/all types of wastes	Removal of large bulky items, removal of contaminants
	Glass crushers	Size reduction/all types of glass	Removal of all nonglass materials
Hammer Mill rotor and rotor shaft	Wood grinders	Size reduction/yard trimmings/all types of wood wastes	Removal of large bulky items, removal of contaminants
hammer	Screening	Separation of over- and under-sized material; trommel also used as bag breaker/all types of waste	Removal of large bulky items, large pieces of cardboard
	Cyclone separator	Separation of light combustible mate- rials from air stream/prepared waste	Material is removed from air stream containing light combustible materials
	Density separation (air classification)	Separation of light combustible materials from air stream	Removal of large bulky items, large pieces of cardboard, shredding of waste
	Magnetic separation	Separation of ferrous metal from commingled wastes	Removal of large bulky items, large pieces of cardboard, shredding of waste
	Densification Balers	Compaction into bales/paper, card- board, plastics, textiles, aluminum	Balers are used to bale separated components
	Can crushers	Compaction and flattening/aluminum and tin cans	Removal of large bulky items
	Wet separation	Separation of glass and aluminum	Removal of large bulky items
Shear shreader	Weighing facilities Platform scales	Operational records	
-	Small scales	Operational records	
		Handling, moving, and storage fai	cilities
	Conveyor belts	Materials transport/all types of materials	Removal of large bulky items
STATE -	Picking betts	Manual separation of waste materials/source-separated and commingled MSW	Removal of large bulky items
A	Screw (auger) conveyors (Use not well established)	Materials transport; also used as bag breaker/all types of waste	Removal of large bulky items
A A A A A A A A A A A A A A A A A A A	Movable equipment	Materials handling and moving/all types of waste	
	Storage facilities	Materials storage/all types of	Densification, glass crushing, etc.

11

Single-stream recycling

- At first, the workers separate the paper and cardboard from the other materials. They throw them into the chutes.
- Then, they check to make sure that no glass, plastic, aluminum or steel is mixed in with the paper.

Single-stream recycling

- The baler compacts the loose paper into huge rectangular bales.
 Bales keep their shape because they are tied with baling wire.
- Bales are stacked together until there is enough to fill a truck trailer.
- When there are enough bales, they are loaded and transported to a processor, where new paper is produced out of recycled paper.

Single-stream recycling

- After separation of paper, the plastics are separated manually according to their sorts, such as transparent and colored plastics.
- The rest is grouped together.
- After separation of plastics, glass bottles are separated manually into the three colors: clear, brown and green.

Single-stream recycling

- The steel is separated from the other materials by a magnet that sits above the sort line.
- Steel cans are grabbed off the line by the magnet. The magnet rotates from left to right and drops the steel cans into a bin on the right.
- Aluminum cans travel beneath the magnet and are not picked up, remain on the line.

Component	MSW, kg	Moisture content, %	Dry weight, kg	Inert Residue, %	Inert Residue, kg	% distribution in residue
Organic					-	
Food wastes	90	70	27	5	1,4	0,6
Paper	340	6	319,6	6	19,2	8,6
Cardboard	60	5	57	5	2,9	1,3
Plastics	70	2	68,6	10	6,9	3,1
Textiles	20	10	18	6.5	1,2	0,5
Rubber	5	2	4,9	9.9	0,5	0,2
Leather	5	10	4,5	9.0	0,4	0,2
Yard wastes	185	60	74	4.5	3,3	1,5
Wood	20	20	16	1.5	0,2	0,1
Inorganic			0			
Glass	80	2	78,4	98	76,8	34,7
Tin cans	60	3	58,2	98	57,0	25,7
Aluminum	5	2	4,9	96	4,7	2,1
Other metal	30	3	29,1	98	28,5	12,9
Dirt, ash, etc	30	8	27,6	68	18,8	8,5
Total	1000				221.7	100

Example 9.3 Determination of volume reduction and volume of residue after combustion.

Example 9.3 Determination of volume reduction and volume of residue after combustion.

 Estimate the original and final volumes before and after combustion. To estimate the approximate initial volume, assume that the average specific weight of the solid wastes in the combustor storage pit is about 250 kg/m³.

> Original volume = $\frac{1000 \ kg}{250 \ kg/m^3}$ = 4.0 m³ Residue volume = $\frac{221.7 \ kg}{600 \ kg/m^3}$ = 0.37 m³

o Estimate the volume reduction by using the following Eq.

