ENVE 301 Environmental Engineering Unit Operations

CHAPTER: 2 Reaction kinetics Material balances

Assist. Prof. Bilge Alpaslan Kocamemi

Marmara University Department of Environmental Engineering Istanbul, Turkey

Stoichiometry Reaction Kinetics Material Balances

Stoichiometry:

 $aA + bB + cC + ... \rightarrow pP + qQ + rR + ...$

A, B, C — Reactant species

P, Q, R \longrightarrow Product species a, b, c, p, q, r \longrightarrow Stoichiometric coefficients

Reactant stoichiometric coeff. = (-) sign

for irreversible reactions

Product stoichiometric coeff. = (+) sign

 $aA + bB + cC + ... \implies Pp + qQ + rR + ...$

Signs of both reactants and products (+) ______ for reversible reactions

Classes of Reactions That Occur In Nature

Homogenous Reactions

Reactions that occur within a single phase (i.e., liquid, solid or gas)

Reactants are distributed continuously(but not necessarily uniformly) throughout the fluid.

1a. Single irreversible reaction: $A \longrightarrow B \quad A+A \longrightarrow B \quad aA+bB \longrightarrow C$ **1b. Multiple irreversible reaction:** R (Parallel reaction) $A \longrightarrow B \longrightarrow C$ (consecutive or series reaction) 1c. Reversible reaction: A+B[→] C+D

N**→** B

Heterogenous Reactions

Reactions that occur at surfaces between phases.

Examples:

Reactions on the surface of ion exchange resin

Reactions that require the presence of a solid phase catalyst

Rate and Order of Reaction

Rate of reaction ——— The rate at which reactant disappears or a product is formed in any given stoichiometric reaction.

Reactants \longrightarrow have negative (-) rates of rxn. Products \longrightarrow have positive (+) rates of rxn. @ constant temperature, the rate of rxn. (disappearance of a reactant or formation of a product) is some function of the concentration of the reactants

```
aA + bB \longrightarrow cC + dD
                                  order of the rxn. respect to individual reactants A and B
                                  (0, 1, 2 may be fractional)
Overall rate of rxn = r = k [A]^{\alpha} [B]^{\beta}
                          (mol/Lt)
                                           molar concentrations of
                                           reactants (mol/L)
                             reaction rate
                             constant
Overall order of rxn = \alpha + \beta
Order of rxn with respect to reactant A = \alpha
```

Order of rxn with respect to reactant $B = \beta$

Unit of k (reaction rate constant)

MU- Department of -Env.Eng.- Enve 301 Course Notes- Dr. Bilge Alpaslan Kocamemi

Example :

 $r = k [A]^{2} [B]$

```
Order of overall rxn. = 2 + 1 = 3
```

Order of rxn. with respect to reactant A = 2

Order of rxn. with respect to reactant B = 1

Stoichiometric Relationships Between Rates of Reactions

 $aA + bB \longrightarrow cC + dD$ $\frac{ra}{-a} = \frac{rb}{-b} = \frac{rc}{c} = \frac{rd}{d}$

Example :

 $3A \longrightarrow 2B + C$

If the overall rate of rxn is 1st order wrt to A , then r = k [A]

 $r = \frac{r_a}{-3} = \frac{r_b}{2} = \frac{r_c}{1}$

```
r_a = rxn. rate wrt to A = -3 k [A]

r_b = rxn. rate wrt to B = 2 k [A]

r_c = rxn. rate wrt to C = k [A]
```

The one limits the overall rxn rate \rightarrow slowest one \rightarrow C

Types of Reactions and Reaction Rates

- \rightarrow irreversible rxns
- \rightarrow reversible rxns
- \rightarrow saturation rxns
- \rightarrow autocatalytic rxns

Irreversible Reactions

a)Single Irreversible Rxns:

 $A \longrightarrow P$ $A + A \longrightarrow P$ $aA + bB \longrightarrow P \longrightarrow r = \frac{r_a}{-a} = \frac{r_b}{-b} = r_p$

