

5-6 December 2014 Porto Bello Hotel, Antalya

ANAEROBIC DIGESTION OF NITROGEN-RICH CHICKEN MANURE

BARIŞ ÇALLI

Marmara University, Environmental Engineering Department

Göztepe-Kadıköy, ISTANBUL

http://mebig.marmara.edu.tr

baris.calli@marmara.edu.tr

Anaerobic Digestion (AD)

 A process in which complex organic materials are converted to biogas in the absence of O₂ via activity of several groups of anaerobic microorganisms linked trophically to each other.

Composition of Biogas

Component	Percentage (%)
Methane (CH ₄)	50-70
Carbondioxide (CO ₂)	30-40
Nitrogen (N ₂)	0-5
Hydrogen (H ₂)	<1
Oxygen (O ₂)	<0.4
Hydrogen sulfide (H ₂ S)	0-0.4

Energy Content of Biogas

	Energy Content (kWh)
1 Nm ³ biogas (60%CH ₄)	6.0
1 Nm ³ upgraded biogas (97% CH ₄)	9.7
1 Nm ³ natural gas	11.0
1 L gasoline	9.2
1 L diesel	9.8
1 kg coal	7.8

Wastes suitable for biogas production

- Sewage sludges (primary and secondary sludge)
- Animal manures (chicken, cow etc.)
- Agricultural residues, Energy crops
- Yard (green) wastes
- Organic fraction of municipal waste
- Fruit and vegetable processing wastes
- Slaughterhouse wastes
- (Micro)algae biomass
- Waste paper
- Industrial wastewater (Potato, sugar, dairy, brewery, etc.)

Turkish Regulation for Renewable Energy Generation

- Turkey aspires to have an installed capacity of 30% of renewable energy by 2023.
- REL (No. 5346): Law on Utilization of Renewable Energy Sources for the Purpose of Generating Electrical Energy
- Installed capacity < 1 MW \rightarrow no need to obtain a license
- Feed-in tariff¹ applied to biogas (incl. LFG) investments: 13.3 USD cent/kWh
- Local equipment bonus: 5.6 USD cent/kWh

¹ Feed-in tariff (FIT) is a pricing mechanism designed to promote investment in renewable energy technologies

Biogas Potential in Turkey

Source	Biogas Potential
Jource	(1001) year)
Animal Manure	21,78
Industrial Waste	4,11
Municipal Waste	3,06
Agricultural Residue	2,33
Total	31.28

Turkish-German Biogas Project, 2011

Biogas Plants in Turkey

Total installed capacity: 183 MW

Use of Biogas Potential

Number of Livestock in Turkey

Total Number	275.820.136
Poultry (broiler and laying hen)	234.918.385
Ruminants (sheep, goat, etc.)	29.382.924
Bovine (cattle etc.)	11.518.827

Biogas Yield & Energy Value of Manure

Animals	# of animals for 1 ton/d of manure	Dry matter, %	Biogas yield, m3/ton	Energy value, kWh/ton
Cattle	20-40	8-12%	25	150
Laying hen	8000-9000	25-30%	90-150	540-900
Broiler	10000-15000	50-60%	50-100	300-600
Pig	250-300	9-10%	26	156

http://www.anaerobic-digestion.com

A Typical Manure Type Biogas Plant

Chicken Manure Digestion

- Chicken manure is rich in organic nitrogen
- Cause decline in biogas production if digested with being diluted with water or other organic waste listed in slide 5
- To achieve biogas production w/o dilution, ammonia has to be removed
 - From raw chicken manure before digestion or
 - Directly from the digester

Model Manure Type Biogas Plant

- Chicken manure
- Agricultural/food waste
- Water/wastewater
- Biogas generation
- Electricity production
- Fertilizer Production
- Investment cost
- Payback period

: 250-300 ton/d

- : 50-100 ton/d (co-substrate)
- : 500 m³/d (for dilution)
- : ~40.000 m³/d (60% CH4)
- : ~70.000 kWh/d
- : ~200 ton/d (%50 Dry)
- : ~600 m³/d (Liquid)
- : 10-12 million Euro
- : ~3 years

Laboratory Experiments

Lab-scale Anaerobic Digester

- Total volume 16 L (14.5 L wet)
- Continuously stirred (45 rpm)
- Fed once a day
- Kept at 36-42 °C using heating coils
- Biogas is stored in aluminium foil gas bags

Analyses

Parameter	Method	Frequency	
Biogas volume	Milligascounter	Daily	
Methane %	GC-TCD	2/week	
VFAs	GC-FID	3/week	
Total alkalinity	Titrimetric	3/week	
рН	pH meter	3/week	
TS and VS	Gravimetric	3/week	
TKN	Digestion & distillation	2/week	
NH ₄ -N	Nesslerization	2/week	

Operation Conditions

Period Days	I 0-49	 49-70	III 70-128	IV 128-157	V 157-177	VI 177-277	VII 277-322
OLR, kgVS/m ³ .d	2.78		3.52	1-3.61		1.72	2.53
TKN _{inf} , mg/l	3960	5020	5950	6560	5610	2160	3200
HRT, d		23			28	2	3
TS _{inf} , %	9.8	12.4	13	3.5	14.9	5.7	8.6
Temp., °C		36+/-1°C				After 42+	Day 236 -/-1°C

Results - VFAs

Results - VFAs

Marmara Üniversitesi 24

Conclusions

- Biogas production target = 40.000 m³/d
- CH_4 production target = 24.000 m³/d
- Achieved in laboratory study
 - CH_4 yield > 0.25 m³/kgVS (if NH₄⁺-N <5000 mg/l)
 - $CH_4 \text{ production} = 20.000-25.000 \text{ m}^3/\text{d}$
 - CH_4 yield < 0.25 m³/kgVS (if NH₄⁺-N >5000 mg/l)
 - $CH_4 \text{ production} = 15.000-20.000 \text{ m}^3/\text{d}$
- Therefore NH₄ has to be kept below 5000 mg/l with dilution or by being removed from digester

Future Study Plan

- **TUBITAK** Project No. 113Y333 "The effects of trace element supplementation and ammonia removal on biogas production from nitrogen rich organic wastes" 2014-2017.
 - $\circ~$ Effects of TM supplementation will be investigated
 - Stripping and membrane separation will be tested to continuously remove ammonia from the digester
- Partner of COST-ES1302 action 'European Network on Ecological Functions of Trace Metals in Anaerobic Biotechnologies'

http://mebig.marmara.edu.tr

Welcome to MEBiG

Environmental biotechnology is the integration of natural sciences and engineering for development of environment-friendly processes in order to

- develop, use and regulate biological systems for remediation of contaminated environments and

- produce value-added chemicals and bio-energy from waste

Announcements

00

THE REAL

632014

MEBiG Opportunities

If you are interested in research conducted in MEBiG, and see opportunities for obtaining your own support for doctoral or postdoctoral studies from Fellowship and

5-6 December 2014 Porto Bello Hotel, Antalya

ANAEROBIC DIGESTION OF NITROGEN-RICH CHICKEN MANURE

BARIŞ ÇALLI

Marmara University, Environmental Engineering Department

Göztepe-Kadıköy, ISTANBUL

http://mebig.marmara.edu.tr

baris.calli@marmara.edu.tr

