Recursive definitions

- The sequence of powers of 2 is given by \(a_n = 2^n \) for \(n=0, 1, 2, \ldots \)
- Can also be defined by \(a_0 = 1 \), and a rule for finding a term of the sequence from the previous one, i.e., \(a_{n+1} = 2a_n \)
- Can use induction to prove results about the sequence
- **Structural induction**: We define a set recursively by specifying some initial elements in a basis step and provide a rule for constructing new elements from those already in the recursive step

Recursively defined functions

- Use two steps to define a function with the set of non-negative integers as its domain
- **Basis step**: specify the value for the function at zero
- **Recursive step**: give a rule for finding its value at an integer from its values at smaller integers
- Such a definition is called a recursive or inductive definition
Example

• Suppose f is defined recursively by
 - f(0)=3
 - f(n+1)=2f(n)+3
Find f(1), f(2), f(3), and f(4)
 - f(1)=2f(0)+3=2*3+3=9
 - f(2)=2f(1)+3=2*9+3=21
 - f(3)=2f(2)+3=2*21+3=45
 - f(4)=2f(3)+3=2*45+3=93

Example

• Give an inductive definition of the factorial function f(n)=n!
 • Note that (n+1)=(n+1)·n!
 • We can define f(0)=1 and f(n+1)=(n+1)f(n)
 • To determine a value, e.g., f(5)=5!, we can use the recursive function
 f(5)=5·f(4)=5·4·f(3)=5·4·3·f(2)=5·4·3·2·f(1)
 =5·4·3·2·1·f(0)=5·4·3·2·1·1=120

Recursive functions

• Recursively defined functions are well defined
• For every positive integer, the value of the function is determined in an unambiguous way
• Given any positive integer, we can use the two parts of the definition to find the value of the function at that integer
• We obtain the same value no matter how we apply two parts of the definition

Example

• Given a recursive definition of a^n, where a is a non-zero real number and n is a non-negative integer
 • Note that a^{n+1}=a·a^n and a^0=1
 • These two equations uniquely define a^n for all non-negative integer n
Example

• Given a recursive definition of \(\sum_{k=0}^{n} a_k \)
• The first part of the recursive definition \(\sum_{k=0}^{n} a_k = a_i \)
• The second part is \(\sum_{k=0}^{n} (x_k + a_{k+1}) \)

Example – Fibonacci numbers

• Fibonacci numbers \(f_0, f_1, f_2, \ldots \) are defined by the equations, \(f_0 = 0, f_1 = 1 \), and \(f_n = f_{n-1} + f_{n-2} \) for \(n = 2, 3, 4, \ldots \)
• By definition
 \[
 f_2 = f_1 + f_0 = 1 + 0 = 1 \\
 f_3 = f_2 + f_1 = 1 + 1 = 2 \\
 f_4 = f_3 + f_2 = 2 + 1 = 3 \\
 f_5 = f_4 + f_3 = 3 + 2 = 5 \\
 f_6 = f_5 + f_4 = 5 + 3 = 8
 \]

Recursively defined sets and structures

• Consider the subset \(S \) of the set of integers defined by
 – Basis step: 3 \(\in S \)
 – Recursive step: if \(x \in S \) and \(y \in S \), then \(x + y \in S \)
• The new elements formed by this are 3 + 3 = 6, 3 + 6 = 9, 6 + 6 = 12, ...
• We will show that \(S \) is the set of all positive multiples of 3 (using structural induction)

String

• The set \(\Sigma^* \) of strings over the alphabet \(\Sigma \) can be defined recursively by
 – Basis step: \(\lambda \in \Sigma^* \) (where \(\lambda \) is the empty string containing no symbols)
 – Recursive step: if \(\omega \in \Sigma^* \) and \(\sigma \in \Sigma \), then \(\omega \sigma \in \Sigma^* \)
• The basis step defines that the empty string belongs to string
• The recursive step states new strings are produced by adding a symbol from \(\Sigma \) to the end of strings in \(\Sigma^* \)
• At each application of the recursive step, strings containing one additional symbol are generated
Example

