The Derivative as a Rate of Change

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of f with respect to x at xg 1s the derivative

e = i 1001~ S




Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object 1s moving along a coordinate line
its position s on that line as a function of time

s = f(0).

The displacement of the object over the time interval

As = f(t + A1) — f(7)

the average velocity of the object over that time interval 1s

displacement Ay  f(z + A7) — f(1)

UVaw

travel time Af At



DEFINITION Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time 7 is s = f(f). then the body’s velocity at time £ is
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The slope of the secant PQ is the
average velocity for the 3-sec
interval from t=2 sec to t=5 sec
to in this case, it is about 100 ft
sec or 68 mph

The slope of the tangent at P is
the speedometer reading at
about 57ft/sec or 39 mph. The
acceleration for the period shown
is a nearly constant 28.5 ft/sec?



Besides telling how fast an object is moving, its velocity tells the

direction of motion.
When the object is moving forward (s increasing), the velocity is

positive;
when the body is moving backward (s decreasing), the velocity
Is negative

§ Increasing: s decreasing:
positive slope so negative slope so
moving forward moving backward



DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time fis s = f(#), then the body’s acceleration at time £ is

dv  d’s
alt) = ~ = —.
dt dt-
Jerk is the derivative of acceleration with respect to time:
. da d’s
1) =~ ="+
b dt

Jerk is often used in engineering, especially when
building roller coasters.

Jerk is also important to consider in manufacturing
processes. Rapid changes in acceleration of a cutting

tool can lead to premature tool wear and result in
uneven cuts



DEFINITION Speed

Speed 1s the absolute value of velocity.
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Modeling Vertical Motion

A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft/sec
(about 109 mph) (Figure 3.17a). It reaches a height of s = 160t — 16¢° ft after f sec.
(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(c) What is the acceleration of the rock at any time 7 during its flight (after the blast)?
(d) When does the rock hit the ground again?
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Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c¢(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is dec/dx.

Economists often represent a total cost function by a cubic polynomial
c(x) =ax® + Bx* + yx + &

where O represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually compli-
cated enough to capture the cost behavior on a relevant quantity interval.



. Lunar projectile motion A rock thrown wvertically upward
from the surface of the moon at a velocity of 24 m/sec (about 86
km/h) reaches a height of s = 24t — 0.8¢" meters in f sec.

a. Find the rock’s velocity and acceleration at time . (The accel-
eration in this case 1s the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?
¢. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?

e. How long is the rock aloft?



(a) v(t) = s'(t) = 24 — 1.6t m/sec. and a(t) = v'() = s (1) = — 1.6 m/sec”

(b) Solvev(t) =0 = 24 —16t=0 = t=15sec

(c) s(15) = 24(15) — .8(15)* = 180 m

d) Solves(t)=90 = 24t — 8> = 90 = = LISV

~z 4.39 sec going up and 25.6 sec going down

(e) Twice the time it took to reach its highest point or 30 sec



The accompanying figure shows the velocity v = ds/df = f(1)
(m/sec) of a body moving along a coordinate line.
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a. When does the body reverse direction?
b. When (approximately) is the body moving at a constant speed?
¢. Graph the body’s speed for0 = ¢ = 10.

d. Graph the acceleration, where defined.



Bacterium population When a bactericide was added to a nu-
trient broth in which bacteria were growing, the bacterium popu-
lation continued to grow for a while, but then stopped growing
and began to decline. The size of the population at time ¢ (hours)
was b = 10° + 10% — 10°t*. Find the growth rates at

a. { = (0 hours.
b. { = 5 hours.

c. 1 = 10 hours.

b(t) = 10° + 10*t — 10%t* = b'(t) = 10" — (2) (10%t) = 10°(10 — 20)
(a) b'(0) = 10* bacteria/hr (b)y b'(5) = 0 bacteria/hr
(c) b'(10) = —10* bacteria/hr



Inflating a balloon The volume V = (4/3)mr" of a spherical
balloon changes with the radius.

a. At what rate (ft’ /ft) does the volume change with respect to
the radius whenr = 2 ft7

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

@ Vot o %ot o ] 4n0) = t6r

(b) Whenr = 2, % = 167 so that when r changes by 1 unit, we expect V to change by approximately 16.
Therefore when r changes by 0.2 units V changes by approximately (167)(0.2) = 3.27 =~ 10.05 ft*. Note
that V(2.2) — V(2) = 11.09 ft*.




Derivatives of Trigonometric Functions

Many of the phenomena we want information about are
approximately periodic

electromagnetic fields,
heart rhythmes,

tides,

weather.

The derivatives of sines and cosines play a key role in
describing periodic changes. This section shows how to
differentiate the six basic trigonometric functions.



