### **ENVE 302**

**Environmental Engineering Unit Processes** 

### CHAPTER: 1

**Principal wastewater constituents** 

**Treatment methods for wastewater** 

Assist. Prof. Bilge Alpaslan Kocamemi

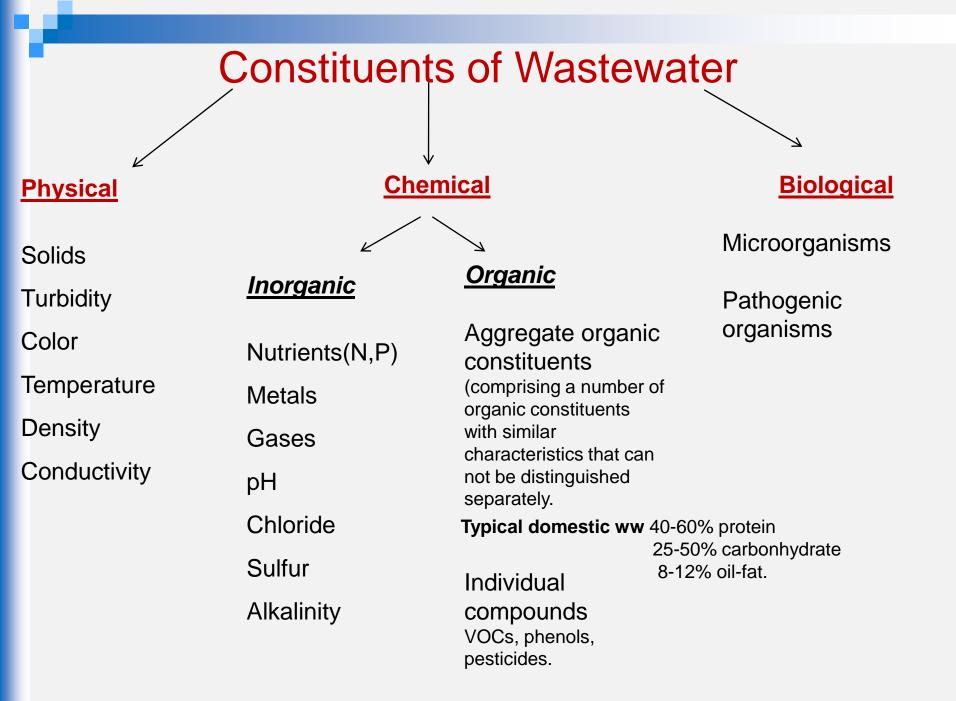
Marmara University Department of Environmental Engineering Istanbul, Turkey



Characteristics of industrial ww  $\rightarrow$  vary from industry to industry

Industrial wastewater with characteristics compatible with municipal ww is often discharged to municipal sewers.

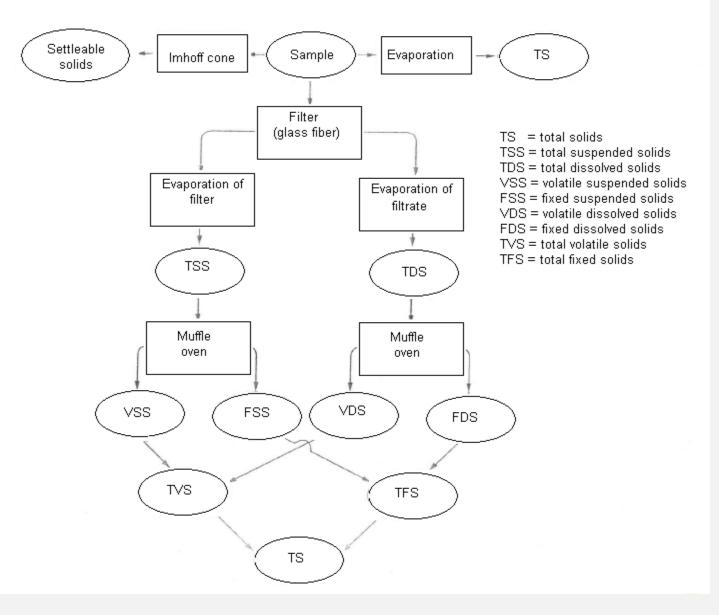
However, many industrial ww require pre-treatment to remove non-compatible substances prior to discharge into municipal system