- If \(\Sigma = \{0, 1\} \), the strings found to be in \(\Sigma^* \), the set of all bit strings, are
- \(\lambda \), specified to be in \(\Sigma^* \) in the basis step
- 0 and 1 found in the 1st recursive step
- 00, 01, 10, and 11 are found in the 2nd recursive step, and so on

Concatenation

- Two strings can be combined via the operation of concatenation
- Let \(\Sigma \) be a set of symbols and \(\Sigma^* \) be the set of strings formed from symbols in \(\Sigma \)
- We can define the concatenation for two strings by recursive steps
 - Basis step: if \(w \in \Sigma^* \), then \(w \cdot \lambda = w \), where \(\lambda \) is the empty string
 - Recursive step: if \(w, w_1, w_2 \in \Sigma^* \) and \(x \in \Sigma \), then \(w_1 \cdot (w_2 \cdot x) = (w_1 \cdot w_2) \cdot x \)
- Oftentimes \(w_1 \cdot w_2 \) is rewritten as \(w_1 w_2 \)
- e.g., \(w_1 = \text{abra} \), and \(w_2 = \text{cadabra} \), \(w_1 w_2 = \text{abracadabra} \)

Length of a string

- Give a recursive definition of \(l(w) \), the length of a string \(w \)
- The length of a string is defined by
 - \(l(\lambda) = 0 \)
 - \(l(wx) = l(w) + 1 \) if \(w \in \Sigma^* \) and \(x \in \Sigma \)

Well-formed formulae

- We can define the set of well-formed formulae for compound statement forms involving \(T, F \), proposition variables and operators from the set \(\{\neg, \land, \lor, \rightarrow, \leftrightarrow\} \)
- Basis step: \(T, F \) and \(s \), where \(s \) is a propositional variable are well-formed formulae
- Recursive step: If \(E \) and \(F \) are well-formed formulae, then \(\neg E, E \land F, E \lor F, E \rightarrow F, E \leftrightarrow F \) are well-formed formulae
- From an initial application of the recursive step, we know that \((p \land q), (p \rightarrow F), (F \rightarrow q) \) and \((q \land F) \) are well-formed formulae
- A second application of the recursive step shows that \(((p \land q) \land (q \land F)), (q \land (p \land q)), \) and \(((p \rightarrow F) \rightarrow T) \) are well-formed formulae
Rooted trees

- The set of rooted trees, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices, can be defined recursively by
 - Basis step: a single vertex r is a rooted tree
 - Recursive step: suppose that T_1, T_2, \ldots, T_n are disjoint rooted trees with roots r_1, r_2, \ldots, r_n, respectively.
 - Then the graph formed by starting with a root r, which is not in any of the rooted trees T_1, T_2, \ldots, T_n, and adding an edge from r to each of the vertices r_1, r_2, \ldots, r_n, is also a rooted tree

Binary trees

- At each vertex, there are at most two branches (one left subtree and one right subtree)
- Extended binary trees: the left subtree or the right subtree can be empty
- Full binary trees: must have left and right subtrees

Extended binary trees

- The set of extended binary trees can be defined by
 - Basis step: the empty set is an extended binary tree
 - Recursive step: if T_1 and T_2 are disjoint extended binary trees, there is an extended binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and right subtree T_2, when these trees are non-empty
Extended binary trees

Full binary trees

The set of full binary trees can be defined recursively:

- **Basis step**: There is a full binary tree consisting only of a single vertex r.
- **Recursive step**: If T_1 and T_2 are disjoint full binary trees, there is a full binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and right subtree T_2.

The set of rooted trees, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices, can be defined recursively by these steps:

- **Basis step**: A single vertex r is a rooted tree.
- **Recursive step**: Suppose that T_1, T_2, \ldots, T_n are disjoint rooted trees with roots r_1, r_2, \ldots, r_n, respectively. Then the graph formed by starting with a root r which is not in any of the rooted trees T_1, T_2, \ldots, T_n, and adding an edge from r to each of the vertices r_1, r_2, \ldots, r_n, is also a rooted tree.

