ENVE 301 Environmental Engineering Unit Operations

Chapter: 6 Mixing

Assist. Prof. Bilge Alpaslan Kocamemi

Marmara University Department of Environmental Engineering Istanbul, Turkey

1

Mixing

Common Applications:

 \rightarrow Mixing of coagulant chemicals (COAGULATION)

 \rightarrow Flocculation

 \rightarrow Addition of chlorine for disinfection

 \rightarrow Biological treatment

3 phenomena contribute to mixing:

 Eddy current
 (generated as a result of velocity gradient)

3. Non-uniform flow

are functions of the degree of turbulence in the basin.

The degree of mixing \propto

Magnitude of eddy currents or formed within the liquid turbulence

Velocity Gradient (G)

Rate of particulate collision \propto G

Therefore; G must be sufficient to furnish the desired rate of particulate collisions.

G **1** shear force **1**

P=Power dissipated ,W (Nm/sec) μ =Dynamic viscosity, (Nsec/m²) V=Volume to which the power is applied, (m³)

1/sec

Example:

Two water particles moving 1m/sec relative to each other at a distance 0,1m would have

$$G = \frac{1m / sec}{0.1m} = 10 sec^{-1}$$

Velocity gradient \longrightarrow measure of the relative velocity of two particles of fluid and distance between.

Hydraulic Mixers

 \rightarrow The degree of turbulence is measured by the loss in head.

 \rightarrow Dependent on flow

 \rightarrow Power dissipation in a hydraulic device= $\rho gQ \Delta h_{L}$

Headloss

Hydraulic Mixers (continue)

A) Venturi Sections

→ The reduced pressure in the throat of the section aspirates the chemical feed solution into flow.

→ Turbulence generated in the throat.

 \rightarrow As the flow jet expands upon exiting the throat \longrightarrow Mixing. 8

B) Hydraulic Jumps

Ref: Schulz & Okun, 1984, John Wiley & Sons

A chute followed by a channel, with or without a drop in the elevation of channel floor.

Chute \longrightarrow Creates supercritical flow.

Turbulence generated in the jump \longrightarrow Provide suitable mixing.

C) Parshall Flume

→ Effective rapid mixer when a hydraulic jump is incorparated immediately downstream of flume.

The sudden drop in the hydraulic level over the weir induces the turbulence in water for mixing.

Chemicals are added over weir with the help of diffusers.

The vertical fall of water the weir \longrightarrow at least 0.1m

to ensure sufficient turbulence

The height of the coagulant \longrightarrow at least 0.3m diffuser over the weir to penetrate the nappe thickness

E) Baffled Mixing Chambers

Mixing is accomplished by reversing the flow of water through channels formed.

a) Around-the-end (horizontal flow) bafflesb) Over-and-under (vertical flow) baffles

F) Static Mixers

contain internal vanes or orifice plates that bring about sudden changes in the velocity pattern

 \rightarrow are identified by their lack of moving parts

mixing occurs in a plug-flow regime

the longer the mixing element

the better the mixing

however headloss increases

Mixing time is quite short typically less than 1 sec.

Corporation, N. Andover, Mass.]

In-line Mixers \rightarrow similar to static mixers but contain a rotating mixing element to enhance the mixing.

Mechanical Mixing Devices

Turbine and Propeller Mixers

Reynolds number for impellers $R_e = \frac{D^2 n \rho}{\mu}$ D = diameter of impeller , m

n = rev/sec

 $\rho=density~$ of liquid $% 10^{-3}$, kg/m $^{-3}$

 $\mu = dynamic$ viscosity Ns/m ²

R = reynolds number (unitless)

Reynolds number : Re <10 \rightarrow laminar Re>1000 \rightarrow turbulent

Vortexing :

 \rightarrow Liquid to be mixed rotates with the impeller

→ Reduction in the difference between the fluid velocity and the impeller velocity (effectiveness of mixing decreases)

<u>In circular or rectangular tanks the usual method used to limit vortexing</u>. To install 4 or more vertical baffles extending approximately 1/10th the diameter out from the wall.

In small tanks (to prevent vortexing):

 \rightarrow Mounting the impeller off-center

 \rightarrow Mounting the impeller at angle with verticle

 \rightarrow Mounting the impeller to the side of basins at angle

Turbine or propeller mixers are usually constructed with a vertical shaft driven by a speed reducer and electric motor.

Types of Impellers :

1. Radial flow impellers

Generally have flat or curved blades located parallel to the axis of shaft.

2. Axial flow impellers

Make an angle of less than 90° with drive shaft.