Volume reduction = $\frac{(4.0-0.37)}{4.0} x \ 100 = 91\%$

• • • Example 9.4 Estimate content of MSW for variable	e the change arious levels	in the of recy	energ cling	IУ
 Determine the energy 		Level of recycling, %		
o Determine the energy	Component	One	Two	Three
content of the typical	Organic			
MSW given in Table 3-4	Food wastes	0	0	0
for the following levels of	Paper	20	35	50
recycling.	Cardboard	20	30	40
	Plastics	20	30	40
 Also determine the 	Textiles	10	20	30
overall recycle	Rubber	10	20	30
percentage, by weight.	Leather	10	20	30
represented by each	Yard wastes	0	15	30
level of recurling	Wood	10	20	30
level of recycling.	Inorganic			
	Glass	20	30	40
	Tin cans	10	20	30
	Aluminum	50	70	90
	Other metal	10	20	30
	Dirt, ash, etc	0	0	0

Example 9.4 Estimate the change in the energy
content of MSW for various levels of recycling
Solution:

	Weight, kg (% by weight)									
Component	No recycling		Level 1		Level 2		Level 3			
Food wastes	9.0	(9.0)	9.0	(10.3)	9.0	(11.9)	9.0	(13.9)		
Paper	34.0	(34.0)	27.2	(31.1)	22.1	(29.1)	17.0	(26.3)		
Cardboard	6.0	(6.0)	4.8	(5.5)	4.2	(5.5)	3.6	(5.6)		
Plastics	7.0	(7.0)	5.6	(6.4)	4.9	(6.4)	4.2	(6.5)		
Textiles	2.0	(2.0)	1.8	(2.1)	1.6	(2.1)	1.4	(2.2)		
Rubber	0.5	(0.5)	0.5	(0.6)	0.4	(0.5)	0.4	(0.6)		
Leather	0.5	(0.5)	0.5	(0.6)	0.4	(0.5)	0.4	(0.6)		
Yard wastes	18.5	(18.5)	18.5	(21.1)	15.7	(20.7)	13.0	(20.1)		
Wood	2.0	(2.0)	1.8	(2.0)	1.6	(2.1)	1.4	(2.2)		
Glass	8.0	(8.0)	6.4	(7.3)	5.6	(7.4)	4.8	(7.4)		
Tin cans	6.0	(6.0)	5.4	(6.2)	4.8	(6.3)	4.2	(6.5)		
Aluminum	0.5	(0.5)	0.3	(0.3)	0.2	(0.3)	0.1	(0.2)		
Other metal	3.0	(3.0)	2.7	(3.1)	2.4	(3.2)	2.1	(3.3)		
Dirt,ash, etc.	3.0	(3.0)	3.0	(3.4)	3.0	(4.0)	3.0	(4.6)		
Total	100.0	(100.0)	87.5	(100.0)	75.9	(100.0)	64.6	(100.0		
Amount of waste recyled, %	0.0		1	12.5		24.1		35.4		

Example 9.4 Estimate the change in the energy content of MSW for various levels of recycling **Solution:**

9 kg	* 4652 kJ/ka = 41868 kJ	<u>لے</u>	1178191 kJ / 100 kg = 11781.9 k.			
	j	<u> </u>	Total ener	gy content kl		
Component	Energy, kJ/kg	No recycling	Level 1	Level 2	Level 3	
Food wastes	4652	41868	4186	68 41868	41868	
Paper	16747	569398	45551	370109	284699	
Cardboard	16282	97692	7815	68384	58615	
Plastics	32564	227948	18235	58 159564	136769	
Textiles	17445	34890	3140	01 27912	24423	
Rubber	23260	11630	1163	9304	9304	
Leather	17445	8723	872	6978	6978	
Yard wastes	6513	120491	12049	102254	84669	
Wood	18608	37216	3349	29773	26051	
Glass	140	1120	89	784	672	
Tin cans	698	4188	376	59 3350	2932	
Aluminum	0	0		0 0	0	
Other metal	698	2094	188	35 1675	1466	
Dirt,ash, etc.	6978	20934	2093	34 20934	20934	
Energy content, kJ	/kg	11781.9	9911	.2 8428.9	6993.8	
ka	al/kg	2816	236	59 2015	1672	
(11781.9 kJ/kg) / (4.184 kJ/kcal) = 2816 kcal/						