#### Typical Composition of Domestic Wastewater

#### Table 3-15

Typical composition of untreated domestic wastewater

Ref: Metcalf & Eddy, 2004


| Contaminants                        | Unit       | Concentration   |                    |                                   |
|-------------------------------------|------------|-----------------|--------------------|-----------------------------------|
|                                     |            | Low<br>strength | Medium<br>strength | High<br>strength                  |
| Solids, total (TS)                  | mg/L       | 390             | 720                | 1230                              |
| Dissolved, total (TDS)              | mg/L       | 270             | 500                | 860                               |
| Fixed                               | mg/L       | 160             | 300                | 520                               |
| Volatile                            | mg/L       | 110             | 200                | 340                               |
| Suspended solids, total (TSS)       | mg/L       | 120             | 210                | 400                               |
| Fixed                               | mg/L       | 25              | 50                 | 85                                |
| Volatile                            | mg/L       | 95              | 160                | 315                               |
| Settleable solids                   | mL/L       | 5               | 10                 | 20                                |
| Biochemical oxygen demand,          |            |                 |                    |                                   |
| 5-d, 20°C (BOD <sub>5</sub> , 20°C) | mg/L       | 110             | 190                | 350                               |
| Total organic carbon (TOC)          | mg/L       | 80              | 140                | 260                               |
| Chemical oxygen demand (COD)        | mg/L       | 250             | 430                | 800                               |
| Nitrogen (total as N)               | mg/L       | 20              | 40                 | 70                                |
| Organic                             | mg/L       | 8               | 15                 | 25                                |
| Free ammonia                        | mg/L       | 12              | 25                 | 45                                |
| Nitrites                            | mg/L       | 0               | 0                  | 0                                 |
| Nitrates                            | mg/L       | 0               | 0                  | 0                                 |
| Phosphorus (total as P)             | mg/L       | 4               | 7                  | 12                                |
| Organic                             | mg/L       | 1               | 2                  | 4                                 |
| Inorganic                           | mg/L       | з               | 5                  | 10                                |
| Chlorides <sup>b</sup>              | mg/L       | 30              | 50                 | 90                                |
| Sulfate <sup>b</sup>                | mg/L       | 20              | 30                 | 50                                |
| Oil and grease                      | mg/L       | 50              | 90                 | 100                               |
| Volatile organic compounds (VOCs)   | mg/L       | <100            | 100-400            | >400                              |
| Total coliform                      | No./100 mL | 106-108         | 107-109            | 107-1010                          |
| Fecal coliform                      | No./100 mL | 103-105         | 104-106            | 10 <sup>5</sup> -10 <sup>8</sup>  |
| Cryptosporidum oocysts              | No./100 mL | 10-1-100        | 10-1-101           | 10 <sup>-1</sup> -10 <sup>2</sup> |
| Giardia lamblia cysts               | No./100 mL | 10-1-101        | 10-1-102           | 10 <sup>-1</sup> -10 <sup>3</sup> |
| Alkalinity (as CaCO3)               | mg/L       | 50              | 100                | 200                               |
| Wastewater flow                     | Lcd        | 750             | 460                | 240                               |



### **Classification of Solids**

#### Figure 2-3

Interrelationships of solids found in water and wastewater. In much of the water quality literature, the solids passing through the filter are called dissolved solids. (Tchobanoglous and Schroder, 1985.) Ref: Metcalf & Eddy, 2004



### Measurement of Solids

Table 2-4

Definitions for Ref: ଲୋଇମିଟ୍ଟେମ୍ପେମ୍ପେମ୍ 2004 wastewater

#### Test<sup>b</sup>

Total solids (TS)

Total volatile solids (TVS)

Total fixed solids (TFS)

Total suspended solids (TSS)

Volatile suspended solids (VSS)

Fixed suspended solids (FSS)

Total dissolved solids (TDS) (TS - TSS)

Total volatile dissolved solids (VDS)

Fixed dissolved solids (FDS)

Settleable solids

#### Description

The residue remaining after a wastewater sample has been evaporated and dried at a specified temperature (103 to 105°C)

Those solids that can be volatilized and burned off when the TS are ignited (500  $\pm$  50°C)

The residue that remains after TS are ignited (500  $\pm$  50°C)

Portion of the TS retained on a filter (see Fig. 2–4) with a specified pore size, measured after being dried at a specified temperature (105°C). The filter used most commonly for the determination of TSS is the Whatman glass fiber filter, which has a nominal pore size of about 1.58  $\mu$ m

