Manipulating MATLAB Matrices
Chapter 4
Objectives

After studying this chapter you should be able to:

• Manipulate matrices
• Extract data from matrices
• Solve problems with two variables
• Explore some of the special matrices built into MATLAB
Section 4.1
Manipulating Matrices

• We’ll start with a brief review

• To define a matrix, type in a list of numbers enclosed in square brackets
Remember that we can define a matrix using the following syntax

- \(A = [3.5] \)
- \(B = [1.5, 3.1] \) or
- \(B = \begin{bmatrix} 1.5 & 3.1 \end{bmatrix} \)
- \(C = [-1, 0, 0; 1, 1, 0; 0, 0, 2] \);
2-D Matrices can also be entered by listing each row on a separate line.

\[C = \begin{bmatrix} -1, & 0, & 0 \\ 1, & 1, & 0 \\ 1, & -1, & 0 \\ 0, & 0, & 2 \end{bmatrix} \]
Use an ellipsis to continue a definition onto a new line:

\[
F = [1, 52, 64, 197, 42, -42, \ldots, 55, 82, 22, 109];
\]
Scalar

\[
\begin{align*}
\text{>> } & \quad A = 3.5; \\
\text{>> } & \quad \text{Scalar}
\end{align*}
\]
Vector – the commas are optional
These semicolons are optional.
You can define a matrix using other matrices as components.

```matlab
>> B = [1.5, 3.1];
>> S=[3.0,B]
S =
    3.0000    1.5000    3.1000
>>
```
Or...

```matlab
>> B = [1.5, 3.1];
>> S=[3.0,B]
S =
    3.0000    1.5000    3.1000
>> T=[1,2,3;S]
T =
    1.0000    2.0000    3.0000
    3.0000    1.5000    3.1000
```
Indexing Into an Array allows you to change a value.
Adding Elements

```
>> S
S =
    3.0000    1.5000    3.1000
>> S(2)=1.0
S =
    3.0000    1.0000    3.1000
>> S(4)=5.5
S =
    3.0000    1.0000    3.1000    5.5000
>>
```
If you add an element outside the range of the original array, intermediate elements are added with a value of zero.
4.1.2 Colon Operator

- Used to define new matrices
- Modify existing matrices
- Extract data from existing matrices
Evenly spaced vector

```
>> H=1:8
H =
    Columns 1 through 7
    1     2     3     4     5     6     7
    Column 8
    8
>>
```

The default spacing is 1
User specified spacing

```plaintext
>> time=0.0:0.5:2.0
time =
   Columns 1 through 4
       0    0.5000    1.0000    1.5000
   Column 5
       2.0000
>>
```

The spacing is specified as 0.5
The colon can be used to represent an entire row or column.

All the rows in column 1:

\[M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \end{bmatrix} ; \]

\[x = M(:,1) \]

\[x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

All the rows in column 4:

\[y = M(:,4) \]

\[y = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \]

All the columns in row 1:

\[z = M(1,:) \]

\[z = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix} \]
You don’t need to extract an entire row or column.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7
\end{bmatrix}
\]

\[
>> w = M(2:3,:) \\
w = \\
\begin{bmatrix}
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7
\end{bmatrix}
\]

Rows 2 to 3, all the columns
Or...

$$
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
\end{bmatrix}
$$

$$
\text{w} = \text{M}(2:3, 4:5)
$$

Rows 2 to 3, in columns 4 to 5
A single colon transforms the matrix into a column

MATLAB is column dominant
Indexing techniques

- To identify an element in a 2-D matrix use the row and column number
- For example element M(2,3)
Element M(2,3) is in row 2, column 3
Or use single value indexing

M(8) is the same element as M(2,3)
The word “end” signifies the last element in the row or column.

```
>> M
M =
    1   2   3   4   5
    2   3   4   5   6
    3   4   5   6   7
>> M(1,end)
ans =
    5
>> M(end,end)
ans =
    7
>> M(end)
ans =
    7
>>
```

Row 1, last element
Last row, last element
Last element in the single index designation scheme
Matrix indexation

Obtain a single value from a matrix:

Ex:

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 2 & 4 \\
\end{pmatrix}
\]

want to know \(a_{21}\)

Notation:

\[A(2,1)\]

Row index

Column index

>> A = [1 2 3; 3 2 1; 1 2 4];
>> A(2,1)
ans =
3

>> A(3,2)
ans =
2
Matrix indexation

Obtain more than one value from a matrix:

Ex: \(X=1:10 \)

Colon defines a “range”: 1 to 10

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 2 & 4
\end{pmatrix}
\]

Notation:

\(A(1:3,2:3) \)

Row 1 to 3

Column 2 to 3

Colon can also be used as a “wildcard”

\[
C = A(2,:)
\]

Row 2, ALL columns

\[
C = \begin{pmatrix}
3 & 2 & 1 \\
2 & 1 \\
2 & 4
\end{pmatrix}
\]
Section 4.2
Problems with Two Variables

• All of our calculations thus far have only included one variable
• Most physical phenomena can vary with many different factors
• We need a strategy for determining the array of answers that results with a range of values for multiple variables
Two scalars give a scalar result

```matlab
>> x=3;
>> y=5;
>> A=x*y
A =
    15
>>
```
A scalar and a vector give a vector result

```plaintext
>> x=1:5
x =
    1  2  3  4  5
>> y=5;
>> A=x*y
A =
    5 10 15 20 25
```

When you multiply two vectors together, they must have the same number of elements.

```plaintext
>> x=1:5
x =
    1   2   3   4   5
>> y=1:3
y =
    1   2   3
>> A=x*y
??? Error using ==> mtimes
Inner matrix dimensions must agree.

>> A=x.*y
??? Error using ==> times
Matrix dimensions must agree.
```
Array multiplication gives a result the same size as the input arrays.

```matlab
>> x=1:5
x =
     1     2     3     4     5
>> y=linspace(1,3,5)
y =
     Columns 1 through 3
     1.0000   1.5000   2.0000
     Columns 4 through 5
     2.5000   3.0000
>> A=x.*y
A =
     1     3     6    10    15
>>
```

`x` and `y` must be the same size.
Results of an element by element (array) multiplication

<table>
<thead>
<tr>
<th>y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
The meshgrid function maps two vectors onto a 2-D grid.
Now the arrays are the same size, and can be multiplied

```
new_x =
[1 2 3 4 5]
[1 2 3 4 5]
[1 2 3 4 5]

new_y =
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]

>> A=new_x.*new_y
A =
[1 2 3 4 5]
[2 4 6 8 10]
[3 6 9 12 15]
```
Example 4.2
Distance to the Horizon

Distance to the horizon

Height of the mountain

Radius of the earth, R

Distance to the horizon, d

Radius plus the height of the mountain, R+h
State the problem

- Find the distance to the horizon from the top of a mountain on the moon and on the earth
Describe the Input and Output

- **Input**
 - Radius of the Moon: 1737 km
 - Radius of the Earth: 6378 km
 - Mountain elevation: 0 to 8000 km

- **Output**
 - Distance to the horizon in km
Hand Example

\[R^2 + d^2 = (R + h)^2 \]
Pythagorean theorem

\[d = \sqrt{h^2 + 2Rh} \]
Solve for d

Using the radius of the earth, and an 8000 meter mountain. (Remember 8000m = 8 km)

\[d = \sqrt{(8km)^2 + 2 \times 6378km \times 8km} = 319km \]
% Example 4.2
% Find the distance to the horizon
% Define the height of the mountains in meters
clear, clc
format bank
% Define the height vector
h = 0:1000:8000;
% Convert meters to km
h = h/1000;
% Define the radii of the Moon and Earth
radius = [1737 63778];
% Map the radii and heights onto a 2-D grid
[Radius, H] = meshgrid(radius, h);
% Calculate the distance to the horizon
d = sqrt(H.^2 + 2*H.*Radius)
Executing the M-file gives

\[
\begin{bmatrix}
0 & 0 \\
58.95 & 357.15 \\
83.38 & 505.09 \\
102.13 & 618.61 \\
117.95 & 714.31 \\
131.89 & 798.63 \\
144.50 & 874.86 \\
156.10 & 944.96 \\
166.90 & 1010.20
\end{bmatrix}
\]
Test the Solution

