Spring 2014 MATH2056 Linear Algebra HW2

*Exercises Set 2.1 Question 4 (2.1.4)

Find

$$
A=\left[\begin{array}{rrrr}
2 & 3 & -1 & 1 \\
-3 & 2 & 0 & 3 \\
3 & -2 & 1 & 0 \\
3 & -2 & 1 & 4
\end{array}\right] \quad \begin{aligned}
& \text { (a) } M_{32} \text { and } C_{32} \\
& \text { (b) } M_{44} \text { and } C_{44} \\
& \text { (c) } M_{41} \text { and } C_{41} \\
& \text { (d) } M_{24} \text { and } C_{24}
\end{aligned}
$$

*Exercises Set 2.1 Question 14 (2.1.14)
Use the arrow technique to evaluate the determinant of the given matrix.
$\left[\begin{array}{ccc}c & -4 & 3 \\ 2 & 1 & c^{2} \\ 4 & c-1 & 2\end{array}\right]$
*Exercises Set 2.1 Question 18 (2.1.18)
Find all values of λ for which $\operatorname{det}(A)=0$
$A=\left[\begin{array}{ccc}\lambda-4 & 4 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda-5\end{array}\right]$
*Exercises Set 2.1 Question 26 (2.1.26)
Evaluate det (A) by a cofactor expansion along a row or column of your choice
$A=\left[\begin{array}{rrrrr}4 & 0 & 0 & 1 & 0 \\ 3 & 3 & 3 & -1 & 0 \\ 1 & 2 & 4 & 2 & 3 \\ 9 & 4 & 6 & 2 & 3 \\ 2 & 2 & 4 & 2 & 3\end{array}\right]$
*Exercises Set 2.1 Question 41 (2.1.41)
Prove that the equation of the line through the distinct points $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and $\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$ can be written as
$\left|\begin{array}{lll}x & y & 1 \\ a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1\end{array}\right|=0$
*Exercises Set 2.2 Question 14 (2.2.14)
Evaluate the determinant of the given matrix by reducing the matrix to row echelon form.

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 1 \\
5 & -9 & 6 & 3 \\
-1 & 2 & -6 & -2 \\
2 & 8 & 6 & 1
\end{array}\right]
$$

*Exercises Set 2.2 Question 31 (2.2.31)
Confirm the identities without evaluating the determinants directly.
$\left|\begin{array}{lll}a_{1} & b_{1} & a_{1}+b_{1}+c_{1} \\ a_{2} & b_{2} & a_{2}+b_{2}+c_{2} \\ a_{3} & b_{3} & a_{3}+b_{3}+c_{3}\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
*Exercises Set 2.3 Question 6 (2.3.6)
Verify that $\operatorname{det}(A B)=\operatorname{det}(B A)$ and determine whether the equality $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$ holds.
$A=\left[\begin{array}{rrr}-1 & 8 & 2 \\ 1 & 0 & -1 \\ -2 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & -1 & -4 \\ 1 & 1 & 3 \\ 0 & 3 & -1\end{array}\right]$
*Exercises Set 2.3 Question 18 (2.3.18)
Find the values of k for which A is invertible.
$A=\left[\begin{array}{ccc}1 & 2 & 0 \\ k & 1 & k \\ 0 & 2 & 1\end{array}\right]$
*Exercises Set 2.3 Question 20 (2.3.20)
Decide whether the given matrix is invertible, and if so, use the adjoint method to find its inverse.

$$
A=\left[\begin{array}{rrr}
2 & 0 & 3 \\
0 & 3 & 2 \\
-2 & 0 & -4
\end{array}\right]
$$

*Exercises Set 2.3 Question 32 (2.3.32)
Let $A x=b$ be the system

| $4 x+y+z+w=$ | 6 |
| ---: | :--- | ---: |
| $3 x+7 y-z+w=$ | 1 |
| $7 x+3 y-5 z+8 w=$ | -3 |
| $x+y+z+2 w=$ | 3 |

(a) Solve by Cramer's rule.
(b) Solve by Gauss-Jordan elimination.
(c) Which method involves fewer computations?
*Exercises Set 2.3 Question 36 (2.3.36)
In each part, find the determinant given that A is a 4×4 matrix for which $\operatorname{det}(A)=-2$
(a) $\operatorname{det}(-A)$
(b) $\operatorname{det}\left(A^{-1}\right)$
(c) $\operatorname{det}\left(2 A^{T}\right)$
(d) $\operatorname{det}\left(A^{3}\right)$
*Exercises Set 2.3 Question 39 (2.3.39)
Show that if A is a square matrix then $\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A A^{T}\right)$.
*Exercises Set 3.1 Question 12 (3.1.12)
Find a nonzero vector \mathbf{u} with initial point $P(-1,3,-5)$ such that
(a) \mathbf{u} has the same direction as $\mathbf{v}=(6,7,-3)$.
(b) \mathbf{u} is oppositely directed to $\mathbf{v}=(6,7,-3)$.
*Exercises Set 3.1 Question 14 (3.1.14)
Let $\mathbf{u}=(-3,1,2), \mathbf{v}=(4,0,-8)$, and $\mathbf{w}=(6,-1,-4)$. Find the components of
(a) $\mathbf{v}-\mathbf{w}$
(b) $6 \mathbf{u}+2 \mathbf{v}$
(c) $-\mathbf{v}+\mathbf{u}$
(d) $5(\mathbf{v}-4 \mathbf{u})$
(e) $-3(v-8 w)$
(f) $(2 \mathbf{u}-7 \mathbf{w})-(8 \mathbf{v}+\mathbf{u})$
*Exercises Set 3.1 Question 34 (3.1.34)
Let P be the point $(1,3,7)$. If the point $(4,0,-6)$ is the midpoint of the line segment connecting P and Q, what is Q ?
*Exercises Set 3.2 Question 2 (3.2.2)
Find the norm of \mathbf{v}, a unit vector that has the same direction as \mathbf{v}, and a unit vector that is oppositely directed to \mathbf{v}.
(a) $\mathbf{v}=(-5,12)$
(b) $\mathbf{v}=(1,-1,2)$
(c) $\mathbf{v}=(-2,3,3,-1)$
*Exercises Set 3.2 Question 6 (3.2.6)
Evaluate the given expression with $u=(-2,-1,4,5), v=(3,1,-5,7)$ and $w=(-6,2,1,1)$
(a) $\|\mathbf{u}\|-2\|\mathbf{v}\|-3\|\mathbf{w}\|$
(b) $\|\mathbf{u}\|+\|-2 \mathbf{v}\|+\|-3 \mathbf{w}\|$
(c) $\|\|\mathbf{u}-\mathbf{v}\| \mathbf{w}\|$
*Exercises Set 3.2 Question 12 (3.2.12)
Find the Euclidean distance between \mathbf{u} and \mathbf{v}.
(a) $\mathbf{u}=(1,2,-3,0), \mathbf{v}=(5,1,2,-2)$
(b) $\mathbf{u}=(2,-1,-4,1,0,6,-3,1)$,
$\mathbf{v}=(-2,-1,0,3,7,2,-5,1)$
(c) $\mathbf{u}=(0,1,1,1,2), \mathbf{v}=(2,1,0,-1,3)$
*Exercises Set 3.2 Question 20 (3.2.20)
Find a unit vector that is oppositely directed to the given vector.
(a) $(-12,-5)$
(b) $(3,-3,-3)$
(c) $(-6,8)$
(d) $(-3,1, \sqrt{6}, 3)$