Example:

 $aA \longrightarrow pP$ (Rxn. rate $\longrightarrow 1^{st}$ order)

r = k [A] r_a = -a k [A] r_p = p k [A]

b)Multiple Irreversible Rxns:

b-1) Parallel rxns:

аA	k ₁	bB
	k ₂	cC

$$r_{1} = \frac{a}{-a} = \frac{b}{b}$$

$$r_{2} = \frac{a}{-a} = \frac{c}{c}$$

Overall rate of rxn: $r_1 + r_2 = -2\frac{a}{a} = \frac{r_b}{b} + \frac{r_c}{c}$

Rate of rxn with respect to $A = r_a = -ar_1 - ar_2$

Rate of rxn with respect to $B = r_b = b r_1$

Rate of rxn with respect to $C = r_c = cr_2$

11

aA k_1 bB k₂ cC

If both of the rates of rxn \longrightarrow 1st order

 $r_1 = k_1[A]$ $r_2 = k_2[A]$

```
r_{A} = -ak_{1}[A] - ak_{2}[A]r_{B} = bk_{1}[A]r_{C} = ck_{2}[A]
```

MU- Department of -Env.Eng.- Enve 301 Course Notes- Dr. Bilge Alpaslan Kocamemi

b-2) Consequtive rxns

aA
$$\xrightarrow{k_1}$$
 bB $\xrightarrow{k_2}$ cC

aA
$$\xrightarrow{\kappa_1}$$
 bB
 $r_1 = \frac{r_a}{-a} = \frac{r_b}{b}$
 $r_b = b r_1 - b r_2$
 $r_c = c r_2$

 $\begin{array}{ll} \underline{If \ both \ of \ the \ rates \ of \ rxn \ } & \longrightarrow 1^{st} \ order \\ r_1 = k_1[A] & r_a = -ak_1[A] \\ r_2 = k_2[B] & r_b = bk_1[A] - bk_2[B] \\ & r_c = ck_2[B] \end{array}$

Reversible Reactions

$$aA \stackrel{k_1}{\underset{k_2}{\leftarrow}} bB$$

$$\begin{array}{ccc} aA & \stackrel{k_{1}}{\longrightarrow} bB & & r_{1} = \stackrel{r}{a} = \stackrel{r}{b} \\ bB & \stackrel{\rightarrow}{\longrightarrow} aA & & r_{1} = \stackrel{r}{a} = \stackrel{b}{b} \\ r_{2} = \stackrel{b}{b} = \stackrel{r}{a} \\ 2 & b & a \end{array} \right] \quad \begin{array}{c} r_{a} = ar_{1} + ar_{2} \\ r_{b} = br_{1} + br_{2} \\ r_{b} = br_{1} + br_{2} \end{array}$$

Note:

for reversible rxns →signs of stoichiometric coefficients (both reactants & products) are always positive (+)

If both of the rates of rxn $\rightarrow 1^{st}$ order

$r_1 = k_1[A]$	$r_a = ak_1[A] + ak_2[B]$
$r_2 = k_2[B]$	$r_b = bk_1[A] + bk_2[B]$

Saturation Type Reactions

Saturation type reactions have a maximum rate that is a point at which the rate becomes independent of concentration A.

bB

For the reaction $aA \longrightarrow$

FIGURE 5.1 Graphical representation of

saturation-type reaction rate as a function of concentration. r = rate of rxn, mol /Lt [A] = conc. of reactant, mol / L k = rxn rate constant, mol/ Lt K = half saturation constant, mol/ L

k [A]

+

Fig.1.Graphical representation of Saturation –Type Reaction

Ref: Tchobanoglous and Scroeder, 1985, Addison-Wesley Publishing Company

Saturation Type Reactions (continue)

$$r = \frac{k[A]}{K + [A]}$$

• When K << [A] \longrightarrow r = <u>k [A]</u> \approx k (zero order) K + [A] \downarrow Negligible

FIGURE 5.1

Graphical representation of saturation-type reaction rate as a function of concentration.

