

 Comparison of composting and AD 				
Table 1/1-5	Comparison of aerobic (compositing and anaerobic		
	companioon or acrosic (sempeeting and analorebie		
	digestion for processing	the OFMSW		
	digestion for processing	the OFMSW		
Characteristic	digestion for processing	Anaerobic digestion		
Characteristic	Aerobic composting Net energy consumer	Anaerobic digestion		
Characteristic Energy use End products	Aerobic composing Aerobic composting Net energy consumer Humus, CO ₂ , H ₂ O	Anaerobic digestion Net energy producer Sludge, CO2, CH4		
Characteristic Energy use End products Volume reduction	Aerobic composing Aerobic composting Net energy consumer Humus, CO ₂ , H ₂ O Up to 50%	Anaerobic digestion Net energy producer Sludge, CO2, CH4 Up to 50%		
Characteristic Energy use End products Volume reduction Processing time	Aerobic composing Aerobic composting Net energy consumer Humus, CO ₂ , H ₂ O Up to 50% 20 to 30 days	Anaerobic digestion Net energy producer Sludge, CO ₂ , CH ₄ Up to 50% 20 to 40 days		
Characteristic Energy use End products Volume reduction Processing time Primary goal	Aerobic composing Aerobic composting Net energy consumer Humus, CO ₂ , H ₂ O Up to 50% 20 to 30 days Volume reduction	Anaerobic digestion Net energy producer Sludge, CO2, CH4 Up to 50% 20 to 40 days Energy production		

Organism	Observations
Salmonella typhosa	No growth beyond 46°C; death within 30 minutes at 55-60°C and within 20 minutes at 60°C; destroyed in a short time in compost environment.
Salmonella sp.	Death within 1 hour at 55°C and within 15-20 minutes at 60°C.
Shigella sp.	Death within 1 hour at 55°C.
Escherichia coli	Most die within 1 hour at 55°C and within 15–20 minutes at 60°C.
Entamoeba histolytica cysts	Death within a few minutes at 45°C and within a few seconds at 55°C.
Taenia saginata	Death within a few minutes at 55°C.
Trichinella spiralis larvae	Quickly killed at 55°C; instantly killed at 60°C.
Brucella abortus or Br. suis	Death within 3 minutes at 62–63°C and within 1 hour at 55°C.
Micrococcus pyogenes var. aureus	Death within 10 minutes at 50°C.
Streptococcus pyogenes	Death within 10 minutes at 54°C.
Mycobacterium tuberculosis var. hominis	Death within 15-20 minutes at 66°C or after momentary heating at 67°C.
Corynebacterium diphtheriae	Death within 45 minutes at 55°C.
Necator americanus	Death within 50 minutes at 45°C.
Ascaris lumbricoides eggs	Death in less than 1 hour at temperatures over 50°C.

Control of p	Dathogens (Table 14-9)			
EPA requirements for pathogen control in compost processes ^a				
Requirement	Remarks			
Processes to significantly reduce pathogens (PSRP)	Using the in-vessel, aerated static pile, or windrow composting methods, the solid waste is maintained at minimum operating conditions of 40°C for 5 days. For four hours during this period, the temperature exceeds 55°C.			
Processes to further reduce pathogens (PFRP)	Using the in-vessel or aerated static pile composting methods, the solid waste is maintained at operating conditions of 55°C or greater for three days.			
	Using the windrow composting method, the solid waste is main- tained at operating conditions of 55°C or greater for at least 15 days during the composting period. Also, during the high- temperature period there will be a minimum of five turnings of the windrow.			

••• Biogas production $Crganic matter + H_2O + nutrients + New cells + resistant organic matter$ $+ CO_2 + CH_4 + NH_3 + H_2S + heat$ $CO_2 + CH_4 + NH_3 + H_2S + heat$ If it is assumed that organic matter is stabilized completely, the overall conversion of OFMSW waste to CH₄, CO₂ and NH₃ can be represented as follows; $C_3H_bO_cN_d + (4a-b-2c+3d)H_2O + (4a+b-2c-3d)CH_4 + (4a-b+2c+3d)CO_2 + dNH_3 + dA_3 + dA_3$

•	Other biolo	ogical process	ses
	Table 14-15 Bio produ	logical processes for the ucts from the organic fra	e recovery of conversion action of MSW
	Process	Conversion product	Preprocessing
	Aerobic conversion	Compost (soil conditioner)	Separation of organic fraction, particle size reduction
	Anaerobic digestion (in landfill)	Methane and carbon dioxide	None, other than placement in containment cells
	Anaerobic digestion (low-solids, 4 to 8 percent solids)	Methane and carbon dioxide, digested solids	Separation of organic fraction, particle size reduction
	Anaerobic digestion (high-solids, 22 to 35 percent solids)	Methane and carbon dioxide, digested solids	Separation of organic fraction, particle size reduction
	Enzymatic hydrolysis	Glucose from cellulose	Separation of cellulose-containing materials
	Fermentation (following acid or enzymatic hydrolysis)	Ethanol, single-cell protein	Separation of organic fraction, particle size reduction, acid or enzymatic hydrolysis to produce glucose