The derivative of the sine function is the cosine function:

7 .
¥ = X 5InX.

dx

(sinx) = cosx.

d ,

E}' = r%(sinx} + 2xsinx
= x’cosx + 2xsinx.

dy I-E(siﬂx) — sinx-1

dx 2

_ XCOSX — sinx

X

2

Product Rule

Juotient Rule



The derivative of the cosine function is the negative of the sine function:

%{CDSI} = —sinx
y = 5x + cosx:
j—:: = %{5‘{) + %(CGSI) Sum Rule
= 5 — sinx.
V = SINXCOSX:
j—; = sinx%(msx} + cnsx%(sinx} Product Rule

= sinx(—sinx) + cosx(cosx)

2 .
— CO5 X — S5In X.



The motion of a body bobbing freely up and down on the end of a spring or bungee cord is
an example of simple harmonic motion. The next example describes a case in which there
are no opposing forces such as friction or buoyancy to slow the motion down.

Motion on a Spring

A body hanging from a spring is stretched 5 units beyond its rest position
and released at time 1 = 0 to bob up and down. Its position at any later time 7 is

§ = Scost.

What are its velocity and acceleration at time 7 ?

Rest
position

Position at
=10




Solution We have

Position: § = S5cost
: ds d .
Velocity: = — = —(5c¢cosf) = —5sint
ty V=g T @ )
. du d .
Acceleration: d=——=—|—5s8inf) = —5cost.
dt EI'I‘{ )
5, U
“zﬁﬂf s =5cost
o & Jr w27 sm
2 2 2




Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

SN X COS X

tanx = COR X cotxy = Sin x

1
_ CSCX = —
SCCX = Cosx sin x



Derivatives of the Other ITriconometric Functions

i{tanx} = sec’x

d _
o (secx) = secxtanx

E{cﬂtx} = —csc’x

%{cscx} = —c¢scxcotx



Find d(tan x)/dx.

Solution

% (tanx) dx \ COSX

cosx cosx — sinx (—sinx)

EDSEI

d (Sinx) casx%(sinx) - sinx{%(cnsx)

.,
COs5™ X

2 . 7
COsS™ XY + sIn"Xx

9
CoOs X

1 2
= ——5 — = sec’ X
COS” X



Find y" if y = secx.

Solution
V = secx

y = secxtanx

y' o= %{secxtanx)
= secxi(tﬂnx] + tan.r%(secx]

— sec x(sec’x) + tanx(secxtanx)

= gec’ x + secxtan®x



Derivative of a Composite Function

Composite f- g

Rate of r:hang__ﬂ_at
xis fg(x)) - glx).

£ —

H'-F'-F

Rate of change ./"f " Rate of change N

txis glx). t glx) is f{g(x)). .
. at x1s glx o) at g(x)1s f(pglx v = ) = f(2lD)




The Chain Rule

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then
the composite function (f ¢ g)(x) = f(g(x)) is differentiable at x, and

(f = g)'(x) = f'(g(x))g'(x).
In Leibniz’s notation, if y = f(u) and u = g(x), then

dy _ dy du
dx du dx’

where dy/du is evaluated at u = g(x).

C:vtums  B: u turns A: x turns



Find dy/dx

Withu = (£ + 5-) .,y = u”:

dy _ dy du _

dx du dx

|
—
e
4
e
o
—
i
|
# |—




“Outside-Inside” Rule

It sometimes helps to think about the Chain Rule this way: If y = f(g(x)), then

d
= = f(g() g,

In words, differentiate the “outside™ function f and evaluate it at the “inside™ function g(x)
left alone; then multiply by the derivative of the “inside function.”

Differentiating from the Outside In

Differentiate sin (x* + x) with respect to x.

Solution

%Siﬂ{l‘z-l—x):EDS(IE-I—I)'[ZT— 1) ]

inside inside denvative of
left alone  the inside



g'(t) = %(tan (5 — sin Er))

. d :
_ z . L -
= sec” (5 — sin 2f) o (5 sin Z.f)

I ¥ a d
= sec” (5 — sin 2f) (l] cos 2t o (Zr))

sec” (5 — sin 2f) - (—cos 2t) - 2
= —2(cos 2t) sec* (5 — sin 2t).



i{ﬁxz _ x4y =

= 7(5x° — xd)'ﬂ% (53:3 — x‘l]

= 7(5x% — xH)%5-3x? — 4x°)

= 7(5x% — xM)%(15x% — 4x°)



Position of particle
at time 1 T2\ (). e(t)

The path traced by a
particle moving in the xy-plane 1s not
always the graph of a function of x or a
function of y.



Parametric Equations

Instead of describing a curve by expressing the y-
coordinate of a point P(x, y) on the curve as a function of
X, it is sometimes more convenient to describe the curve
by expressing both coordinates as functions of a third

variable t.

