MATH2056 Homework 3

determine whether the given planes are parallel.
3.3.14. $x-4 y-3 z-2=0$ and $3 x-12 y-9 z-7=0$
3.3.16. $(-4,1,2) \cdot(x, y, z)=0$ and $(8,-2,-4) \cdot(x, y, z)=0$
determine whether the given planes are perpendicular.
3.3.18. $x-2 y+3 z=4,-2 x+5 y+4 z=-1$
find $\|$ proj $_{\mathbf{a}} \mathbf{u} \|$.
3.3.20. (a) $\mathbf{u}=(5,6), \mathbf{a}=(2,-1)$
(b) $\mathbf{u}=(3,-2,6), \mathbf{a}=(1,2,-7)$
find the vector component of \mathbf{u} along a and the vector component of \mathbf{u} orthogonal to \mathbf{a}.
3.3.22. $\mathbf{u}=(-1,-2), \mathbf{a}=(-2,3)$
3.3.28. $\mathbf{u}=(5,0,-3,7), \mathbf{a}=(2,1,-1,-1)$
find the distance between the point and the line.

3.3.30. $x-3 y+2=0$; $(-1,4)$

use the given equation of a line to find a point on the line and a vector parallel to the line.
3.4.6. $(x, y, z)=(4 t, 7,4+3 t)$
3.4.8. $\mathbf{x}=(1-t)(0,-5,1)$
find vector and parametric equations of the plane containing the given point and parallel vectors.
3.4.12. Point: $(0,5,-4)$; vectors: $\mathbf{v}_{1}=(0,0,-5)$ and $\mathbf{v}_{2}=(1,-3,-2)$
3.4.26. Consider the linear systems

$$
\left[\begin{array}{rrr}
1 & -2 & -3 \\
2 & 1 & 4 \\
1 & -7 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{rrr}
1 & -2 & -3 \\
2 & 1 & 4 \\
1 & -7 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
7 \\
-1
\end{array}\right]
$$

(a) Find a general solution of the homogeneous system.
(b) Confirm that $x_{1}=1, x_{2}=1, x_{3}=1$ is a solution of the nonhomogeneous system.
(c) Use the results in parts (a) and (b) to find a general solution of the nonhomogeneous system.
(d) Check your result in part (c) by solving the nonhomogeneous system directly.
3.5.18 find the volume of the parallelepiped with sides \mathbf{u}, \mathbf{v}, and \mathbf{w}.
$\mathbf{u}=(3,1,2), \mathbf{v}=(4,5,1), \mathbf{w}=(1,2,4)$
3.5.20. determine whether \mathbf{u}, \mathbf{v}, and \mathbf{w} lie in the same plane when positioned so that their initial points coincide.

$$
\mathbf{u}=(5,-2,1), \mathbf{v}=(4,-1,1), \mathbf{w}=(1,-1,0)
$$

3.5.36. It is a theorem of solid geometry that the volume of a tetrahedron is $\frac{1}{3}$ (area of base) • (height). Use this result to prove that the volume of a tetrahedron whose sides are the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is $\frac{1}{6}|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$ (see the accompanying figure).
3.5.37. Use the result of Exercise 26 to find the volume of the tetrahedron with vertices P, Q, R, S.
(a) $P(-1,2,0), Q(2,1,-3), R(1,1,1), S(3,-2,3)$
(b) $P(0,0,0), Q(1,2,-1), R(3,4,0), S(-1,-3,4)$

