**ENVE 301 Environmental Engineering Unit Operations CHAPTER: 9 Design of Rapid mixing (Coagulation) Slow mixing (Flocculation)** Units

#### Assist. Prof. Bilge Alpaslan Kocamemi

Marmara University Department of Environmental Engineering Istanbul, Turkey

# **DESIGN OF RAPID MIXING (COAGULATION) UNITS**

**Rapid mixing unit :** provide complete mixing of the coagulant and raw water.

Destabilization of colloidal particle Early stages of floc formation

occur in rapid mixing unit

- → Hydraulic mixing units (see Chp.6)
- Mechanically mixing units (see Chp.6)

**Design Criteria:** 

```
G for rapid mix \rightarrow 700-1000 sec<sup>-1</sup>
```

t (detention time) for rapid mixing  $\rightarrow$  20-60 sec

→ may be single compartment or double compartment

#### → Single compartment basins are usually circular or square in plan view

Liquid depth = 1-1,25 x (basin diameter or width) (See Chp.6)

#### → Small baffles are desirable to minimize vortexing.(See Chp.6)

# **DESIGN OF SLOW MIXING (FLOCCULATION) UNITS**

Destabilized colloids resulting from coagulation may still settle very slowly

Flocculation is a slow mixing process in which these particles are bought into contact in order to promote their agglomeration.

<u>The objective of flocculation</u> is to provide increase in the number of contacts between coagulated particles by **gentle and prolonged agitation** 

Devices used to accomplish
mixing required for flocculation
mathematically driven paddles
baffled channels

#### **Design Criteria :**

 $Gt \rightarrow 10 - 10^{5}$ G  $\rightarrow 10 - 75 \text{ sec}^{-1}$  (light / dense floc)

t = 10 - 30 min (contact opputinity in the basin) (small / larg e floc)

 $\begin{array}{ll} \operatorname{Gt} \rightarrow 10 & -10^{5} \\ \operatorname{G} \rightarrow 10 - 75 \ \operatorname{sec}^{-1} & (\operatorname{light} / \operatorname{dense} & \operatorname{floc}) \\ t = 10 - 30 \ \operatorname{min} & (\operatorname{contact} & \operatorname{opputinity} & \operatorname{in} & \operatorname{the} & \operatorname{basin}) & (\operatorname{small} / 1 \ \operatorname{arg} & \operatorname{floc}) \end{array}$ 

If G is insufficient → adequate collision will not occur proper floc will not formed

High  $G_t \rightarrow$  large # of collisions

In the design of flocculation systems; the total number of particle collision is indicated as a function of the product of the velocity gradient and detention time(Gt)

Mixing in an individual flocculator basin → hydraulic flow regime approaching complete mix condition.

### Plug-flow conditions are desirable to minimize **short-circuiting** of the flow

#### Short circuiting

→ a portion of the incoming flow traverses the chamber in a much shorter time than the nominal detention period

#### two or more basins in series (TAPERED FLOCCULATION)

promote plug flow through the system (ensure that all particles are exposed to mixing for a significant amount of the total detention time

allows the G value to be decreased from one compartment to next as the average floc size increases. <sup>7</sup>

#### **Tapered Floculation**

Flow is subjected to decreasing G values as it passes through the flocculation basin

> rapid build up of small dense floc which subsequently aggregates at lower G values into larger, dense, rapid settling floc particles.

High G at the inlet  $\rightarrow$  max. mixing to enhance Small, dense flocs aggregation

Low G at the outlet  $\rightarrow$  promotes larger flocs by reducing Small dense mixing and sheer. flocs combine into larger flocs.

Large G , low t  $\rightarrow$  small but dense flocs Low G , high t  $\rightarrow$  larger but lighter flocs

**Good floc :**Large and dense

#### Tapered flocculation:

Typical series of G  $\rightarrow$  80, 40, 20 sec<sup>-1</sup>

For mechanical mixing flocculators→ Variable speed motors should be provided to change the power input as required with changes in

- Temperature
- Q
- Water quality

The compartments are often separated with a baffle.

#### **CROSS-FLOW PATTERN (blades are perpendicular to flow)**





Tapered flocculation may be provided by varying

- $\rightarrow$  the paddle size
- $\rightarrow$  the number of paddles
- diameter of the paddle wheels on the various horizontal shafts
- $\rightarrow$  the rotational speed of the various horizontal shafts

# AXIAL FLOW PATTERN(Blades are parallel to flow)

Figure 2.17. Horizontal-Shaft Paddle-Wheel Flocculator (Axial-Flow Pattern)



Tapered flocculation may be obtained by varying

→ the paddle size
→ number of paddles
on each paddle wheel having a common horizontal shaft.