DEFINITION  Parametric Curve
If x and y are given as functions

x= fle), y=gl)
over an interval of f-values, then the set of points (x, y) = (f(f), g(f)) defined by
these equations is a parametric curve. The equations are parametric equations

for the curve.



The equations x = cos {
and y = sin f describe motion on the circle



0| Starts at
t=10

The equations x = V't
and y = f and the interval f = 0 describe

the motion of a particle that traces the
right-hand half of the parabola y = x°



Parametrizing a Line Segment

Find a parametrization for the line segment with endpoints (—2, 1) and (3, 5).

Solution  Using (—2, 1) we create the parametric equations
x=—2+ at, y=1+ bt.
These represent a line, as we can see by solving each equation for f and equating to obtain

x+2 y—1
a h

This line goes through the point (—2, 1) when t = 0. We determine a and b so that the line
goes through (3, 5) whent = 1.

3=—-2+a — a=3 x=3whent=1.

5=1+5b = b =4 y = Swhent = 1.

Therefore,
x = —2 + 5t y =1+ 4, 0=t=1

is a parametrization of the line segment with initial point (—2, 1) and terminal point (3, 5)



Parametric Formula for dy /dx

If all three derivatives exist and dx/dt + 0,
dy dy/dt
dx  dx/dt

Differentiating with a Parameter
Ifx =2t + 3and y = t* — 1, find the value of dy/dx att = 6

Solution  Equation (2) gives dy/dx as a function of t:

dx  dx/dt 2

dy dy/dt 3 = x -3
— = [ = 7 -



. - - 1 ¥
Parametric Formula for d “y /dx~

If the equations x = f(#), v = g(t) define y as a twice-differentiable function of
x, then at any point where dx/dt #+ 0,

d’y  dy'/dt
dx?  dx/dt’

(3)

Find d*y/dx* as a function of tif x =t — %, y =t — t°.

1. Express y' = dy/dx in terms of 1.
,_dy _dy/dt 1 — 34
Yo ax T axjar 1 - 28
2. Differentiate y" with respect to 7.

dy' d(1—3I3)=2—63+6r2

dt — dt \ 1 — 2t (1 — 21



3. Divide dy'/dt by dx/dt.
dy ay'/dt (2 — 6t + 61%)/(1 — 2t)°

dl dx/dt 1 — 21

_ 2 — 6t + 6t
(1 — 21)°



Standard Parametrizations and Derivative Rules

2

CIRCLE x* + y* = a*:

X = acost
y = asint
0=t=27w

FuncTioNn y = f(x):

x =1

y = f(1)

2 .
X ¥
ELLIPSE — + — = l:

a b
X = acost
y = bsint

0=+¢=2m

DERIVATIVES

. dy dy/dt d’y dy'/dt

YU dx T dyjdtt ax? dx/dt




|ldentify the particle’s path by finding a Cartesian equation
for it. Graph the Cartesian equation.




|ldentify the particle’s path by finding a Cartesian equation
for it. Graph the Cartesian equation.

x =4costf, y=2sint, 0 =t¢t=2w

X=4cost,y=2smnt,0<t< 27
16 cos” Asin"t __ :-._ "-“_ _
= 6 T 1 =1 = 5gt73 = |

F s




Implicit Differentiation

Most of the functions we have dealt with
so far have been described by an
equation of the form

y = f(x) that expresses y explicitly in
terms of the variable x. We have learned
rules for differentiating functions defined

in this way.



when we encounter equations like;

9y 1 7 -
yo—x = 0. or x~ +y  — 9xy = 0.

These equations define an implicit
relation between the variables x and
v. In some cases we may be able to
solve such an equation for y as an
explicit function



When we cannot put an equation F(x,y) =0

in the form y = f(x) to differentiate it in the usual
way,

we may still be able to find dy/dx by implicit
differentiation



Differentiating Implicitly

Find dy/dx if y* = x* + sinxy

7 7 .
V< = X 4+ Sin Xy




d (yz) _ i(xz) n i(sin .x_v) Differentiate both sides with

dx dx dx respectto x. ..
dy ... treating y as a function of
Zya = 2x + (cos I_‘H:l E(l}’) x and using the Chain Rule.

d d
2y d‘]; = 2x + (cos IF) (y + Idi) Treat xy as a product.

dy dy
Zya — (cos x_'.f*) (x E) = 2x + (cos .x_'.f*)_v

d_y — 2x + ycosxy Solve for dy/dx by dividing.
dx 2y — xcosxy




Implicit Differentiation

Diftferentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

Collect the terms with dv/dx on one side of the equation.
Solve for dy/dx.

Solve for dy/dx.