The set of extended binary trees can be defined recursively by these steps:

- **Basis step**: The empty set is an extended binary tree.
- **Recursive step**: If T_1 and T_2 are disjoint extended binary trees, there is an extended binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 when these trees are nonempty.
Structural induction

- Let $p(n)$ be the statement that $3n$ belongs to S
- **Basis step:** it holds as the first part of recursive definition of S, $3 \cdot 1 = 3 \in S$
- **Inductive step:** assume that $p(k)$ is true, i.e., $3k$ is in S. As $3k \in S$ and $3 \in S$, it follows from the 2nd part of the recursive definition of S that $3k + 3 = 3(k+1) \in S$. So $p(k+1)$ is true

Structural induction

- To show that $S \subseteq A$, we use recursive definition of S
- The basis step of the definition specifies that $3 \in S$
- As $3 = 3 \cdot 1$, all elements specified to be in S in this step are divisible by 3, and there in A
- To finish the proof, we need to show that all integers in S generated using the 2nd part of the recursive definition are in A
- This consists of showing that $x \cdot y$ is in A whenever x and y are elements of S also assumed to be in A
- If x and y are both in A, it follows that $3 \mid x \cdot y$, and thus $3 \mid x \cdot y$, thereby completing the proof
Trees and structural induction

• To prove properties of trees with structural induction
 – **Basis step**: show that the result is true for the tree consisting of a single vertex
 – **Recursive step**: show that if the result is true for the trees T_1 and T_2, then it is true for $T_1 \cdot T_2$, consisting of a root r, which has T_1 as its left subtree and T_2 as its right subtree

Height of binary tree

• We define the height $h(T)$ of a full binary tree T recursively
 – **Basis step**: the height of the full binary tree T consisting of only a root r is $h(T)=0$
 – **Recursive step**: if T_1 and T_2 are full binary trees, then the full binary tree $T= T_1 \cdot T_2$ has height $h(T)=1+\max(h(T_1), h(T_2))$

Number of vertices in a binary tree

• If we let $n(T)$ denote the number of vertices in a full binary tree, we observe that $n(T)$ satisfies the following recursive formula:
 – **Basis step**: the number of vertices $n(T)$ of the full binary tree consisting of only a root r is $n(T)=1$
 – **Recursive step**: if T_1 and T_2 are full binary trees, then the number of vertices of the full binary tree $T= T_1 \cdot T_2$ is $n(T)=1+n(T_1)+n(T_2)$

Theorem

• If T is a full binary tree T, then $n(T)\leq 2^{h(T)+1} - 1$
• Use structural induction to prove this
• **Basis step**: for the full binary tree consisting of just the root r the result is true as $n(T)=1$ and $h(T)=0$, so $n(T)=1\leq 2^{0+1}-1=1$
• **Inductive step**: For the inductive hypothesis we assume that $n(T_i) \leq 2^{h(T_i)+1} - 1$, $n(T_j) \leq 2^{h(T_j)+1} - 1$ where T_1 and T_2 are full binary trees
Theorem

- By the recursive formulae for \(n(T) \) and \(h(T) \), we have
 \[
 n(T) = 1 + n(T_1) + n(T_2) \quad \text{and} \quad h(T) = 1 + \max(h(T_1), h(T_2))
 \]

\[
\begin{array}{l}
 n(T) = 1 + n(T_1) + n(T_2) \\
 \leq 1 + (2^{h(T_1)+1} - 1) + (2^{h(T_2)+1} - 1) \\
 \leq 2 \cdot \max(2^{h(T_1)+1}, 2^{h(T_2)+1}) - 1 \\
 = 2 \cdot 2^{h(T)+1} - 1 \\
 = 2 \cdot 2^{h(T)} - 1 \\
 = 2^{h(T)+1} - 1.
\end{array}
\]

- This completes the inductive step