ENVE 301

Environmental Engineering Unit Operations

CHAPTER: 1 Quality of untreated water and wastewater Treatment methods for water and wastewater

Assist. Prof. Bilge Alpaslan Kocamemi

Marmara University Department of Environmental Engineering Istanbul, Turkey

Treatment Methods For Water and Wastewater

Physical Unit Operations Chemical Unit Operations (Processes)

Biological Unit Processes

Physical Unit Operations

Treatment operations in which the treatment is brought through the

application of physical forces.

Examples:

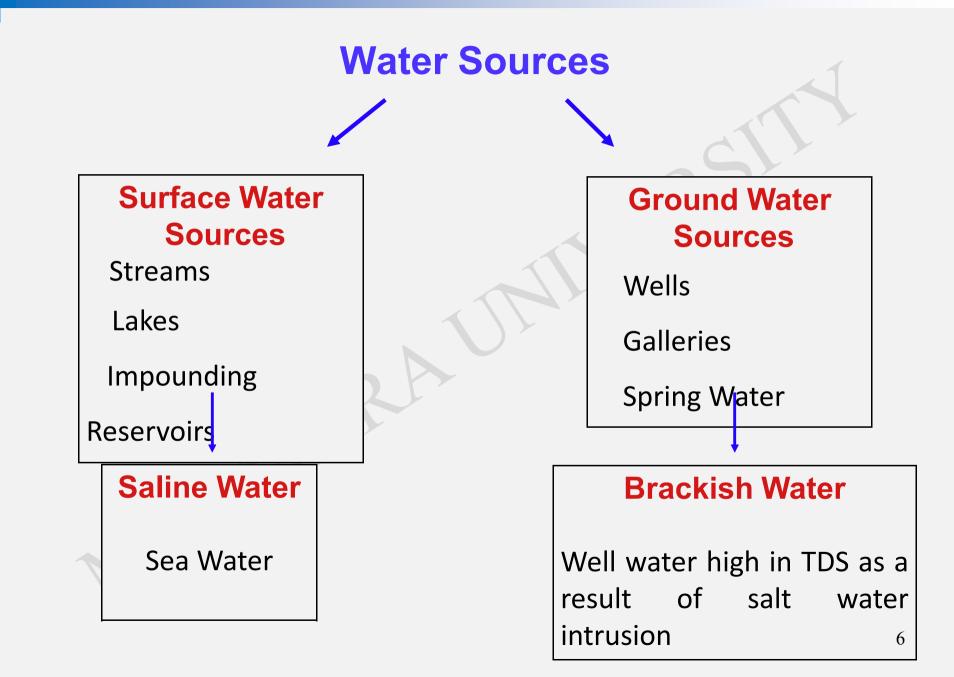
- Screening
- \rightarrow Communition
- → Aeration
- → Mixing chemicals and gases with water
- → Flocculation
- → Gravity sedimentation
- → Filtration
- Adsorption
- → Gas Stripping
- Membrane processes (e.g. Reverse osmosis, electrodialysis, ultrafiltration)

Chemical Unit Operations (Processes)

Treatment operations(processes) in which the treatment of contaminants is brought by the addiction of chemicals or by chemical reactions.

Examples:

- \rightarrow Chemical precipitation
- \rightarrow Coagulation
- \rightarrow Disinfection
- \rightarrow lon exchange


Biological Unit Processes

Treatment processes in which the treatment of contaminants is brought by

biological means.

Examples:

- \rightarrow Aerobic processes
- \rightarrow Anaerobic processes
- \rightarrow Anoxic processes

A) Surface Water Sources (Streams, lakes, impounding reservoirs)