Those solids that can be volatilized and burned off when the TSS are ignited (500  $\pm$  50°C)

The residue that remains after TSS are ignited  $(500 \pm 50^{\circ}C)$ 

Those solids that pass through the filter, and are then evaporated and dried at specified temperature. It should be noted that what is measured as TDS is comprised of colloidal and dissolved solids. Colloids are typically in the size range from 0.001 to 1  $\mu$ m

Those solids that can be volatilized and burned off when the TDS are ignited (500  $\pm$  50°C)

The residue that remains after TDS are ignited (500  $\pm$  50°C)

Suspended solids, expressed as milliliters per liter, that will settle out of suspension within a specified period of time

<sup>a</sup>Adapted from Standard Methods (1998).

<sup>b</sup>With the exception of settleable solids, all solids values are expressed in mg/L.

## **Characterization of Organic Content**

→ BOD (Biochemical Oxygen Demand)

 $\rightarrow$  COD (Chemical Oxygen Demand)

 $\rightarrow$  TOC (Total Organic Carbon)

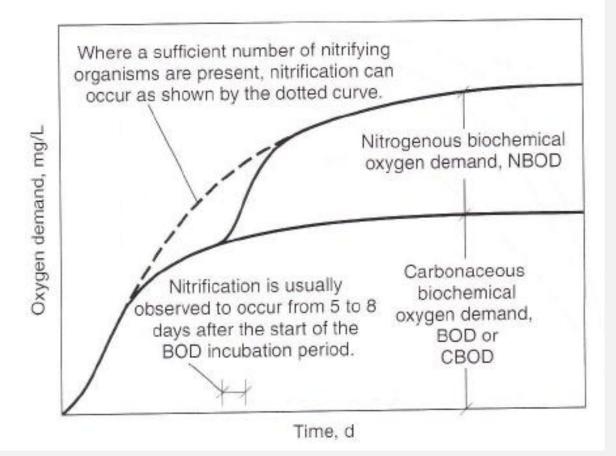
→ ThOD (Theoretical Oxygen Demand)

 $\rightarrow$  UV absorbing organic constituents

## **BOD (Biochemical Oxygen Demand)**

Measurement of the dissolved oxygen used by microorganisms in the biochemical oxidation of organic matter

→ CBOD (carbonecous BOD): oxygen demand exerted by the oxidizable carbon in the sample


→ NBOD (nitrogenous BOD): oxygen demand associated with the oxidation of ammonia to nitrate (nitrification)

## cBOD & nBOD

### Figure 2-22

Definition sketch for the exertion of the carbonaceous and nitrogenous biochemical oxygen demand in a waste sample.

Ref: Metcalf & Eddy, 2004



Reproductive rate of nitrifiers is slow → it normally takes from 6-10 days for them to reach significant numbers to exert a measurable oxygen demand

However; if a sufficient number of nitrifying bacteria is present initially

interference of cBOD measurement caused by nitrifiers can be significant

To supress nitrification;

•Methylene blue

• ATU (Allythiourea)

## **COD** (Chemical Oxygen Demand)

Measure the oxygen equivalent of the organic material in wastewater that can be oxidized chemically using dichromate in an acid solution

$$C_{n}H_{a}O_{b}N_{c} + dCr_{2}O_{7}^{-2} + (8d+c)H^{+} \rightarrow nCO_{2} + \frac{a+8d-3c}{2}H_{2}O + cNH_{4}^{+} + 2dCr^{+3}$$
  
where  $d = \frac{2n}{3} + \frac{a}{6} - \frac{b}{3} - \frac{c}{2}$ 

### Why not cBOD is equal to COD?

 Many organic substances which are difficult to oxidize biologically (e.g lignin) can be oxidized chemically.

