Spring 2014 MATH2056 Linear Algebra HW2

1.1.2. In each part, determine whether the equations form a linear system.
(a) $-2 x+4 y+z=2$

$$
3 x-\frac{2}{y}=0
$$

(b) $x=4$
$2 x=8$
(c) $4 x-y+2 z=-1$
$-x+(\ln 2) y-3 z=0$
(d) $3 z+x=-4$

$$
\begin{aligned}
y+5 z= & 1 \\
6 x+2 z= & 3 \\
-x-y-z= & 4
\end{aligned}
$$

1.1.12. In each part, find a system of linear equations corresponding to the given augmented matrix.
(a) $\left[\begin{array}{rr}2 & -1 \\ -4 & -6 \\ 1 & -1 \\ 3 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccccc}0 & 3 & -1 & -1 & -1 \\ 5 & 2 & 0 & -3 & -6\end{array}\right]$
(c) $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ -4 & -3 & -2 & -1 \\ 5 & -6 & 1 & 1 \\ -8 & 0 & 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{rrrrr}3 & 0 & 1 & -4 & 3 \\ -4 & 0 & 4 & 1 & -3 \\ -1 & 3 & 0 & -2 & -9 \\ 0 & 0 & 0 & -1 & -2\end{array}\right]$
1.2.22. Solve the given homogeneous linear system by any method.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{4} & =0 \\
x_{1}+4 x_{2}+2 x_{3} & =0 \\
-2 x_{2}-2 x_{3}-x_{4} & =0 \\
2 x_{1}-4 x_{2}+x_{3}+x_{4} & =0 \\
x_{1}-2 x_{2}-x_{3}+x_{4} & =0
\end{aligned}
$$

1.2.26 Determine the values of a for which the system has no solutions, exactly one solution, or infinitely many solution.

$$
\begin{aligned}
x+2 y+\quad z & =2 \\
2 x-2 y+\quad 3 z & =1 \\
x+2 y-\left(a^{2}-3\right) z & =a
\end{aligned}
$$

1.2.30. Solve the following systems, where a, b, and c are constants.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =a \\
2 x_{1}+2 x_{3} & =b \\
3 x_{2}+3 x_{3} & =c
\end{aligned}
$$

1.3.6

Consider the matrices

$$
A=\left[\begin{array}{rr}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
4 & -1 \\
0 & 2
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right], \quad D=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right], \quad E=\left[\begin{array}{rrr}
6 & 1 & 3 \\
-1 & 1 & 2 \\
4 & 1 & 3
\end{array}\right]
$$

in each part compute the given expression (where possible).
(a) $\left(2 D^{T}-E\right) A$
(b) $(4 B) C+2 B$
(c) $(-A C)^{T}+5 D^{T}$
(d) $\left(B A^{T}-2 C\right)^{T}$
(e) $B^{T}\left(C C^{T}-A^{T} A\right)$
(f) $D^{T} E^{T}-(E D)^{T}$
1.3.24. Find the 4×4 matrix $A=\left[a_{i j}\right]$ whose entries satisfy the stated condition.
(a) $a_{i j}=i+j$
(b) $a_{i j}=i^{j-1}$
(c) $a_{i j}=\left\{\begin{array}{rll}1 & \text { if } & |i-j|>1 \\ -1 & \text { if } & |i-j| \leq 1\end{array}\right.$
1.4.30. Assuming that all matrices are $n \times n$ and invertible, solve for D.

$$
A B C^{T} D B A^{T} C=A B^{T}
$$

1.4.53. (a) Show that if A, B, and $A+B$ are invertible matrices with the same size, then

$$
A\left(A^{-1}+B^{-1}\right) B(A+B)^{-1}=I
$$

(b) What does the result in part (a) tell you about the matrix $A^{-1}+B^{-1}$?
1.5. 8. Find an elementary matrix E that satisfies the equation.
(a) $E B=D$
(b) $E D=B$
(c) $E B=F$
(d) $E F=B$
$A=\left[\begin{array}{rrr}3 & 4 & 1 \\ 2 & -7 & -1 \\ 8 & 1 & 5\end{array}\right] \quad B=\left[\begin{array}{rrr}8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1\end{array}\right] \quad C=\left[\begin{array}{rrr}3 & 4 & 1 \\ 2 & -7 & -1 \\ 2 & -7 & 3\end{array}\right] \quad D=\left[\begin{array}{rrr}8 & 1 & 5 \\ -6 & 21 & 3 \\ 3 & 4 & 1\end{array}\right] \quad F=\left[\begin{array}{lll}8 & 1 & 5 \\ 8 & 1 & 1 \\ 3 & 4 & 1\end{array}\right]$
1.5.22. Use the inversion algorithm to find the inverse of the given matrix, if the inverse exists.
$\left[\begin{array}{rrrr}-8 & 17 & 2 & \frac{1}{3} \\ 4 & 0 & \frac{2}{5} & -9 \\ 0 & 0 & 0 & 0 \\ -1 & 13 & 4 & 2\end{array}\right]$
1.5.36. Write the inverse of the given matrix as a product of elementary matrices.
$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
1.6.16. Determine conditions on the b_{i} 's, if any, in order to guarantee that the linear system is consistent.
$x_{1}-2 x_{2}-x_{3}=b_{1}$
$-4 x_{1}+5 x_{2}+2 x_{3}=b_{2}$
$-4 x_{1}+7 x_{2}+4 x_{3}=b_{3}$
1.6.18. Consider the matrices

$$
A=\left[\begin{array}{rrr}
2 & 1 & 2 \\
2 & 2 & -2 \\
3 & 1 & 1
\end{array}\right] \text { and } \mathrm{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

(a) Show that the equation $A \mathbf{x}=\mathbf{x}$ can be rewritten as $(A-I) \mathbf{x}=\mathbf{0}$ and use this result to solve $A \mathbf{x}=\mathbf{x}$ for \mathbf{x}.
(b) Solve $A \mathbf{x}=4 \mathbf{x}$.
1.7.24. find all values of the unknown constant(s) in order for A to be symmetric.
$A=\left[\begin{array}{ccc}2 & a-2 b+2 c & 2 a+b+c \\ 3 & 5 & a+c \\ 0 & -2 & 7\end{array}\right]$
1.7.26. Find all values of x in order for A to be invertible.
$A=\left[\begin{array}{ccc}x-\frac{1}{2} & 0 & 0 \\ x & x-\frac{1}{3} & 0 \\ x^{2} & x^{3} & x-\frac{1}{4}\end{array}\right]$
1.7.37. A square matrix A is called skew-symmetric if $A^{T}=-A$.

Prove:
(a) If A is an invertible skew-symmetric matrix, then A^{-1} is skew-symmetric.
(b) If A and B are skew-symmetric matrices, then so are $A^{T}, A+B, A-B$, and $k A$ for any scalar k.
(c) Every square matrix A can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix. [Hint: Note the identity $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$.]
1.7.40. Find all values of a, b, c, and d for which A is skew-symmetric.
$A=\left[\begin{array}{ccc}0 & 2 a-3 b+c & 3 a-5 b+5 c \\ -2 & 0 & 5 a-8 b+6 c \\ -3 & -5 & d\end{array}\right]$
1.8.4. The accompanying figure shows a network of one-way streets with traffic flowing in the directions indicated. The flow rates along the streets are measured as the average number of vehicles per hour.
(a) Set up a linear system whose solution provides the unknown flow rates.
(b) Solve the system for the unknown flow rates.
(c) Is it possible to close the road from A to B for construction and keep traffic flowing on the other streets? Explain.