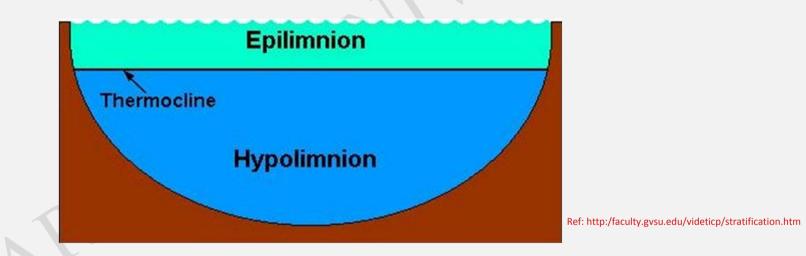
Streams or rivers

Rapid changes in water quality

Changes in turbidity and other constituents during heavy rains and run off

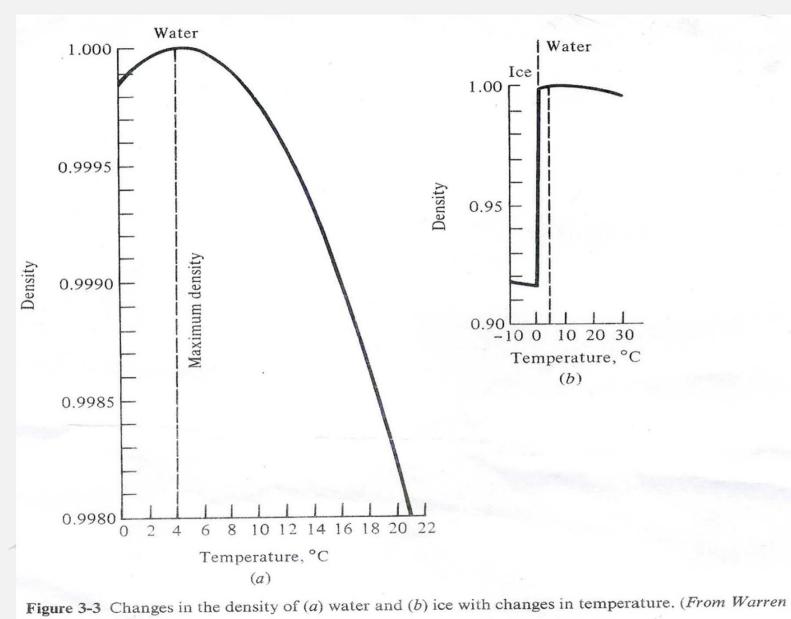
→ Require flexible and reliable treatment processes

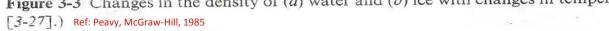
Lakes and impounding reservoirs

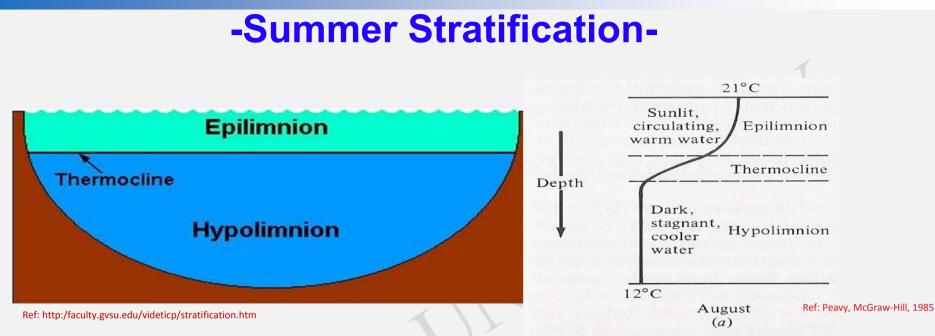

 \rightarrow Seasonal changes in water quality

Thermal stratification

Thermal Stratification


Heat transfer in reservoirs and lakes is controlled by a phenomenon known


as THERMAL STRATIFICATION.


Thermal stratification \rightarrow Changes in the temperature profile with depth

within a lake system.

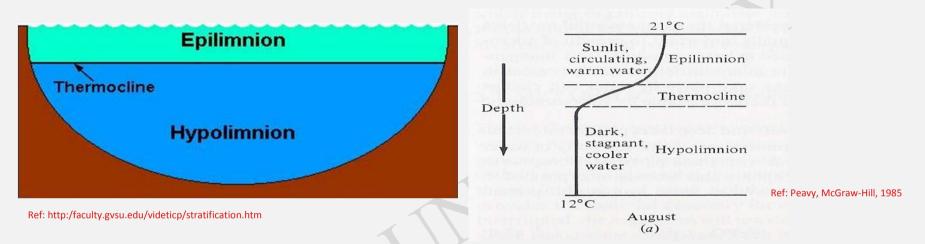
10

→As air temperature rises in late spring, heat from the sun begins to warm the lake