Inorganic substances that are oxidized by dichromate (e.g sulfide, sulfite, ferrous ion)

3. Certain organic substances may be toxic to microorganisms used in the BOD test.

Typical BOD/COD of untreated domestic wastewater: 0.5-0.8

### *If BOD/COD ratio is 0.5:*

→Waste is considered to be easily treatable by biological means

### *If BOD/COD ratio is 0.3:*

→Organics in wastewater may be refractory

→Organics in wastewater are degradable. However, another substance in wastewater leads to inhibition of bacteria that uses organic matter

→Bacteria is not acclimated to wastewater

# TOC (Total Organic Carbon)

- Done instrumentally (5-10 min) to determine total organic carbon in aqueous sample (mg C/L)
- $\rightarrow$  This test measures all C as CO<sub>2</sub>
- → Inorganic C (CO<sub>2</sub>, HCO<sub>3</sub>) present in wastewater must be removed prior to analysis

by acidification and aeration of sample prior to analysis

Typical BOD/TOC of untreated domestic wastewater 1.2-2mg O<sub>2</sub>/mg C

# ThOD (Theoretical Oxygen Demand)

→ ThOD of a wastewater is calculated as the oxygen required to oxidize the organics to end products

**Example :** glycine CH<sub>2</sub>(NH<sub>2</sub>)COOH

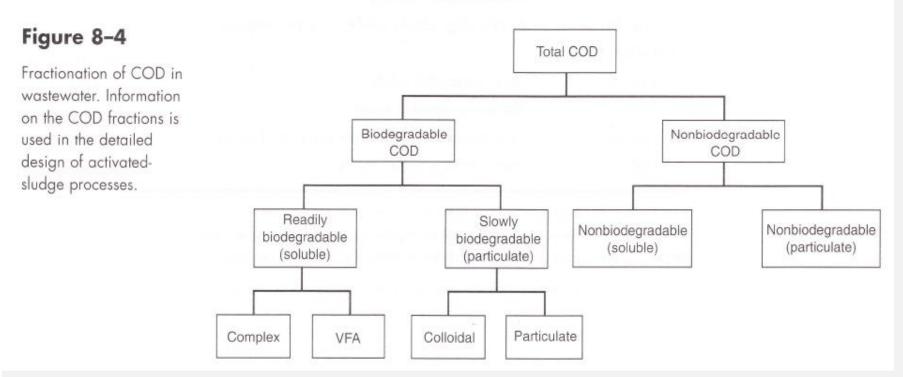
 $\rightarrow$  CH<sub>2</sub>(NH<sub>2</sub>)COOH + 3/2 O<sub>2</sub> NH<sub>3</sub> + 2 CO<sub>2</sub> + H<sub>2</sub>O

For nitrogenous oxygen demand :

- $\rightarrow$  NH<sub>3</sub> + 3/2 O<sub>2</sub> HNO<sub>2</sub> + H<sub>2</sub>O
- $\rightarrow$  HNO<sub>2</sub> + 1/2 O<sub>2</sub> HNO<sub>3</sub> + H<sub>2</sub>O
- → ThOD = (3/2 + 3/2 + 1/2) mol O<sub>2</sub> / mol glycine

# **UV Absorbing Constituents**

- → Humic substances
- → Lignin
- → Tannin
- Various aromatic compounds


Strongly absorb UV

UV absorption has been used as a surrogate measure for the organic compounds cited above

UV wavelength = 200 – 400 nm (254 nm most common)

### **COD** Fractionation

Ref: Metcalf & Eddy, 2004



rbsCOD (soluble) : quickly assimilated by biomass

**sbCOD (particulate) :** must be firts dissolved by extracellular enzymes

assimilated much slower rate

**nbVSS – nonbiodegredable particulate (nbpCOD):** since it is organic material, it will also contribute VSS.

Influent wastewater will also contain non-voltile suspended solids that add to the MLSS concentration Inert TSS (iTSS)  $\rightarrow$  iTSS=TSS<sub>inf</sub> – VSS<sub>eff</sub>

### Determination of soluble COD

Filtration through 0.45 $\mu$ m membrane $\rightarrow$ analysis of the for COD

Determination of bCOD

BOD test data is necessary

bCOD consumed

in BOD test = oxygen consumed (uBOD) + oxygen equivalent of remaining cell debris

bCOD = uBOD + 1.42 fd Yh bCOD

Fraction of cell mass remainig Yield coeff. g VSS/g COD used as cell debris (g/g)

