Spring 2014 MATH2056 Linear Algebra HW2

1.1.2. In each part, determine whether the equations form a linear system.

(a)
$$-2x + 4y + z = 2$$

 $3x - \frac{2}{y} = 0$
(b) $x = 4$
 $2x = 8$
(c) $4x - y + 2z = -1$
 $-x + (\ln 2)y - 3z = 0$
(d) $3z + x = -4$
 $y + 5z = 1$
 $6x + 2z = 3$
 $-x - y - z = 4$

1.1.12. In each part, find a system of linear equations corresponding to the given augmented matrix.

1.2.22. Solve the given homogeneous linear system by any method.

$$x_1 + 3x_2 + x_4 = 0$$

$$x_1 + 4x_2 + 2x_3 = 0$$

$$-2x_2 - 2x_3 - x_4 = 0$$

$$2x_1 - 4x_2 + x_3 + x_4 = 0$$

$$x_1 - 2x_2 - x_3 + x_4 = 0$$

1.2.26 Determine the values of a for which the system has no solutions, exactly one solution, or infinitely many solution.

$$x + 2y + z = 2$$

$$2x - 2y + 3z = 1$$

$$x + 2y - (a^2 - 3)z = a$$

1.2.30. Solve the following systems, where *a*, *b*, and *c* are constants.

$$\begin{array}{rcl}
x_1 + x_2 + x_3 &= & a \\
2x_1 &+ 2x_3 &= & b \\
& & 3x_2 + 3x_3 &= & c
\end{array}$$

1.3.6

Consider the matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

in each part compute the given expression (where possible).

(a) $(2D^T - E)A$ (b) (4B)C + 2B(c) $(-AC)^T + 5D^T$ (d) $(BA^T - 2C)^T$ (e) $B^T(CC^T - A^TA)$ (f) $D^TE^T - (ED)^T$

1.3.24. Find the 4×4 matrix $A = [a_{ij}]$ whose entries satisfy the stated condition.

(a)
$$a_{ij} = i + j$$

(b) $a_{ij} = i^{j-1}$
(c) $a_{ij} = \begin{cases} 1 & \text{if } |i-j| > 1 \\ -1 & \text{if } |i-j| \le 1 \end{cases}$

1.4.30. Assuming that all matrices are $n \times n$ and invertible, solve for D.

$$ABC^T DBA^T C = AB^T$$

1.4.53. (a) Show that if A, B, and A + B are invertible matrices with the same size, then

$$A(A^{-1} + B^{-1})B(A + B)^{-1} = I$$

(b) What does the result in part (a) tell you about the matrix $A^{-1} + B^{-1}$?

1.5. 8. Find an elementary matrix *E* that satisfies the equation.

- (a) EB = D(b) ED = B(c) EB = F(d) EF = B
- $A = \begin{bmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 8 & 1 & 5 \end{bmatrix} B = \begin{bmatrix} 8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1 \end{bmatrix} C = \begin{bmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 2 & -7 & 3 \end{bmatrix} D = \begin{bmatrix} 8 & 1 & 5 \\ -6 & 21 & 3 \\ 3 & 4 & 1 \end{bmatrix} F = \begin{bmatrix} 8 & 1 & 5 \\ 8 & 1 & 1 \\ 3 & 4 & 1 \end{bmatrix}$

1.5.22. Use the inversion algorithm to find the inverse of the given matrix, if the inverse exists.

-8	17	2	$\frac{1}{3}$
4	0	$\frac{2}{5}$	-9
0	0	0	0
$^{-1}$	13	4	2

1.5.36. Write the *inverse* of the given matrix as a product of elementary matrices.

 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

1.6.16. Determine conditions on the b_i 's, if any, in order to guarantee that the linear system is consistent. $x_1 - 2x_2 - x_3 = b_1$

- $-4x_1 + 5x_2 + 2x_3 = b_2$ $-4x_1 + 7x_2 + 4x_3 = b_3$
 - 1.6.18. Consider the matrices

	2	1	2]			[x ₁]	
A =	2	2	-2	and	$\mathbf{x} =$	x2	
	3	1	1			<i>x</i> 3	

- (a) Show that the equation $A\mathbf{x} = \mathbf{x}$ can be rewritten as $(A I)\mathbf{x} = \mathbf{0}$ and use this result to solve $A\mathbf{x} = \mathbf{x}$ for \mathbf{x} .
- (b) Solve $A\mathbf{x} = 4\mathbf{x}$.

1.7.24. find all values of the unknown constant(s) in order for A to be symmetric.

$$A = \begin{bmatrix} 2 & a - 2b + 2c & 2a + b + c \\ 3 & 5 & a + c \\ 0 & -2 & 7 \end{bmatrix}$$

1.7.26. Find all values of x in order for A to be invertible.

$$A = \begin{bmatrix} x - \frac{1}{2} & 0 & 0 \\ x & x - \frac{1}{3} & 0 \\ x^2 & x^3 & x - \frac{1}{4} \end{bmatrix}$$

1.7.37. A square matrix A is called *skew-symmetric* if $A^T = -A^T$

Prove:

г

- (a) If A is an invertible skew-symmetric matrix, then A^{-1} is skew-symmetric.
- (b) If A and B are skew-symmetric matrices, then so are A^T , A + B, A B, and kA for any scalar k.
- (c) Every square matrix A can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix. [*Hint:* Note the identity $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A A^T)$.]

1.7.40. Find all values of a, b, c, and d for which A is skew-symmetric.

	0	2a - 3b + c	3a - 5b + 5c	
A =	-2	0	5a - 8b + 6c	
	-3	-5	d	

- **1.8.4.** The accompanying figure shows a network of one-way streets with traffic flowing in the directions indicated. The flow rates along the streets are measured as the average number of vehicles per hour.
 - (a) Set up a linear system whose solution provides the unknown flow rates.
 - (b) Solve the system for the unknown flow rates.
 - (c) Is it possible to close the road from A to B for construction and keep traffic flowing on the other streets? Explain.