→As the amount of solar radiation absorbed decreases with depth the lake heats from the surface down

 \rightarrow The warm water is less dense than the colder water below resulting in a layer of warm water that floats over the cold water₁

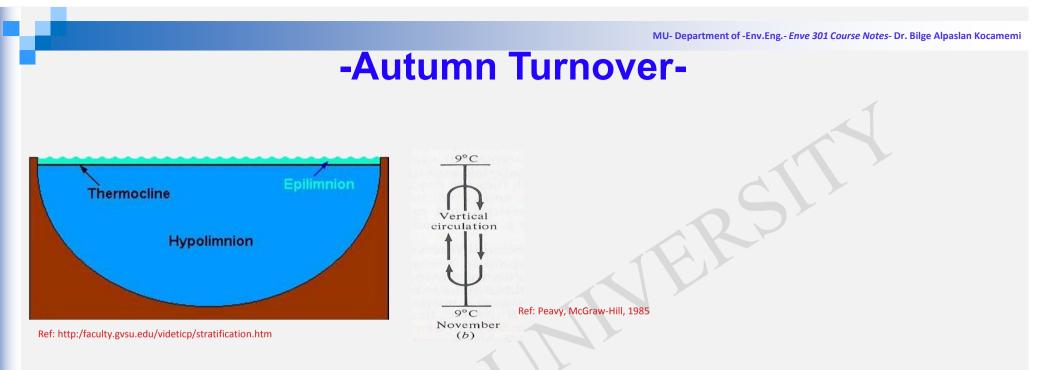
Summer Stratification (continue) Wind


The warm water, abundant sunlight, and nutrients brought up from the lake bottom during spring overturn

an ideal environment for algae growth within the epilimnion

 \rightarrow Algal blooms tend to give the epilimnion a greenish hue

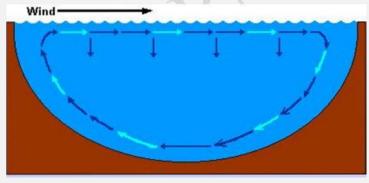
→ Wind circulates the surface water, but the warm water of the epilimnion is unable to drive through the cold, dense water of the hypolimnion the water is only mixed in the epilimnion