• Compare the results to the hand solution
Section 4.3
Special Matrices

- zeros
 - Creates a matrix of all zeros
- ones
 - Creates a matrix of all ones
- diag
 - Extracts a diagonal or creates an identity matrix
- magic
 - Creates a “magic” matrix
Special matrix creation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>zeros(M,N)</code></td>
<td>Matrix of zeros</td>
<td><code>>> A=zeros(2,3)</code>
A = 0 0 0
0 0 0</td>
</tr>
<tr>
<td><code>ones(M,N)</code></td>
<td>Matrix of ones</td>
<td><code>>> B=ones(2,2)</code>
B = 1 1
1 1</td>
</tr>
<tr>
<td><code>eye(M,N)</code></td>
<td>Matrix of ones on the diagonal</td>
<td><code>>> C=eye(2,2)</code>
C = 1 0
0 1</td>
</tr>
<tr>
<td><code>rand(M,N)</code></td>
<td>Matrix of random numbers between 0 and 1</td>
<td><code>>> D=rand(3,2)</code>
D = 0.9501 0.4860
0.2311 0.8913
0.6068 0.7621</td>
</tr>
</tbody>
</table>
With a single input a square matrix is created with the zeros or ones function.

```matlab
>> A=zeros(3)
A =
 0 0 0
 0 0 0
 0 0 0

>> B=ones(3)
B =
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
```
Two input arguments specify the number of rows and columns

```plaintext
>> A=zeros(2,3)
A =
    0     0     0
    0     0     0

>> B=ones(3,2)
B =
    1.00   1.00
    1.00   1.00
    1.00   1.00
```
The diag function

When the input argument to the diag function is a square matrix, the diagonal is returned.

```matlab
>> A=[1 2 3; 3 4 5; 1 2 3];
>> diag(A)
ans =
   1.00
   4.00
   3.00
>>
```
The diag function

When the input is a vector, it is used as the diagonal of an identity matrix

```matlab
>> B=[1 2 3];
>> diag(B)
ans =
  1.0000    0    0
    0    2.0000    0
    0    0    3.0000
```
Magic Matrices

```matlab
>> A=magic(4)
A =
     16.00    2.00    3.00    13.00
     5.00   11.00   10.00     8.00
     9.00     7.00    6.00    12.00
     4.00   14.00   15.00     1.00

>> sum(A)
ans =
     34.00    34.00    34.00    34.00

>> sum(A')
ans =
     34.00    34.00    34.00    34.00

>> sum(diag(A))
ans =
     34.00

>>
```
This woodcut called Melancholia was created by Albrecht Durer, in 1514. It contains a magic matrix above the angel’s head.
Albrecht Dürer included the date in this magic matrix.
The Durer matrix is different from MATLAB’s 4x4 magic matrix.

```matlab
>> durer=[16, 3, 2, 13
      5, 10, 11, 8
      9, 6, 7, 12
      4, 15, 14, 1];
>> sum(durer)
ans =
    34.00    34.00    34.00    34.00
>> sum(durer')
ans =
    34.00    34.00    34.00    34.00
>> sum(diag(durer))
ans =
    34.00
>>
```

Durer switched these two columns to make the date work out.
Concatenation: Combine two (or more) matrices into one

Notation:

\[C = [\begin{array}{cc} A & B \end{array}] \]

\[C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \]

\[D = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \]
Summary

- Matrices can be created by combining other matrices
- Portions of existing matrices can be extracted to form smaller matrices
Summary – The colon operator

- The colon operator
 - can be used to create evenly spaced matrices
 - can be used to extract portions of existing matrices
 - can be used to transform a 2-D matrix into a single column
Summary - Meshgrid

• Meshgrid is an extremely useful function that can be used to map vectors into two dimensional matrices
 • This makes it possible to perform array calculations with vectors of unequal size
Summary – Special Matrices

- zeros – creates a matrix composed of all zeros
- ones – creates a matrix composed of all ones
- diag – extracts the diagonal from a square matrix or can be used to create a square matrix
- identity matrix
- magic – creates a “magic matrix”