Turbine and Propeller Mixers (continue)

Power imparted in either **baffled** or **unbaffled** tank

Turbine and Propeller Mixers (continue)

Turbine and Propeller Mixers (continue)

TABLE 6-7 Ref: Metcalf Eddy,1991, McGraw Hill

Values of k for mixing power requirements [16]

		N N 2532
Impeller	Laminar range, Eq. 6-5	Turbulent range, Eq. 6-6
Propeller, square pitch, 3 blades	41.0	0.32
Propeller, pitch of two, 3 blades	43.5	1.00
Turbine, 6 flat blades	71.0	6.30
Turbine, 6 curved blades	70.0	4,80
Fan turbine, 6 blades	70.0	1.65
Turbine, 6 arrowhead blades	71.0	4.00
Flat paddle, 6 blades	36.5	1.70
Shrouded turbine, 2 curved blades	97.5	1.08
Shrouded turbine with stator (no baffles)	172.5	1.12
Shrouded turbine, 2 curved blades Shrouded turbine with stator (no baffles)	97.5	1.08

Table 2.2. Values of Constants K_L and K_T in Eqs. (2.12)and (2.13) for Baffled Tanks Having Four Baffles at TankWall, with Width Equal to 10 Percent of the TankDiameterRef: Reynolds/Richards 2nd Edition, 1982

Type of Impeller	KL	KT
Propeller, pitch of 1, 3 blades	41.0	0.32
Propeller, pitch of 2, 3 blades	43.5	1.00
Turbine, 4 flat blades, vaned disc	71.0	6.30
Turbine, 6 flat blades, vaned disc	71.0	6.30
Turbine, 6 curved blades	70.0	4.80
Fan turbine, 6 blades at 45°	70.0	1.65
Shrouded turbine, 6 curved blades	97.5	1.08
Shrouded turbine, with stator, no		
baffles	172.5	1.12
Flat paddles, 2 blades (single		
paddle), $D_i/W_i = 4$	43.0	2.25
Flat paddles, 2 blades. $D_i/W_i = 6$	36.5	1.60
Flat paddles, 2 blades, $D_t/W_t = 8$	33.0	1.15
Flat paddles, 4 blades, $D_f/W_f = 6$	49.0	2.75
Flat paddles, 6 blades, $D_t/W_t = 6$	71.0	3.82

From: (1) "Mixing of Liquids in Chemical Processing" by J. H. Rushton. In Industrial and Engineering Chemical Society: and (2) "Mixing--**Present** Theory and Practice" by J. H. Rushton and J. Y. Oldshue. In **Chemical** Engineering Progress.46, no. 4 (April 1953):161. Reprinted by permission.

Power imparted in an <u>unbaffled</u> <u>tank</u> (valid for laminar and turbulent flow)

FIGURE 12.9 Ref: Tchobanoglous and Scroeder, 1985, Addison-Wesley Publishing Company

Mixing power function curve for standard tank configuration shown in Fig. 12.8. Source: Adapted from Ref. [12.23].

Ρ

 $\rho N^3 D^5$

 ϕ = Power function dimensionless =

 $\phi = k R_{P}^{p}$

Types of Propeller Impellers

Figure 2.11. Types of Propeller Impellers Adapted from Unit Operations of Chemical Engineering by W. L. McCabe and J. C. Smith. Copyright © 1976 by McGraw-Hill Book Co., Inc. Reprinted by permission. Ref: Reynolds/Richards 2nd Edition

Figure 2.12. Flow Regime in a Propeller-Impeller Tank Adapted from "Mixing—Present Theory and Practice: Parts I and II," by J. H. Rushton and J. Y. Oldshue. In Chemical Engineering Progress 46. no. 4 (April 1953):161; and 49, no. 5 (May 1953):267. Ref: Reynolds/Richards 2nd Edition

Propeller Mixer

Submerged propeller mixers used to mix the contents of an anoxic reactor.

Ref: Metcalf Eddy,1991, McGraw Hill

FIGURE 8.10 Types of Turbine Impellers Ref: Reynolds/Richards 2nd Edition

Adapted from Unit Operations of Chemical Engineering by W. L. McCabe and J. C. Smith. Copyright © 1976 by McGraw-Hill, Inc. Reprinted by permission.

Types of Turbine Impellers

Figure 5-15

Typical impellers used for mixing in wastewatertreatment facilities: (a) disk-type radial-flow impeller, (b) axial-flow pitched (typically 45°) blade impeller, (c) axialflow hydrofoil-type impeller, and (d) propeller mixer. Note: The flat blade radial-flow turbine mixer looks like the axial-flow impeller (b) with the exception that the blades are set parallel to the axis of the shaft.

Ref: Metcalf Eddy, 1991, McGraw Hill

Table 5-11

Typical types of mixing impellers used in wastewater treatment^a Ref: Metcalf Eddy, 1991, McGraw Hill

Type of impeller	Flow	Shear	Pumping capacity	Applications
Vertical flat blade turbine (VFBT)	Radial	High	Low	Vertical-flow flash mixing, suspension of solids, gas dispersion
Disk turbine	Radial	High	Low	Mixing, gas dispersion
Surface impeller	Radial	High	Moderate	Gas transfer
Pitched-blade turbine (45 or 32° PBT)	Axial	Moderate	Moderate	Horizontal flash mixing, suspension of solids
Low-shear hydrofoil (LS)	Axial	Low	High	Horizontal-flow flash mixing, suspension of solids, blending, flocculation
Propeller	Axial	Very low	High	Horizontal-flow flash mixing, suspension of solids, blending, flocculation

^aAdapted, in part, from Philadelphia Mixer Catalog.