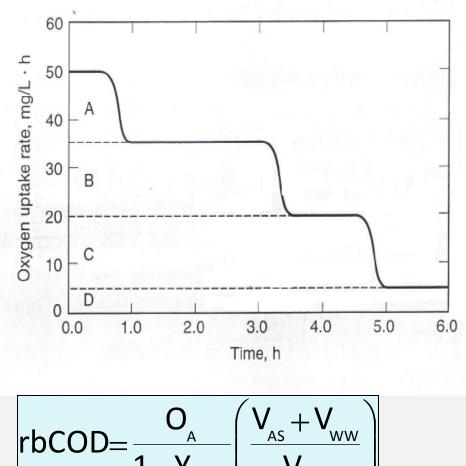
bCOD/BOD= (uBOD/BOD) / (1-1.42 fd Yh)

For typical domestic ww:

fd=0.15, Yh=0.4, uBOD/BOD=1.5  $\rightarrow$  bCOD/BOD=1.64

Not all of the bCOD is oxidized in the BOD test Some of the bCOD is converted into biomass  $\rightarrow$  uBOD < bCOD Determination of rbCOD

**Biological Response Test for rbCOD** 


Pre-aerated wastewater mixed with acclimated sludge

 $\rightarrow$  DO concentrations with respect to time is measured

Slope of DO vs time graph
(mg/L DO) / time = OUR (Oxygen Uptake Rate)

→ When DO decreases to about 3mg/L, vigorous aeration is applied to elevate DO conc. to 5 to 6 mg/L. So another OUR measurement can begin

#### **Biological Response Test for rbCOD (continue)**



H,COD

ww

Figure 8.6

Idealized OUR in aerobic batch test for a mixture of influent wastewater and activated sludge mixed liquor. Area A represents rbCOD oxygen demand (Barker and Dold, 1997)

 $V_{AS}$ =volume of activated sludge used in the test (mL)

V<sub>ww</sub>=volume of ww (mL)

O<sub>A</sub>=oxygen consumed in area A (mg/L)

Y<sub>H.COD</sub>=synthesis yield coeff for heterotrophic becteria

(g cell COD/g COD used)

### b) Physical seperation technique for rbCOD (Mammais et al, 1993)

→ may not give the exact results as the rbCOD concentration determination by respirometry, but it provides a reasonable estimate

→ used widely because of its simplicity

The procedure is based on the assumption that suspended solids and colloidal material can be captured effectively and removed by flocculation with a zinc hydroxide precipitate to leave only truly dissolved organic material after filtration

### Physical seperation technique for rbCOD (continue)

#### **Procedure:**

 $\rightarrow$  1 ml of a 100 g/L ZnSO<sub>4</sub> solution is added to 100 ml of sample with

vigorous mixing for 1 min

→ The pH is raised to about 10.5 using 6 M NaOH with 5-10 min of gentle mixing for floc formation

→ The sample is settled for 10-20 min and the supernatant is withdrawn

and filtered using a 0.45  $\mu$ m membrane filter

- $\rightarrow$  The filtrate is analyzed for COD conc.  $\rightarrow$  rbCOD
- $\rightarrow$  rbCOD = COD<sub>ww</sub> COD act. sludge treated sample

sCOD= soluble COD sBOD= soluble BOD

Non – biodegradable VSS

$$nbVSS = \left[1 - \left(\frac{bpCOD}{pCOD}\right)VSS\right]$$

$$\frac{bpCOD}{pCOD} = \frac{(COD)BOD}{COD - sBOD}$$

#### Summary

COD= bCOD+nbCOD

bCOD= 1.6 BOD (for domestic wastewater)

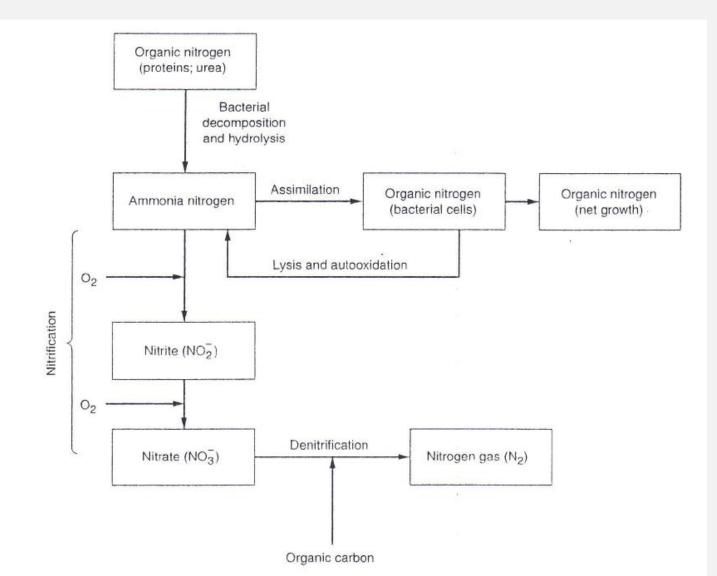
nbCOD= sCOD<sub>e</sub>+nbpCOD

bCOD= sbCOD+rbCOD

# **Nitrogen Forms in Wastewater**

- Ammonia (NH<sub>3</sub>)
- Ammonium (NH<sub>4</sub>)

