# **ENVE 302**

# **Environmental Engineering Unit Processes**

## **CHAPTER: 5**

# **Aeorobic Biodegradation of Organic Matter**

#### Assist. Prof. Bilge Alpaslan Kocamemi

Marmara University Department of Environmental Engineering Istanbul, Turkey

## **AEROBIC REMOVAL OF ORGANIC CARBON**

•Aerobic suspended growth systems

complete mix, sequencing batch , plug-flow

Attached growth systems

Dissolved oxygen

Sufficient contact time between wastewater and heterotrophic microorganisms

Nutrients

Aerobic heterotrophic bacteria  $\longrightarrow$ 

produce extracellular biopolymers that result in formation of biological flocs



### **Environmental Factors**

 $pH \rightarrow$  in the range of 6-9 is tolerable

optimal performance occurs near neutral pH

Reactor DO  $\rightarrow 2mg/L$  is commonly used<br/>@concentration above 0.5 mg/L there is little effect of the DO<br/>concentrationon the degredation rate

For industrial ww  $\rightarrow$  care must be taken to assume that sufficient C,N,P are available C:N: P = 100:5 :1

 $\rightarrow$  toxic substances

compared to methanotrophs

they may tolerate higher concentration of toxic substances as bacteria responsible for ammonia oxidation (nitrifiers) or s

### **Oxygen Requirement**



#### Oxygen requirement = total mass of bCOD (or BOD<sub>L</sub>) utilized

#### **Endogenous Respirations**



Oxygen required = 
$$Q(S_0 - S) - 1.42P_{X,bio}$$

Biomass as VSS daily includes; → active biomass →cell debris

$$P_{X,bio} = \frac{QY(S_0 - S)}{1 + k_d \theta_c} + \frac{f_d k_d QY(S_0 - S)\theta c}{1 + k_d \theta_c}$$

g COD cells + g COD oxidized = g COD removed

COD balance accounts for

 $\rightarrow$  cell production  $\rightarrow$  COD oxidation



**Example:** A complete – mix activated sludge system with recyle is used to treat municipal wastewater after primary sedimentation. The characteristics of primary effluent are as follows:

Q=1000 m<sup>3</sup>/d

bsCOD=192 g/m<sup>3</sup>

nbVSS=30 g/m<sup>3</sup>

inert inorganics=10g/m<sup>3</sup>

The aeration tank MLVSS is 2500g/m3. Using these data and kinetic coefficients given

below, design a system with a 6-d SRT and determine the following.

- a) eff. bsCOD conc.
- b) What value of Q should be used so that MLVSS conc is 2500g/m3
- c) What is the daily sludge production in hg/d as VSS and TSS?
- d) What is the fraction of biomass in MLVSS?
- e) What is Y<sub>obs</sub> in g VSS/g bsCOD?
- f) What is the oxygen requirement in hg/day?

**Example:** Design a complete mix activated sludge process to treat 22.464 m<sup>3</sup>/d of primary effluent to meet a BODe conc less than 30g/m<sup>3</sup> (for BOD removal only)

#### Wastewater Characteristics

 $BOD \rightarrow 140 \text{ g/m3}$ sBOD  $\rightarrow$  70 g/m3  $COD \rightarrow 300 \text{ g/m}3$ sCOD  $\rightarrow$  132 g/m3 rbCOD  $\rightarrow$  80 g/m3 TSS  $\rightarrow$  70 g/m3 VSS  $\rightarrow$  60 g/m3 bCOD / BOD  $\rightarrow$  1.6 ww temp  $\rightarrow$  12<sup>o</sup>C Design MLSS ( $X_{TSS}$ ) conc=3000 g/m3