Figure Ex-36
determine whether each set equipped with the given operations is a vector space. For those that are not vector spaces identify the vector space axioms that fail.
4.1.6. The set of all n-tuples of real numbers that have the form (x, x, \ldots, x) with the standard operations on R^{n}.
4.1. 8 . The set of all 2×2 invertible matrices with the standard matrix addition and scalar multiplication.
4.2.10. In each part express the vector as a linear combination of $\mathbf{p}_{1}=2+x+4 x^{2}, \mathbf{p}_{2}=1-x+3 x^{2}$, and $\mathbf{p}_{3}=3+2 x+5 x^{2}$.
(a) $-9-7 x-15 x^{2}$
(b) $6+11 x+6 x^{2}$
(c) 0
(d) $7+8 x+9 x^{2}$
4.2.12. Suppose that $\mathbf{v}_{1}=(2,1,0,3), \mathbf{v}_{2}=(3,-1,5,2)$, and $\mathbf{v}_{3}=(-1,0,2,1)$. Which of the following vectors are in span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(a) $(2,3,-7,3)$
(b) $(0,0,0,0)$
(c) $(1,1,1,1)$
(d) $(-4,6,-13,4)$
4.3.6. Assume that $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are vectors in R^{3} that have their initial points at the origin. In each part, determine whether the three vectors lie on the same line.
(a) $\mathbf{v}_{1}=(-1,2,3), \mathbf{v}_{2}=(2,-4,-6), \mathbf{v}_{3}=(-3,6,0)$
(b) $\mathbf{v}_{1}=(2,-1,4), \mathbf{v}_{2}=(4,2,3), \mathbf{v}_{3}=(2,7,-6)$
(c) $\mathbf{v}_{1}=(4,6,8), \mathbf{v}_{2}=(2,3,4), \mathbf{v}_{3}=(-2,-3,-4)$
4.3.8. (a) Show that the three vectors $\mathbf{v}_{1}=(1,2,3,4), \mathbf{v}_{2}=(0,1,0,-1)$, and $\mathbf{v}_{3}=(1,3,3,3)$ form a linearly dependent set in R^{4}.
(b) Express each vector in part (a) as a linear combination of the other two.

4.4.4. Which of the following form bases for P_{2} ?

(a) $1-3 x+2 x^{2}, \quad 1+x+4 x^{2}, \quad 1-7 x$
(b) $4+6 x+x^{2}, \quad-1+4 x+2 x^{2}, \quad 5+2 x-x^{2}$
(c) $1+x+x^{2}, \quad x+x^{2}, \quad x^{2}$
(d) $-4+x+3 x^{2}, \quad 6+5 x+2 x^{2}, \quad 8+4 x+x^{2}$

4.4.5. Show that the following matrices form a basis for M_{22}.

$$
\left[\begin{array}{rr}
3 & 6 \\
3 & -6
\end{array}\right], \quad\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right], \quad\left[\begin{array}{rr}
0 & -8 \\
-12 & -4
\end{array}\right], \quad\left[\begin{array}{rr}
1 & 0 \\
-1 & 2
\end{array}\right]
$$

4.4.8. Find the coordinate vector of \mathbf{w} relative to the basis $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ of R^{2}.
(a) $\mathbf{u}_{1}=(1,-1), \mathbf{u}_{2}=(1,1) ; \mathbf{w}=(1,0)$
(b) $\mathbf{u}_{1}=(1,-1), \mathbf{u}_{2}=(1,1) ; \mathbf{w}=(0,1)$
(c) $\mathbf{u}_{1}=(1,-1), \mathbf{u}_{2}=(1,1) ; \mathbf{w}=(1,1)$
4.4.10. Find the coordinate vector of \mathbf{p} relative to the basis $S=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$.
(a) $\mathbf{p}=4-3 x+x^{2} ; \mathbf{p}_{1}=1, \mathbf{p}_{2}=x, \mathbf{p}_{3}=x^{2}$
(b) $\mathbf{p}=2-x+x^{2} ; \mathbf{p}_{1}=1+x, \mathbf{p}_{2}=1+x^{2}, \mathbf{p}_{3}=x+x^{2}$
4.5.4. Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space.

$$
\begin{array}{r}
x_{1}-3 x_{2}+x_{3}=0 \\
2 x_{1}-6 x_{2}+2 x_{3}=0 \\
3 x_{1}-9 x_{2}+3 x_{3}=0
\end{array}
$$

4.5.12. Find a standard basis vector for R^{3} that can be added to the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to produce a basis for R^{3}.
(a) $\mathbf{v}_{1}=(-1,2,3), \mathbf{v}_{2}=(1,-2,-2)$
(b) $\mathbf{v}_{1}=(1,-1,0), \mathbf{v}_{2}=(3,1,-2)$