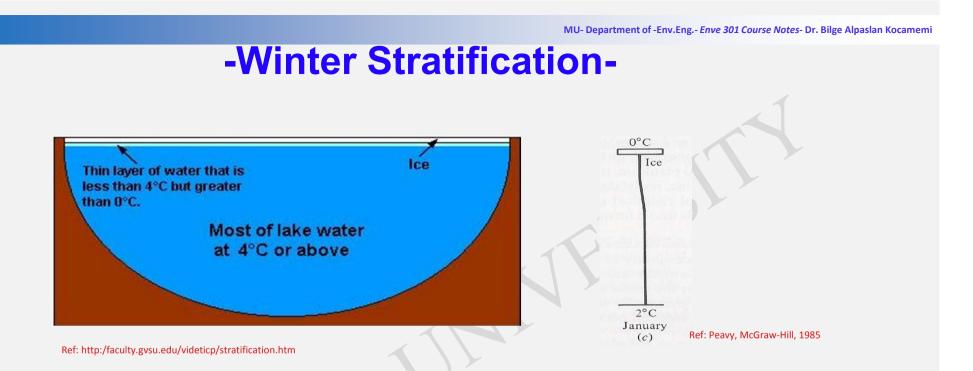


ightarrow Dead algae sink to the lake bottom and are decomposed by bacteria

anaerobic bacteria begin to decompose organic material

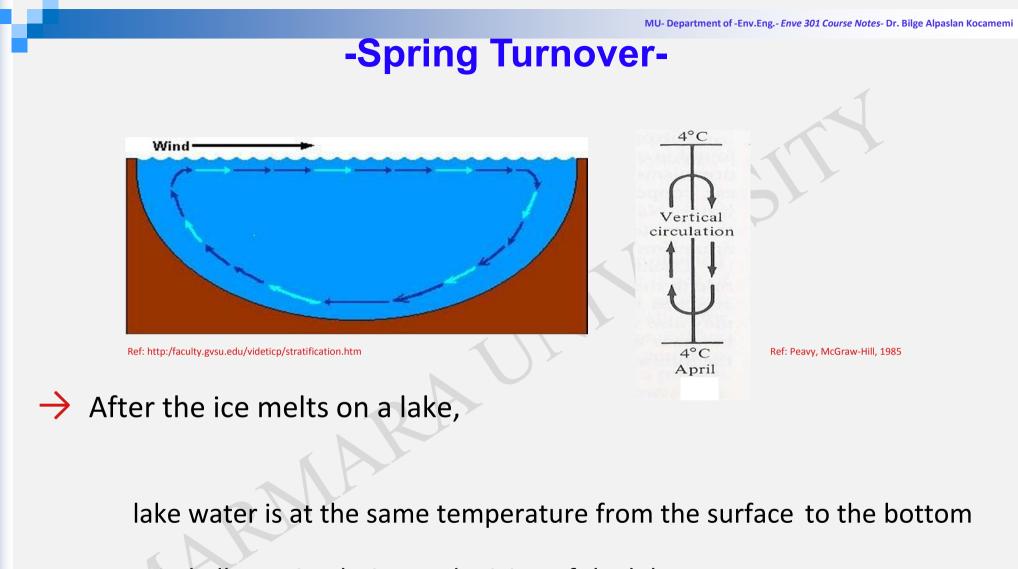
anaerobic bacteria produce hydrogen sulfide (H₂S) gas the odor of "rotten egg"


Dead algae accumulation rate >> organic matter decomposition rate of bacteria sediment deposited in the lake will be rich in organics


As autumn approaches and temperature decreases,

the epilimnion begins to decrease in depth

epilimnion gets so shallow, no longer be maintained as a separate layer the lake loses its stratification


uniform temperature wind can thoroughly mix the lake water

 \rightarrow As winter approaches, the surface water is eventually cooled below 4°C.

water no longer sinks

→ As water temperatures at the surface reach 0°C, ice begins to cover the surface of the lake ice cover prevents wind from mixing the lake water -STRATIFICATION-

wind allows circulation and mixing of the lake water

large amounts of oxygen reaches to the bottom of the lake

Surface Water Contaminants

→Turbidity and Suspended Matter

→Color

 \rightarrow Taste and Odor

 \rightarrow Organic Matter

 \rightarrow Dissolved Gases

 \rightarrow Hardness Ions (Ca⁺⁺, Mg⁺⁺)

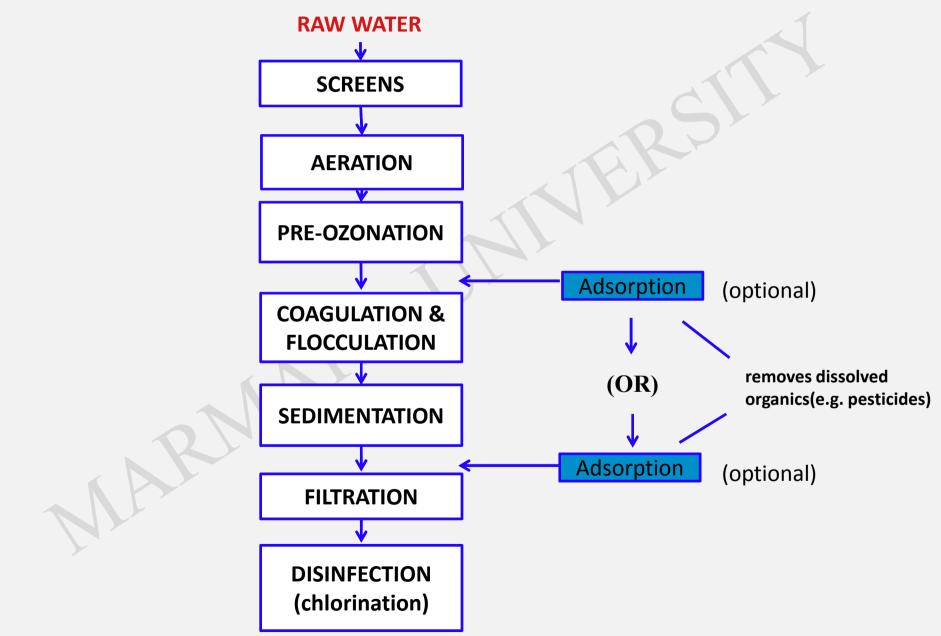
 \rightarrow Iron and Manganese

 \rightarrow Pathogenic Organism

Surface Water Contaminants and Treatment Techniques Used (continue)

