Having read this section you should be able to:
Now we have to start looking into the details of the C language. How easy you find the rest of this section will depend on whether you have ever programmed before - no matter what the language was. There are a great many ideas common to programming in any language and C is no exception to this rule.
So if you haven't programmed before, you need to take the rest of this section slowly and keep going over it until it makes sense. If, on the other hand, you have programmed before you'll be wondering what all the fuss is about It's a lot like being able to ride a bike!
The first thing you need to know is that you can create variables to store values in. A variable is just a named area of storage that can hold a single value (numeric or character). C is very fussy about how you create variables and what you store in them. It demands that you declare the name of each variable that you are going to use and its type, or class, before you actually try to do anything with it.
In this section we are only going to be discussing local variables. These are variables that are used within the current program unit (or function) in a later section we will looking at global variables - variables that are available to all the program's functions.
There are five basic data types associated with variables:
Note: all C's variables must begin with a letter or a "_" (underscore) character.
int variable name;
For example:
int a;
declares that you want to create an int variable called a.
To assign a value to our integer variable we would use the following C statement:
a=10;
The C programming language uses the "=" character for assignment. A statement of the form a=10; should be interpreted as take the numerical value 10 and store it in a memory location associated with the integer variable a. The "=" character should not be seen as an equality otherwise writing statements of the form:
a=a+10;
will get mathematicians blowing fuses! This statement should be interpreted as take the current value stored in a memory location associated with the integer variable a; add the numerical value 10 to it and then replace this value in the memory location associated with a.
For example:
float total;
double sum;
To assign a numerical value to our floating point and double precision variables we would use the following C statement:
total=0.0;
sum=12.50;
To declare a variable of type character we use the keyword char. - A single character stored in one byte.
For example:
char c;
To assign, or store, a character value in a char data type is easy - a character variable is just a symbol enclosed by single quotes. For example, if c is a char variable you can store the letter A in it using the following C statement:
c='A'
Notice that you can only store a single character in a char variable. Later we will be discussing using character strings, which has a very real potential for confusion because a string constant is written between double quotes. But for the moment remember that a char variable is 'A' and not "A".
name = value;
For example:
a=10;
stores the value 10 in the int variable a. What could be simpler? Not much, but it isn't actually very useful! Who wants to store a known value like 10 in a variable so you can use it later? It is 10, always was 10 and always will be 10. What makes variables useful is that you can use them to store the result of some arithmetic.
Consider four very simple mathematical operations: add, subtract, multiply and divide. Let us see how C would use these operations on two float variables a and b.
+ for add - for subtract * for multiply / for divideBE CAREFUL WITH ARITHETIC!!! What is the answer to this simple calculation?
a=10/3
The answer depends upon how a was declared. If it was declared as type int the answer will be 3; if a is of type float then the answer will be 3.333. It is left as an exercise to the reader to find out the answer for a of type char.
Two points to note from the above calculation:
a=10.0 + 2.0 * 5.0 - 6.0 / 2.0
What is the answer? If you think its 27 go to the bottom of the class! Perhaps you got that answer by following each instruction as if it was being typed into a calculator. A computer doesn't work like that and it has its own set of rules when performing an arithmetic calculation. All mathematical operations form a hierachy which is shown here. In the above calculation the multiplication and division parts will be evaluated first and then the addition and subtraction parts. This gives an answer of 17.
Note: To avoid confusion use brackets. The following are two different calculations:
a=10.0 + (2.0 * 5.0) - (6.0 / 2.0)
a=(10.0 + 2.0) * (5.0 - 6.0) / 2.0
You can freely mix int, float and double variables in expressions. In nearly all cases the lower precision values are converted to the highest precision values used in the expression. For example, the expression f*i, where f is a float and i is an int, is evaluated by converting the int to a float and then multiplying. The final result is, of course, a float but this may be assigned to another data type and the conversion will be made automatically. If you assign to a lower precision type then the value is truncated and not rounded. In other words, in nearly all cases you can ignore the problems of converting between types.
This is very reasonable but more surprising is the fact that the data type char can also be freely mixed with ints, floats and doubles. This will shock any programmer who has used another language, as it's another example of C getting us closer than is customary to the way the machine works. A character is represented as an ASCII or some other code in the range O to 255, and if you want you can use this integer code value in arithmetic. Another way of thinking about this is that a char variable is just a single-byte integer variable that can hold a number in the range O to 255, which can optionally be interpreted as a character. Notice, however, that C gives you access to memory in the smallest chunks your machine works with, i.e. one byte at a time, with no overheads.
int a, b, c;
declares three integers: a, b and c. You have to declare all the variables that you want to use at the start of the program. Later you will discover that exactly where you declare a variable makes a difference, but for now you should put variable declarations after the opening curly bracket of the main program.
Here is an example program that includes some of the concepts outlined above. It includes a slightly more advanced use of the printf function which will covered in detail in the next part of this course:
/* /* Program#int.c Another simple program using int and printf */ #include[program]main() { int a,b,average; a=10; b=6; average = ( a+b ) / 2 ; printf("Here "); printf("is "); printf("the "); printf("answer... "); printf("\n"); printf("%d.",average); }
int i=1;
sets the int variable to one as soon as it's created. This is just the same as:
int i; i=l;but the compiler may be able to speed up the operation if you initialise the variable as part of its declaration. Don't assume that an uninitialised variable has a sensible value stored in it. Some C compilers store 0 in newly created numeric variables but nothing in the C language compels them to do so.