Tangent and Normal to the Folium of Descartes

Show that the point (2, 4) lies on the curve x> + y> — 9xy = 0. Then find the tangent and
normal to the curve there

o
*ﬁ#@




dy 3y — x*

dI }:E — 3.};_' )

We then evaluate the derivative at (x, y) = (2, 4):

dy
dx

3y — x?

2,4 y*— 3

34)-22 g

oy 4 -32) 10

4
2

The tangent at (2, 4) is the line through (2, 4) with slope 4/5:



Finding a Second Derivative Implicitly
Find d?y/dx* if 2x° — 3y? = 8.

d (53 _ 42\ d
(26 = 3y?) = -(8)
6x2 — 61y’ = 0
Xt =y =0
2
V' = o when y # 0



We now apply the Quotient Rule to find y".

[ J— 2 1.I'

o d (IE) 2xy X7y 2x x?
1’? — d_ 1:' — -

. e\

— a7 *y
v’ Yooy

we substitute v’ = x?/y to express y” in terms of x and y.

2x 2 [ x? 2x -
o o — - 3
_:.Ir" T .1; 1-2 .,F .1; 3 WhEI] ;_',f' = 0




~verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given
point.

X +xy—yi =1, (2,3)



Related Rates

finding a rate you cannot measure easily

problems that ask for the rate at which some variable
changes

write an equation that relates the variables involved

differentiate it to get an equation that relates the rate



A Rising Balloon

A hot air balloon rising straight up from a level field 1s tracked by a range finder 500 ft
from the liftoff point. At the moment the range finder’s elevation angle is 77 /4, the angle is
increasing at the rate of 0.14 rad/min. How fast is the balloon rising at that moment?

Solution ~ We answer the question 1n six steps.

1. Draw a picture and name the variables and constants

Balloon

dg .
i .14 rad/min A
when # = w/4 dy _ 9
y|dt
when # = 7/4
Range B

finder 500 ft



2. Write down the additional numerical information.

% = 0.14 rad/min when h="1

3. Write down what we are to find.

We want dy/df when 8 = /4

4. Write an equation that relates the variables y and 6.

Yy _
300 tan 6 or y = 500 tan 6



5. Differentiate with respect to t using the Chain Rule. The result tells how dy/dft
we want) is related to df/dt (which we know).

dy 5 . df
7 = 500 (sec E}E

6. Evaluate with @ = /4 and d8/dt = 0.14 to find dy/dt.

d_}? Fm V2 T -
== 500( V2)(0.14) = 140 sec =\

the balloon is rising at the rate of 140 ft/min.



A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away. By the time the base 1s 12 ft from the
house, the base is moving at the rate of 5 ft/sec.

a. How fast 1s the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

¢. At what rate 1s the angle # between the ladder and the ground
changing then?



"II_I'

v(r)

13-ft ladder

0 x(r)

Given: % = 5 ft/sec, the ladder 1s 13 ftlong, and x = 12, y =

(a) Sincex’4+y2 =169 = ¥ = _X L= ()=

5 at the instant of time
HA ¥
dt vy odt =

12 ft/sec, the ladder 1s sliding down the

(b) The area of the triangle formed by the ladder and walls 1s A = ]5 Xy = % = (%) (x dd—f +y *ﬁ)

1s changing at é— [12(—=12) + 5(5)] = — %;' = —59.5 ft*/sec.

) —i —"I @—L.d_x ﬁ:— ] ‘d_I:_]_ -:— .
(c) cosf=% = —sinf $=+%-5 = 9 S (5)(3} 1 rad/sec




A growing sand pile Sand falls from a conveyor belt at the rate
of 10 m*/min onto the top of a conical pile. The height of the pile
1s always three-eighths of the base diameter. How fast are the (a)

height and (b) radius changing when the pile i1s 4 m high? Answer
in centimeters per minute.

10 m3/s
h=3D/8
h =3r/4
y 2 - 1% :
—lrPhh= 32 =3 = =4 o vo ()P tem @V _ e dh
@) P, _, = (25) (10) = 2= ~ 0.1119 m/sec = 11.19 em/sec
b)) r=2 = $=28=2(30) =1L ~0.1492 m/sec = 14.92 cm/sec



A balloon and a bicvele A balloon i1s rising vertically above a

level, straight road at a constant rate of 1 ft/sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft/sec passes under it. How fast is the distance s(f) be-
tween the bicycle and balloon increasing 3 sec later?

}I

relationship between the variables is s> = h? + x°

a=; (G +x3)

N0 & = L168(1)+51(17)] = 11 ft/sec.




- Making coffee Coffee is draining from a conical filter into a
cylindrical coffeepot at the rate of 10 in?‘;‘min.

a. How fast is the level in the pot rising when the coffee in the
cone 1s 5 in. deep?

b. How fast is the level in the cone falling then?

How fast
is this
level falling?

How fast
is this

|<-\ level rising?
6!.