ricatinent reeningues osea (continue)		
CONTAMINANT	SOURCE	TREATMENT
Turbidity and Suspended Matter	Inorganic solids such as clay, silt and other soil constituents	 → Screening → Coag/floc/sed./filt
Color	Organic debris such as leaves, needles of conifers and wood Tannin, humic acid, humates derived from the decomposition of plant matter Suspended matter	 → Coag/floc/sed/filt → Adsorption
Taste and Odor	nonvolatile organic metabolic products of blue green algae dissolved gases (e.g H ₂ S) some volatile organic chemicals	 Chemical oxidation (commonly ozonation) prior to coagulation Adsorption Aeration

Surface Water Contaminants and


Treatment Techniques Used (continue)

CONTAMINANT	SOURCE	TREATMENT
Organic Matter	<u>from natural sources;</u> decay products of organic solids, decaying weeds, leaves, especially humic acid derived from the decomposition of plant matter <u>from human activities;</u> wastewater discharges	 → Chemical oxidation (e.g ozonation; alter and polymerize metastable organics) followed by coag/floc/sed/filt → Adsorption
	agricultural activities (e.g pesticides)	
Dissolved Gases	from atmosphere (CO ₂) from decomposition of organic matter	→ Aeration
Hardness Ions (Ca ⁺⁺ , Mg ⁺⁺)	contact of water with mineral deposits	 → Chemical precipitation (water softening) <u>for low flowrates;</u> → Ion exchange 19

Surface Water Contaminants and Treatment Techniques Used (continue)

	i coninques oscu	
Iron and Manganese Fe ⁺² , Fe ⁺³ Mn ⁺² ,Mn ⁺⁴	Soluble iron(Fe ⁺²)and manganese (Mn ⁺²) released from the bottom mads in the waters of the hypolomnion (reservoirs that stratify) until the fall turnover occurs	 → Aeration will not provide oxidation and precip. within a reasonable time, especially for manganese Mn⁺² Fe⁺² Oxidation << Oxidation rate rate → Chemical oxid.(eg. ozonation)/precip/filt. → Ion exchange
Heavy Metals	industrial discharge	 → Chemical precipitation → Ion exchange
Pathogenic Organisms	sewage discharge	→ Disinfection 20

FLOW DIAGRAM THE TREATMENT OF TURBID SURFACE WATER WITH ORGANICS

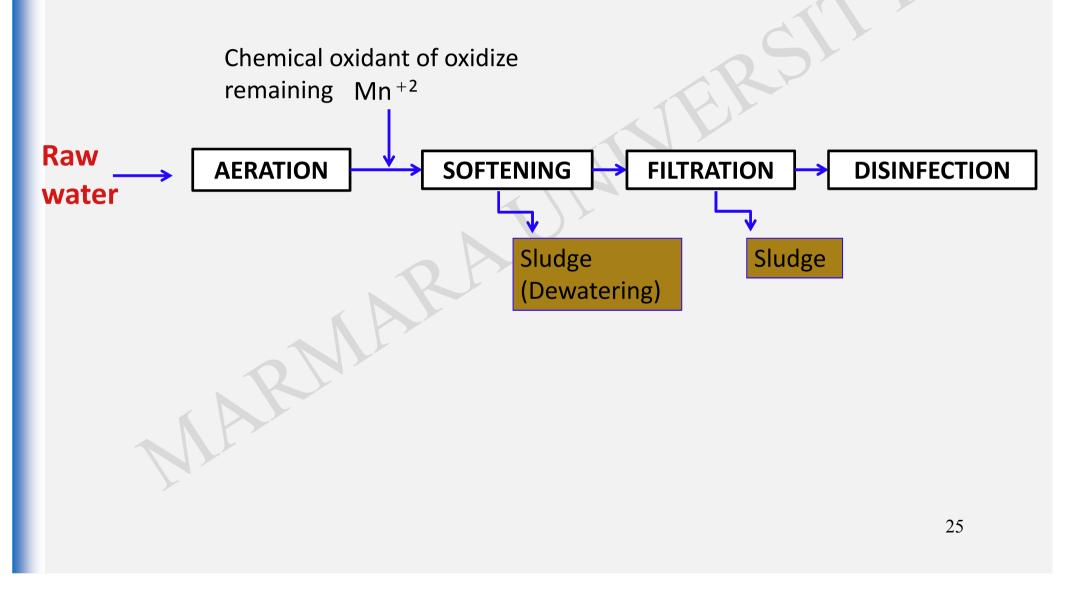
B)Ground Water Sources (wells, galleries, spring water)