#### **EXAMPLE (Paddle wheel flocculator design )**

A cross flow horizontal shaft, paddle wheel tapered flocculation basin with 3 compartments square in profile having equal depths are to be designed for a flow of 6.5 MGD. Each horizontal shaft will have 4 paddle wheels and each paddle will have 6 blades each having a width of 6 inch and length of 10 ft. 12in space will be left between each blade.

Detention time is 50 min. The G values determined from lab. tests for 3 compartments are;  $G_1=50$  sec<sup>-1</sup>,  $G_2=25$  sec<sup>-1</sup>,  $G_3=15$  sec<sup>-1</sup>. These give an average G value of 30 sec<sup>-1</sup>. The compartments are to be separated by baffle fences. The basin should be 50ft in width. The speed of blades relative to the water is 3 quarters of the peripheral blade speed. Determine:

**a)**The Gt value, **b)**The basin dimensions, **c)**The paddle-wheel design, **d)**Power to be imparted to the water in each compartment, **e)**The rotational speed of each horizontal shaft in rpm



## **BAFFLED CHANNEL FLOCCULATORS**

Horizontal flow (around the end) Vertical flow (over and under) ullet











→can be used for large treatment plants (Q>10000m<sup>3</sup>/day) where the flowrates can maintain sufficient headlosses in the channels for slow mixing without requiring that baffles be spaced too close together (which would make cleaning difficult)

→A distinct advantage of such flocculators They operate under plug flow conditions

free from short circuiting problems The number of baffles needed to achieve a desired velocity gradient:

$$n = \left\{ \left[ \frac{2\mu t}{\rho(1.44 + f)} \right] \left[ \frac{HLG}{Q} \right]^2 \right\}^{\frac{1}{2}}$$



Figure 6.2. Horizontal-flow baffled channel flocculator (plan). Source: IRC, 1981b.

FOR HORIZONTAL FLOW (around the end) BAFFLED

#### FLOCCULATOR

- n = number of baffles in the basin
- H = depth of water in the basin (m)
- L = length of the basin (m)
- G = velocity gradient (sec<sup>-1</sup>)
- $Q = flowrate (m^3/sec)$
- t = time of flocculation (sec)
- μ = dynamic viscosity (kg/m.sec)
- $\rho$  =density of water (kg/m<sup>3</sup>)
- f = coefficient of friction of the baffles
- w = width of the basin (m)

HEADLOSS AROUND THE BAFFLE IN A CHANNEL can be computed by assuming  $180^{\circ}$  turn in the direction of flow in a square pipe h=3.2 (v<sup>2</sup>/2g) 15

$$n = \left\{ \left[ \frac{2\mu t}{\rho(1.44 + f)} \right] \left[ \frac{WLG}{Q} \right]^2 \right\}^{\frac{1}{3}}$$

## FOR VERTICAL FLOW (over and under) BAFFLED FLOCCULATOR



Figure 6.3. Vertical-flow baffled channel flocculator (cross-section). Source: IRC, 1981b.

- n = number of baffles in the basin
- H = depth of water in the basin (m)
- L = length of the basin (m)
- G = velocity gradient (sec<sup>-1</sup>)
- $Q = flowrate (m^3/sec)$
- t = time of flocculation (sec)
- $\mu$  = dynamic viscosity (kg/m.sec)
- $\rho$  =density of water (kg/m<sup>3</sup>)
- f = coefficient of friction of the baffles
- w = width of the basin (m)

HEADLOSS AROUND THE BAFFLE IN A CHANNEL can be computed by assuming  $180^{\circ}$  turn in the direction of flow in a square pipe h=3.2 (v<sup>2</sup>/2g) 16 Water velocity in both horizontal flow and vertical flow units generally varies 0.1-0.3 m/sec Detention time varies from 15-30 min G = 10-100 sec<sup>-1</sup>

#### Other design criteria: Table 6.3 (Okun)

Tapered energy flocculation in baffled channels generally is achieved by varying the spacing of the baffles. That is;

Close spacing of baffles  $\rightarrow$  for high velocity gradients

Wider spacing of baffles  $\rightarrow$  for low velocity gradients

## **EXAMPLE** (Fair, Geyer, Okun p.252)

Design a horizontal flow baffled channel flocculator for a treatment plant of  $10000m^3$ /day capacity. The flocculation basin is to be divided into 3 sections of equal volume, each section having constant velocity gradients of 50, 35, 25 s<sup>-1</sup>, respectively. The total flocculation time is to be 21 min and the water temperature is 15° C. The timber baffles have a roughness coefficient of 0.3. A common wall is shared between the flocculation sedimentation basins, hence the length of the flocculator is fixed at 10m. A depth of 1m is reasonable for horizontal flow flocculators.

At 15°C  $\mu$  = 1.14×10<sup>-3</sup> kg/msec

 $\rho = 1000 \text{ kg/m}^3$ 