$$NH_4 \longrightarrow NH_3 + H^+$$

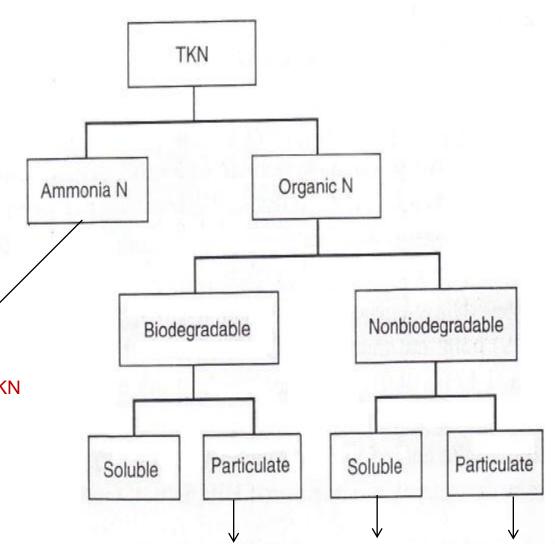

- pH>7 rxn. shifts right
- pH<7 rxn. shifts left

- Nitrite (NO<sub>2</sub><sup>-</sup>)
- Nitrate (NO<sub>3</sub><sup>-</sup>)
- Organic nitrogen

**Total Nitrogen =** Organic N+NH<sub>3</sub>+NH<sub>4</sub>+NO<sub>2</sub><sup>-</sup>+NO<sub>3</sub><sup>-</sup>

Total Kjeldahl Nitrogen (TKN) = Organic N+NH<sub>3</sub>+NH<sub>4</sub>

### Nitrogen Transformations in Biological Treatment Processes




#### Ref: Metcalf & Eddy, 2004 Figure 8–5

Fractionation of nitrogen in wastewater. Information on the nitrogen fractions is used in the detailed design of nitrification and denitrification processes.

about 60-70% of the influent TKN

readily available for bacterial synthesis and nitrification.



will be removed more slowly than soluble degradable organic nitrogen because a **hydrolysis** reaction is necessary first will be found in the secondary clarifier effluent (<3% of influent TKN) will be captured in the activated sludge floc and exit in waste sludge

| ReL  | COLL | XT  | HOO | V     |  |
|------|------|-----|-----|-------|--|
| Ker: | wan  | CX. | Luu | V . 4 |  |
|      |      |     |     |       |  |

#### Table 8.2

Definition of terms used to characterize important wastewater constituents used for the analysis an design of biological wastewater processes

| Constituent <sup>a,b</sup> | Definition                                           |  |
|----------------------------|------------------------------------------------------|--|
| BOD                        |                                                      |  |
| BOD                        | Total 5-d biochemical oxygen demand                  |  |
| sbod                       | Soluble 5-d biochemical oxygen demand                |  |
| UBOD                       | Ultimate biochemical oxygen demand                   |  |
| COD                        |                                                      |  |
| COD                        | Total chemical oxygen demand                         |  |
| <b>bCOD</b>                | Biodegradable chemical oxygen demand                 |  |
| pCOD                       | Particulate chemical oxygen demand                   |  |
| sCOD                       | Soluble chemical oxygen demand                       |  |
| nbCOD                      | Nonbiodegradable chemical oxygen demand              |  |
| rbCOD                      | Readily biodegradable chemical oxygen demand         |  |
| rbsCOD                     | Readily biodegradable soluble chemical oxygen demand |  |
| sbCOD                      | Slowly biodegradable chemical oxygen demand          |  |
| bpCOD                      | Biodegradable particulate chemical oxygen demand     |  |
| nbpCOD                     | Nonbiodegradable particulate chemical oxygen demand  |  |
| nbsCOD                     | Nonbiodegradable soluble chemical oxygen demand      |  |
| Nitrogen                   |                                                      |  |
| TKN                        | Total Kjeldahl nitrogen                              |  |
| <b>btkn</b>                | Biodegradable total Kjeldahl nitrogen                |  |
| stkn                       | Soluble (filtered) total Kjeldahl nitrogen           |  |
| ON                         | Organic nitrogen                                     |  |
| bon                        | Biodegradable organic nitrogen                       |  |
| nbON                       | Nonbiodegradable organic nitrogen                    |  |
| PON                        | Particulate organic nitrogen                         |  |
| nbpON                      | Nonbiodegradable particulate organic nitrogen        |  |
| sON                        | Soluble organic nitrogen                             |  |
| nbsON                      | Nonbiodegradable soluble organic nitrogen            |  |
| Suspended Solids           |                                                      |  |
| TSS .                      | Total suspended solids                               |  |
| VSS                        | Volatile suspended solids                            |  |
| nbVSS                      | Nonbiodegradable volatile suspended solids           |  |
| iTSS                       | Inert total suspended solids                         |  |