- ightarrow Relatively constant in quality from season to season
- may be highly variable in quality from one well location to another due to changes in hydrogeological conditions
- ightarrow superior in quality with respect to surface water

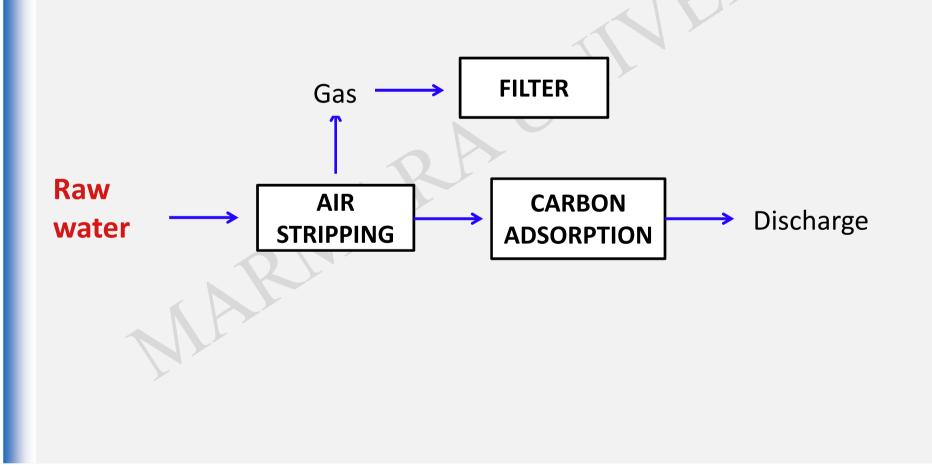
	f bacteriological content	
LOW in	turbidity	DUE TO NATURAL
	total organic concentration	FILTRATION

- → mineral content (hardness ions (Ca⁺⁺, Mg⁺⁺), iron, manganese) may be inferior
- → trace concentrations of organic chemicals (e.g pesticides, herbicides, solvents)
- Iocation of landfills, buried underground storage tanks etc. should be a part of groundwater quality evaluation

Ground Water Contaminants


- \rightarrow Fe⁺⁺, Mn⁺⁺
- \rightarrow Dissolved Gases
- \rightarrow Hardness Ions (Ca⁺⁺, Mg⁺⁺)
- \rightarrow Volatile Organics
- \rightarrow Non-volatile Organics

24


Groundwater Contaminants and Treatment Techniques Used

CONTAMINANT	TREATMENT
Fe ⁺⁺ , Mn ⁺⁺	\rightarrow Aeration for Fe ⁺⁺ oxidation
	\rightarrow To Fe ⁺⁺⁺ in some extent
	\rightarrow Chemical oxidation for
	complete oxidation of Fe ⁺² to Fe ⁺³
	Mn ⁺² to Mn ⁺⁴
Dissolved Gases	→ Aeration
Hardness lons	Chemical Precipitation (water softening for high flowrates)
(Ca ⁺⁺ , Mg ⁺⁺)	
	\rightarrow Ion exchange
	\rightarrow Nanofiltration
Volatile Organics	→ Air stripping
Non-volatile Organics	→ Adsorption

Flow Diagram For The Treatment Of Hard Ground Water

Flow Diagram For The Treatment Of Groundwater Contaminated With Volatile & Nonvolatile Organic Compounds

C) Brackish And Saline Waters

Considerable interest in conversion of saline and brackish water as a result of ;

increasing water consumption

depletion of existing water resources

Cost of potable water production

from brackish and saline water

>> treating fresh water.

