1. Calculate the running averages and standard deviations of n entered data.

2. a) Write three Matlab functions to calculate the hyperbolic sine, cosine and tangent functions:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

b) Write a single function `hyperbolic` to calculate the previous functions. The function should have two input arguments. One argument will be a string containing the function names ‘\(\sinh\)’, ‘\(\cosh\)’ and ‘\(\tanh\)’ and the second argument will be the value of x at which to evaluate the function. The file should also contain three subfunctions `sinh1`, `cosh1` and `tanh1` to perform the actual calculations and the primary function should call the proper subfunction depending on the value in the string.

3. Write a function `F2C.m` that accepts temperature in degrees F and computes the corresponding value in degrees C. The relation between the two is

$$T_{\text{C}} = \frac{5}{9} (T_{\text{F}} - 32)$$

Modify the function to perform the inverse operation as well, i.e., convert Celsius temperature into Fahrenheit temperature in a new function `C2F.m`. Write also a main function, `tempconv.m`, which calculates the resultant temperature.

4. Write a MATLAB function, `taylorexp.m` to calculate \(e^x\) using Taylor approximation. Write a sub-function `factorial` to evaluate required factorial values in the denominator of the terms in the expansion.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots$$

5. Write a MATLAB function, `taylorcos.m` to calculate \(\cos x\) using Taylor approximation. Write a sub-function `factorial` to evaluate required factorial values in the denominator of the terms in the expansion.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots$$

6. Write a function `bindec` to convert a binary number to a decimal number. Hint: assume the binary number as a string array.

7. **Tension on a cable.** A 200-kg object is to be hung from the end of a rigid 8 m horizontal pole of negligible weight. The pole is attached to a wall by a pivot and is supported by an 8 meters cable that is attached to the wall at a higher point. The tension on this cable is given by the equation
\[T = \frac{W \cdot L_c \cdot L_p}{d \sqrt{L_c^2 - d^2}} \]

where \(T \) is tension on the cable, \(W \) is the weight of the object, \(L_c \) is the length of the cable, \(L_p \) is the length of the pole and \(d \) is the distance along the pole at which the cable is attached.

Write a MATLAB function to determine the distance \(d \) at which to attach the cable to the pole in order to minimize the tension on the cable. The function should calculate the tension on the cable at 0.1-m intervals from \(d=1 \) m to \(d=7 \) m and write the results in an array. Then call another function to locate the position that produces the minimum tension.

8. **Infinite Series.** Trigonometric functions are usually calculated on computers by using a truncated infinite series. An infinite series is an infinite set of terms that together add up to the value of a particular function or expression. For example, one infinite series used to evaluate the sine of a number is

\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{9!} + \ldots
\]

Write a function that reads in a value for \(x \) in degrees and then calculates the sine of the \(x \) using sine intrinsic function. Next calculate the sine of \(x \) using equation with \(N=1,2,3,\ldots10 \). Compare the true value of \(\sin x \) with the values calculated using the truncated infinite series. How many terms are required to calculate \(\sin x \) to the full accuracy of your computer?

9. The gravitational force between two bodies of masses \(m_1 \) and \(m_2 \) is given by the equation

\[
F = \frac{G \cdot m_1 \cdot m_2}{r^2}
\]

where \(G \) is the gravitational constant \((6.672 \times 10^{-11} \text{ Nm}^2/\text{kg}^2)\) and \(r \) is the distance between two bodies. Write a function to calculate the gravitational force between two bodies given their masses and the distance between them.

Test your function by determining the force on a 800 kg satellite in orbit 38000 km above the Earth. (The mass of Earth is \(5.98 \times 10^{24} \text{ kg} \))

10. Create an anonymous function called `my_function`, equal to

\[- x^2 - 5x - 3 + e^x\]

use the `fplot` function to create a plot from -5 to 5. Recall that the `fplot` function can accept a function handle as input.

Use the `fminbnd` function to find the minimum function value in this range.

11. Create four anonymous functions to represent the function \(6e^{3\cos x^2} \), which is composed of the functions \(h(z) = 6e^z \), \(g(y) = 3\cos y \), \(f(x) = x^2 \). Use the anonymous functions to plot \(6e^{3\cos x^2} \) over the range 0 ≤ \(x \) ≤ 4.
function [ave std]=runstats(x)
%runstats generate running ave /std deviation

persistent n
persistent sum_x
persistent sum_x2

if x=='reset';
 n=0;
 sum_x=0;
 sum_x2=0;
else
 n=n+1;
 sum_x = sum_x+x;
 sum_x2=sum_x2+x^2;
end

if n == 0;
 ave=0;
 std=0;
elseif n == 1;
 ave=sum_x;
 std=0;
else
 ave=sum_x/n;
 std=sqrt((n*sum_x2-sum_x^2)/(n*(n-1)));
end

%script file test_stats.m

[ave std]=runstats('reset');
nvals=input('enter number of values');

for i=1:nvals
 x=input('enter a value');
 [ave,std]=runstats(x);
 disp(['ave=',num2str(ave),', std_dev=',num2str(std)]);
end
2.

```matlab
function res=hyperbolic(type,x)
    if type=='sinh';
        res=sinh1(x);
    elseif type == 'cosh';
        res=cosh1(x);
    elseif type == 'tanh';
        res=tanh1(x);
    else
        disp('wrong input for function name')
    end

function result=sinh1(x)
result=(exp(x)-exp(-x))/2;

function result=cosh1(x)
result=(exp(x)+exp(-x))/2;

function result=tanh1(x)
result=(exp(x)-exp(-x))/(exp(x)+exp(-x));
```

3.

```matlab
function r=tempconv(T)
    x=input('enter conversion type: 1 for C2F 2 for F2C')
    if x==1
        r=C2F(T);
    elseif x==2
        r=F2C(T);
    end

function TF=C2F(TC)
    TF=1.8*TC+32;

function TC=F2C(TF)
    TC=5/9*(TF-32);
```

6.

```matlab
function base10 = binary(base2)
    base10=0;
    n=length(base2);
    power=(n-1);
    for i=1:n
        base10= base10+str2num(base2(i))*2^power;
        power=power-1;
    end
```
function r=tension(w,lp,lc)
 d=1:0.1:7;
 r=w*lp*lc./d./sqrt(lc^2-d.^2);

 min=r(1);
 for i=2:length(r)
 if a(i)<min
 min=r(i);
 ind=i;
 end
 end
 dmin=d(ind)
 res=angle(dmin,lc)
 res=acos(dmin/lc)*180/pi;