"Note: b = biodegradable; i = inert; n = non; p = particulate; s = soluble.

<sup>b</sup>Measured constituent values, based on the terminology given in this table, will vary depending on the technique used to fractionate a particular constituent.

## Phosphorus

### $\rightarrow$ Orthophosphate (PO<sub>4</sub><sup>-3</sup>, HPO<sub>4</sub><sup>-2</sup>, H2PO<sub>4</sub><sup>-</sup>, H<sub>3</sub>PO<sub>4</sub>)

available for biological metabolism without further breakdown

→ Polyphosphate

Undergo hydrolysis (quite slow) and convert to orthophosphate form

→ Organic phosphate

minor importance in most domestic wastes

## Chloride

Human excreta contains ≈ 6g chloride /person /day

Conventional methods of waste treatment  $\rightarrow$  do not remove Cl<sup>-</sup>

Higher tan usual  $Cl^2$  conc.  $\rightarrow$  indication that a body water is being used for waste disposal

Infiltration of grounwater into sewers adjacent to ea water

Sulfate

Occurs naturally in most water supplies and is present in wastewater as well

Crown corrosion problem in sewers:

Org. Matter +  $SO_4^{-2} \rightarrow S^{-2} + H_2O + CO_2$ 

 $S^{-2}+2H^+ \rightarrow H_2S$  (under anaerobic conditions)

 $H_2S$  collected at the crown of sewer not flowing full  $\rightarrow H_2SO_4$ 

(seriously threaten structural integrity of pipe

Color

Give rough information about age of wastewater

Fresh wastewater  $\rightarrow$  light brownish gray color

As the travel time in the collection system increases

more anaerobic conditions develop

color of wastewater sequentially changes

gray $\rightarrow$ dark gray $\rightarrow$ black (SEPTIC)

## Odor

Gases found in untreated wastewater

 $N_2$ ,  $O_2$ ,  $CO_2$  (from in all waters exposed atmosphere)

 $H_2S$ ,  $NH_3$ ,  $CH_4$  (from the decomposition of organic matter )

### H<sub>2</sub>S:

from the anaerobic decomposition of organic matter

```
Org. Matter + SO_4^{-2} \rightarrow S^{-2} + H_2O + CO_2
S<sup>-2</sup>+2H<sup>+</sup>\rightarrowH<sub>2</sub>S
```

Odor :rotten egg Colorless Inflammable H<sub>2</sub>S poisoning is one of the leading cause of accidents in WWTP

**5ppm→** moderate odor

**10ppm**→ eye irritation begins

**30ppm**→strong,unpleasent odor of rotten egg

100 ppm→ loss of smell

>**300ppm** → unconsciousness, death

#### Mercaptan

formed during anaerobic decomposition of organic matter

may cause odor more offensive than that of  $H_2S$ 

### Methane(CH<sub>4</sub>)

principal by-product from the anaerobic decombosition of organic matter Large quantities are not

encountered in untreated ww Colorless, odorless, combustible hydrocarbon with high flue value

Explosion risk

#### PLANT EMPLOYEES SHOULD BE INSTRUCTED IN SAFETY

#### **MEASURES WHILE WORKING IN AND ABOUT STRUCTURES**

#### WHERE H<sub>2</sub>S AND CH<sub>4</sub> MAY BE PRESENT

#### **VENTILATION, GAS SENSORS, ALARM SYSTEMS**

## Temperature

Temperature of domestic wastewater is commonly higher than that of local water supply, because of the addition of warm water from households