C) Brackish And Saline Waters (Continue)

- \rightarrow May be economical where adequate fresh water is not available
- \rightarrow Treatment techniques used;

Evaporators

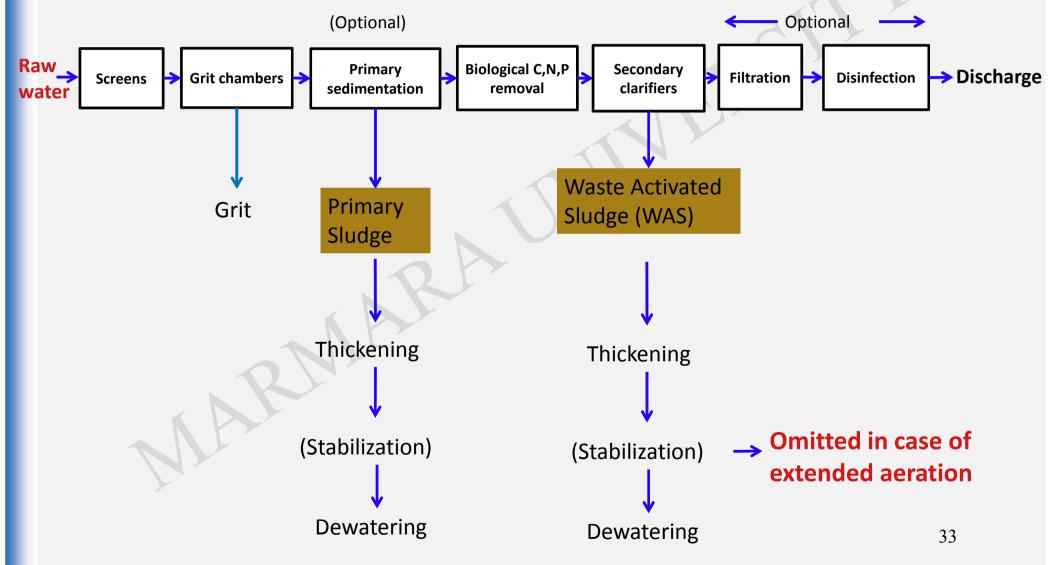
Ion exchange

Electrodialysis

Reverse osmosis

Untreated Wastewater Contaminants

- \rightarrow Suspended Solids
- \rightarrow Biodegredable Organics
- \rightarrow Pathogens
- \rightarrow Nutrients (nitrogen, phosphorus)
- \rightarrow Refractory Organics
- \rightarrow Heavy Metals
- → Dissolved Inorganic Solids
- \rightarrow Volatile Organics


Quality Of Untreated Wastewater & Treatment Techniques Used

CONTAMINANT	TREATMENT
Suspended Solids	 → Screening, communition → Sedimentation → Floatation → Filtration → Coagulation/sedimentation
Biodegradable Organics	 → Suspended growth aerobic biological systems(e.g, activated sludge) → Attached growth aerobic biological systems(e.g, RBC, trickling filter) → Anaerobic biological systems
Pathogens	→ Disinfection

Quality Of Untreated Wastewater & Treatment Techniques Used (Continue)

CONTAMINANT	TREATMENT
Nutrients a) Nitrogen in the form of NH ₃ b) Phosphorus	 → Biological nitrification and denitrification → Ammonia stripping → Ion exchange → Breakpoint chlorination → Chemical precipitation → Biological phosphorus removal
Refractory Organics	 Carbon adsorption Ozonation
Heavy Metals	 → Chemical precipitation → Ion exchange
Dissolved Inorganic Solids	 → Ion exchange → Reverse osmosis → Electrodialysis
Volatile Organics	\rightarrow Air stripping

Typical Flow Diagram For The Treatment Of Domestic (Municipal) Wastewater