Ref: Tchobanoglous and Scroeder, 1985, Addison-Wesley Publishing Company

When K >> [A] → r = k [A] ≈ k [A] (first order)
 K + [A] K
 Vegligible

16

Saturation Type Reactions (continue)

For the reaction A + B \longrightarrow P

$$r = \frac{k [A] [B]}{K + [A]} = k \left(\frac{[A]}{K_1 + [A]} \right) \left(\frac{[B]}{K_2 + [B]} \right)$$

Autocatalytic Reactions

Autocatalytic reaction rates are functions of the product concentration.

Example: Bacterial growth

(rate of increase in bacterial number is proportional to the number present)

Autocatalytic rxns can be $\longrightarrow 1^{st}$

1st order 2nd order Saturation Type Partially Autocatalytic (function of reactant & product)

MU- Department of -Env.Eng.- Enve 301 Course Notes- Dr. Bilge Alpaslan Kocamemi

2nd order Autocatalytic Rxn.

aA
$$\rightarrow$$
 Bb
 $r = k [B] [A] = \frac{r_a}{a} = \frac{r_b}{b}$
 $r_a = a k [A][B]$
 $r_b = b k [A] [B]$

19

Effects of Temperature On Reaction Rate Coefficients

The temperature dependence of the rate constant is given by

Van't Hoff- Arhenius relationship

$$\frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$

Analysis of Experimental Data

Methods to determine the order of a reaction from experimental data

1-) Method of Integration

- Most commonly used

- 2-) Differential Method
- 3-) Time Reaction Method
- 4-) Isolation Method

I.Method of Integration

Integrated forms of the various rate expressions (Oth order, 1st order etc)

Plotting the experimental data functionally based on the integrated form of the rate expression

If straight line plot is obtained

It is assumed that the order of the rxn corresponds to the rxn. plotted

ightarrow Determine the reaction rate constant from the plotting

MU- Department of -Env.Eng.- Enve 301 Course Notes- Dr. Bilge Alpaslan Kocamemi

MU- Department of -Env.Eng.- Enve 301 Course Notes- Dr. Bilge Alpaslan Kocamemi

24

Half Life

Time required for the amount of substance to decrease to half its initial value

d) Irreversible Parallel Reaction (1st order-continue)

$$aA \xrightarrow{k_{1}} bB \\ cC \\ \frac{r_{b}}{r_{c}} = \frac{d[B]}{d[C]} / dt = \frac{k_{1} \cdot [A]}{k_{2} \cdot [A]} \\ k_{2} \xrightarrow{cC} b_{(r)} \\ \frac{r_{b}}{r_{c}} = \frac{d[B]}{d[C]} = \frac{k_{1}}{k_{2}} \xrightarrow{cC} b_{(r)} \\ k_{2} \cdot [Cb_{(r)} - Cb_{(0)}] = k_{1} \cdot [Cc_{(r)} - Cc_{(0)}] \\ k_{2} \cdot [Cb_{(r)} - Cb_{(0)}] = k_{1} \cdot [Cc_{(r)} - Cc_{(0)}] \\ k_{1} = \frac{k_{2} [Cb_{(r)} - Cb_{(0)}]}{[Cc_{(r)} - Cc_{(0)}]}$$

29

II.Differantial Method

Assumption: The rate of rxn is proportional to the nth power of concentration.

$$r_{A} = \frac{d[A]}{dt} = -k[A]^{n}$$

For 2 different concentrations at 2 different times;

$$t = t_{1}, \qquad A = A_{1} \qquad \longrightarrow \qquad \frac{d[A_{1}]}{dt} = -k[A_{1}]^{n}$$
$$t = t_{2}, \qquad A = A_{2} \qquad \longrightarrow \qquad \frac{d[A_{2}]}{dt} = -k[A_{2}]^{n}$$