# Alkalinity

Domestic wastewater is normally alkaline receiving its alkalinity from the water supply, the groundwater, the materials added during domestic use

## **Metals**

Discharged from residental dwellings, groundwater infiltration, commercial and industrial discharge

## **Oil and Grease**

term used for fats, oils, waxes

**Surfactants** 

Surface active agents

Large organic molecules that are slightly soluble in water

Cause foaming in ww treatment plants

During aeration of ww → these compounds collect on the surface of the air bubble and thus create a very stable foam

Cause foaming in the surface water into which ww is discharged

## **Surfactants (continue)**

Before 1965 → ABS (Alkly-benzene-sulfonate) resistant to breakdown by biological means

After 1965 → LAS (linear –alkly-sulfonate biodegradable

Come primarily from synthetic detergents

#### PRINCIPAL CONSTITUENTS OF CONCERN IN MUNICIPAL WASTEWATER TREATMENT

| Constituent                      | Reason of Importance                                                                                                                                                                       | Unit operation and process<br>used to remove                                                                                                                                                                        |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suspended Solids                 | Can lead to development of sludge<br>deposits and anaerobic conditions<br>when untreated wastewater is<br>discharged                                                                       | Screening<br>Grit Removal<br>Sedimentation<br>Flotation<br>Chemical precipitation<br>Filtration                                                                                                                     |
| <b>Biodegradable</b><br>organics | If discharged untreated to the<br>environment their biological<br>stabilization can lead to the<br>depletion of natural oxygen<br>resources and to the development of<br>septic conditions | Aerobic suspended growth<br>variations<br>Aerobic attached growth<br>variations<br>Anaerobic suspended<br>growth variations<br>Lagoon variations<br>Chemical oxidation<br>Advanced oxidation<br>Membrane filtration |

#### PRINCIPAL CONSTITUENTS OF CONCERN IN MUNICIPAL WASTEWATER TREATMENT

| Constituent                            | Reason of Importance                                                                                                                                                                                                                                                                                                                                      | Unit operation and process used to remove                                                                                                                                                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nutrients (Nutrient<br>and phosphorus) | Both nitrogen and phosphorus,<br>along with carbon are essential<br>nutriens for growth. When<br>discharged to aquatic environment<br>these nutrients can lead to the<br>growth of undesirable aquatic life.<br>may cause eutrophication<br>NO <sub>2</sub> :extremely toxic to fish<br>NO <sub>3</sub> :fatal effects on infants (blue<br>baby sendrome) | For Nitrogen;suspended growthnitrification-denitrificationvariationsattached growthnitrification-denitrificationvariationsair strippingion exchangebreakpoint chlorinationFor phosphorus;biological phosphorusremovalchemical precipitation |
| Pathogens                              | Communicable diseases can be<br>transmitted by the pathogenic<br>organisms that may be present in<br>wastewater                                                                                                                                                                                                                                           | Chlorine compounds<br>Chlorine dioxide<br>ozonation<br>Ultraviolet (UV) radiation                                                                                                                                                           |

### **Classification Of Biological Treatment Processes**

#### SUSPENDED-GROWTH PROCESSES

Biological treatment processes in which the microorganisms responsible for the conversion of the organic matter or other constituents in the wastewater to gases and cell tissue are maintained in suspension within the liquid.

#### ATTACHED-GROWTH PROCESSES

**Biological treatment** processes in which the microorganisms responsible for the conversion of the organic matter or other constituents in the wastewater to gases and cell tissue are attached to some inert medium, sucj as rocks, slag or especially designed ceramic or plastic materials. Attached film processes are also known as fixed film processes.

#### LAGOON PROCESSES

A generic term applied to treatment processes that take place in ponds or lagoons with various aspect ratios and depths.

### **OBJECTIVES OF BIOLOGICAL TREATMENT OF DOMESTIC WASTEWATER**

- 1. Transform (i.e. oxidize) dissolved and particulate biodegradable constituents into acceptable end products.
- 2. Capture and incorporate suspended and non-settleable colloidal solids into a biological floc or biofilm
- 3. Transform or remove nutrients (nitrogen and phosphorus)
- 4. In some cases, remove specific trace organic constituents and compounds