63 Lengths of Plane Curves

Length of a Parametrically Defined Curve
Let C be a curve given parametrically by the equations
x = fl(t) and v = glt), a=1t=D>,.

We assume the functions f and g have continuous derivatives on the interval [a, b] that are
not simultaneously zero. Such functions are said to be continuously differentiable, and the
curve C defined by them is called a smooth curve. It may be helpful to imagine the curve as



i

DEFINITION Length of a Parametric Curve

If a curve C is defined parametrically by x = f(#) and vy = glt),a = t = b,
where f and g’ are continuous and not simultaneously zero on [a, b], and C is
traversed exactly once as f increases fromf = a tot = b, then the length of C is

the definite integral

b
L= / VIFOP + [ ()] dt.
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Py = (f(tp). g(tp)




The Circumference of a Circle
Find the length of the circle of radius » defined parametrically by

X = rcost and ¥ = rsintf, 0=1t=2m.

Solution  As ¢ varies from 0 to 27, the circle 1s traversed exactly once,

ence 1s
2w | 2 N\ 2
- &) - (@)«
We find
dx . dy
o —rsint, T rcost
and

2 d 2
(%) + (FJ.:) = r2(sin®t + cos®t) = r?.
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= f'(1)

giving



Formula for the Length of y = f(x), a=x=5b
If f is continuously differentiable on the closed interval [a, b], the length of the
curve (graph) y = f(x) fromx = atox = bis

b dv\2 b,
L =£ \:H + (d—i) dx =£ V1 o+ [f'(x)] dx. 2)

Formula for the Length of x = gl(y), c=y=d
If g is continuously differentiable on [c, d], the length of the curve x = g(y)
fromy =ctoy =dis

L= 1+@d—dw’1—*-1-
AR =/ (&' (V)] dy. (3)







m Moments and Centers of Mass

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses m, m-,
and m- on a rigid x-axis supported by a fulcrum at the origin.

.Tl [I .1'-2 .1'3
» * —> X
”Ij A H‘f: m3
Fulcrum
at origin

The resulting system might balance, or it might not. It depends on how large the masses
are and how they are arranged.



Each mass m; exerts a downward force m;g (the weight of m;) equal to the magni-
tude of the mass times the acceleration of gravity. Each of these forces has a tendency
to turn the axis about the origin, the way you turn a seesaw. This turning effect, called a
torque, is measured by multiplying the force m;g by the signed distance x; from the
point of application to the origin. Masses to the left of the origin exert negative (coun-
terclockwise) torque. Masses to the right of the origin exert positive (clockwise)
torque.

The sum of the torques measures the tendency of a system to rotate about the origin.
This sum is called the system torque.

System torque = mgx; + magxz + m3gx;3 (1)

The system will balance if and only if its torque is zero.
If we factor out the g in Equation (1), we see that the system torque is

g - (mx) + maxz + m3x3)
a feature of the a feature of
environment the system




The number (m;x; + m>x> + msx;) is called the moment of the system about the
origin. It is the sum of the moments m,x,, m,x,, myx; of the individual masses.

M, = Moment of system about origin = 2 MeXp.

(We shift to sigma notation here to allow for sums with more terms.)
We usually want to know where to place the fulcrum to make the system balance, that
is, at what point X to place it to make the torques add to zero.

Special location
for balance



When we write the equation that says that the sum of these torques is zero, we get an equa-
tion we can solve for x:

2 {.Ik — E]mkg =0 Sum of the torques equals zero
gE (xp — E}m;{ =0 Constant Multiple Rule for Sums
2 (mkx;r —xmy) = 0 g divided out, m; distributed
E MpXp — E xmp = 0 Difference Rule for Sums
E mpx; = X 2 mg Rearranged, Constant Multiple Rule again
_ 2 M
X = . Solved forx

This last equation tells us to find x by dividing the system’s moment about the origin by
the system’s total mass:

B 2 mix;  system moment about origin
B > my B system mass '

The point x is called the system’s center of mass.