If logarithm of each of the above equation is taken and the k values are equated:

$$\frac{d[A_{1}]}{dt} = -k[A_{1}]^{n} \rightarrow \log\left(\frac{-d[A_{1}]}{dt}\right) = \log k + n\log[A_{1}]$$

$$\frac{d[A_{2}]}{dt} = -k[A_{2}]^{n} \rightarrow \log\left(\frac{-d[A_{2}]}{dt}\right) = \log k + n\log[A_{2}]$$

$$n = \frac{\log(-d[A_{1}]/dt) - \log(-d[A_{2}]/dt)}{\log[A_{1}] - \log[A_{2}]}$$

$$31$$

Example:

Determine the order of the reaction and the reaction rate constant for the following data derived from on experiment carried out in a batch reactor.

Solve the problem

a)Using Integration Methodb)Using Differential Method

Time	[A]	
(min)	mol/L	
0	100	
1	50	
2	37	
3	28.6	
4	23.3	
5	19.6	
6	16.9	
7	15.2	
8	13.3	
9	12.2	
10	11.1	

32

A)Integration Method

For 1st order rxn; $C_{a(t)} = C_{a(0)} e^{-t} \longrightarrow Ln \frac{C_{a(t)}}{C_{a(0)}}$

For 1st Order Reaction

Time	[A]	Time	-Ln [Ca(t)/Ca(0)]
(min.)	mol/L		
0	100	0	0
1	50	1	0.69
2	37	2	0.99
3	28.6	3	1.25
4	23.3	4	1.46
5	19.6	5	1.63
6	16.9	6	1.78
7	15.2	7	1.88
8	13.3	8	2.02
9	12.2	9	2.10
10	11.1	10	2.20

–kt

 $\frac{[A_{t+1}] - [A_{t-1}]}{dt}$

B) Differential Method

$$n = \frac{\log \left(-d[A_1]/dt\right) - \log \left(-d[A_2]/dt\right)}{\log [A_1] - \log [A_2]}$$

Choose any data;

Time	[A] ,mol/L	d[A]/dt
2	37	$\frac{28.6 - 50}{3 - 1} = -10.7$
6	16.9	$\frac{15.2 - 19.6}{7 - 5} = -2.20$

$$n = \frac{\log(-(-10.7)) - \log(-(-2.2 \ 0))}{\log[37] - \log[16.9]} = \frac{1.029 - 0.34}{0.34} = 2$$

Materials Balance

Materials Balance (mass balance)

quantitative description of all materials that **enter**, **leave and accumulate** in a system with defined boundaries.

based on the law of conservation of mass (mass is neither created nor destroyed)

is developed on a chosen control volume.

Accumulation = Inflow - Outflow + Generation

Generation term. can be "+" or "-"

[Most of the materials of interest disappear and therefore generation term is "-" in most cases.]

Symbolic Representation:

Accumulation = Inflow - Outflow + Generation $\forall \frac{dC}{dt} = (QC_{\circ}) - QC \pm r \forall$

 $\forall =$ volume of the reactor, m³

 $\frac{dc}{dt}$ = rate of change of reactant concentration within the reactor (g / m³ sec)

Q = flow into and out of the reactor (m^3/sec)

 C_0 = concentration of reactant in the influent (g/m³)

C=concentration of reactant in the reactor and effluent (g/m^3)

r = rate of generation (g/m³ sec)

Operational states that must be considered in the application of materials balances:

Steady state:

There is no accumulation in the system. All rates and concentration do not vary with time.

 $\frac{\partial \mathbf{C}_{A}}{\partial t} = \mathbf{0}$

Example: Pump discharging constant value of water within time.

Unsteady (transient) State:

Rate of accumulation is changing with time

$$\frac{\partial \mathbf{C}_{A}}{\partial t} \neq 0$$

Example: Filling a reservoir pumping, of the contents of a tank.