Types of Turbine Impellers

Turbine Mixer in a Baffled Tank

Notes: 1. The agitator is a six-blade flat turbine impeller

- 2. Impeller diameter, $d_i = 1/3$ tank diameter
- 3. Impeller height from bottom, $H_i = 1.0$ impeller diameter
- Impeller blade width, q = 1/5 impeller diameter
- Impeller blade length, r = 1/4 impeller diameter
- Length of impeller blade mounted on the central disk = r/2 = 1/8 impeller diameter
- Liquid height, H_L = 1.0 tank diameter
- Number of baffles = 4 mounted vertically at tank wall and extending from the tank bottom to above the liquid surface
- Baffle width, W_b = 1/10 tank diameter
- 10. Central disk diameter, s = 1/4 tank diameter

Source: Adapted from Ref. 16

inition sketch for turbine mixer in baffled tank.

Adapted from "Mixing — Present Theory and Practice: Parts I and II" by J. H. Rushton and J. Y. Oldshue. In *Chemical Engineering Progress* 46, no. 4 (April 1953):161; and 49, no. 5 (May 1953):267. Reprinted by permission. Ref: Reynolds/Richards 2nd Edition

Example:

Determine the power requirements for 3 m diameter, six-blade flatblade turbine impeller mixer running at 15 rpm in a 10 m diameter mixing tank. Assume the fluid being mixed is water.

 $(T=15^{\circ}C, \mu=1.139Ns/m^2, \rho=999.1 kg/m^3)$

Padddle Mixers

consists of a series of appropriately spaced paddles mounted on either a horizontal or vertical shaft

generally rotate slowly

are commonly used as flocculation devices

FIGURE 8.1 A Three-Compartment Paddle-Wheel Flocculation Basin at a Water Treatment Plant. Note that the flow is parallel to the paddle-wheel shafts, as shown in Figure 8.20. The flow passes through the orifices in the walls. Tapered flocculation is provided by varying the size of the compartments and the number and length of the blades on the paddle wheels. Ref: Reynolds/Richards 2nd Edition

Paddle Impellers

39

Paddle Impellers

POWER IMPARTED TO THE WATER BY PADDLE

Newton's Law for the drag force exerted by a submerged object moving in a liquid.

 $F_D = Drag$ force (1bf or N)

 $C_D = Drag$ coefficien t

A=Cross-sectional area of paddle (ft² or m²) (paddle-blade area at right angle to the direction of movement)

 $\rho = \text{Density of fluid } (\frac{\text{slug}}{\text{ft}^3} \text{ or } \frac{\text{kg}}{\text{m}^3})$

Vp=Relative velocity of paddles with respect to water.

$$\begin{bmatrix}
0.6 - 0.75 V_{\text{paddle tip}} \\
V_{\text{paddle tip}} = 2-3 \text{ ft/sec} (0.6-0.9 \text{ m/sec})
\end{bmatrix}$$

THE DRAG COEFFICIENT (Cd) \longrightarrow depends basically on the geometry of the paddle

L/W ratio	С
5	1.20
20	1.5
∞	1.90

Example:

Determine the theoretical power requirement and the paddle area required to achieve a G value of 50 sec⁻¹ in a tank with a volume of 2832 m³.

(Water temperature = $15^{\circ}C \rightarrow \rho = 999.5 \frac{\text{kg}}{\text{m}^3} \mu = 1.139.10^{-3} \frac{\text{N sec}}{\text{m}^2}$) C_D=for rectangular paddle =1.8

Paddle tip velocity= 0,6m/sec Relative velocity of paddle = 0,75 $V_{paddle tip}$

Pneumatic Mixers

When air is injected in mixing tank, power dissipated by the rising air bubbles can be estimated as:

$$P = 35.28 Q_a Ln \left(\frac{h + 33.9}{33.9}\right)$$
 US customary units

$$P = 1.689 Q_a Ln \left(\frac{h + 10.33}{10.33} \right)$$
SI units

Pneumatic Rapid Mixing

Air

P=power dissipated (ft.lb/sec OR kW)

Qa=air flow rate at operating temperature and pressure (ft³/min or m³/min)

H=depth to the diffusers in meters of water (air pressure at the point of discharge) (ft or m)

Application of pneumatic mixing:

to provide oxygen and to maintain mixed liquor necessary for aerobic bacteria in biological treatory

 \rightarrow to keep bacteria in suspension in biological treatment.

Example:

A pneumatic mixing basin with a volume of 6200 ft³ is to be designed to provide G value of 60 sec⁻¹. Assume that the basin depth is to be 12ft and air will be released into the basin 0,5ft above the tank bottom.

(Temp= 60°F
$$\longrightarrow \mu = 2.359.10^{-5} \frac{1 \text{bf.sec}}{\text{ft}^2}$$
)