Wires and Thin Rods

In many applications, we want to know the center of mass of a rod or a thin strip of
metal. In cases like these where we can model the distribution of mass with a continu-
ous function, the summation signs in our formulas become integrals in a manner we
now describe.

Imagine a long, thin strip lying along the x-axis from x = a to x = b and cut into
small pieces of mass Am; by a partition of the interval [a, b]. Choose x; to be any point in
the &£th subinterval of the partition.

Xk
/
e Iy ——————j— e ——— ———sx
a 5_,;!_ b

The kth piece is Ax; units long and lies approximately x; units from the origin. Now ob-
serve three things.

First, the strip’s center of mass x is nearly the same as that of the system of point
masses we would get by attaching each mass Am; to the point x;:

system moment
~ system mass




Moment, Mass, and Center of Mass of a Thin Rod or Strip Along the x-Axis
with Density Function &(x)

:

Moment about the origin: My = / x6(x) dx (3a)
b

Mass: M=/ 6(x) dx (3b)
My

(Center of mass: X = i (3c)
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The 10-m-long rod in Figure thickens from left to right so that its density, instead of
being constant, is 8(x) = 1 + (x/10) kg/m. Find the rod’ center of mass.

10 10 . 10 2
M{]:‘A. xﬁ{x]d.x:l :t:(l _E)JIZ.L (x+ﬁ)dx

S 100 _ 250 coosetare
27 ﬁl -0 sy keem, mass X length.
T'he rod’s mass (Equation 3b) is
10 10 7 10
M=£ E{x)dx=£ (l+ix—ﬂ)dx=x+;—uﬂ=lﬂ—5=15kg.
T'he center of mass (Equation 3¢) is located at the point
MU=25[]+ | _5[]::5_55[“.

XY= =73 1579



Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in
the xy-Plane

Moment about the x-axis: M, =

Moment about the y-axis: M, = f X dm
Mass: M = /
M,

Center of mass: X =



How to Find a Plate’s
Center of Mass

1. Picture the plate in the
xy-plane.

2. Sketch a strip of mass
parallel to one of the co-
ordinate axes and find its
dimensions.

3. Find the strip’s mass dm
and center of mass
(%, 7).

4. Integrate ydm, X dm,

and dm to find M,, M,,

and M.

Divide the moments by

the mass to calculate x

and y.

"

Strip of mass Am

=l

> X

I



Constant-Density Plate

Find the center of mass of a thin plate of constant density 6 covering the region bounded
above by the parabola y = 4 — x? and below by the x-axis

Solution  Since the plate is symmetric about the y-axis and its density is constant, the
distribution of mass is symmetric about the y-axis and the center of mass lies on the y-axis.
Thus, X = 0. It remains to find y = M, /M.

Modeling the plate in horizontal strips leads to an inconvenient
integration, so we model vertical strions instead

}:"
-~

.
y=4— 2
Center of mass




The typical vertical strip has

- 4 — x°
center of mass (c.m.): (x,7) = |x,

length: 4 — x*

width: dx
area: dd = (4 — x?) dx
mass: dm = 6d4 = 6(4 — x?) dx

)
: : ~ 4 —x
distance from c.m. to x-axis: y="




The moment of the plate about the x-axis is

The mass of the plate is

M = /dm—/ﬁ[-:l—x)dr——ﬁ.

Therefore,

M, (256/15)56 g
Y=M T (32/3)8 5

The plate’s center of mass is the point

(%.7) = (n? %)



=

18. The region bounded by the parabola x = y* — y and the line
'.-!' — _1_'

18. Intersection points: y =y” —y = y> -2y =0
= yy—2)=0 = y=0o0ry=2. The typical
horizontal strip has center of mass:

& F)=(2y) = (%y).

length: y — (y> — y) = 2y — y°. width: dy,

area: dA = (2y — y?) dy. mass: dm = ¢ dA = 6 (2y — y?) dy.
The moment about the y-axis isX dm = £ - y* (2y — y?) dy

= £(2y° — y') dy: the moment about the x-axis isV dm = 6y (2y — y?) dy = 6 (2y® — y*) dy. Thus,

A,

M= [Vdm= [[6(2y —¥)dy=6|F - %] =o(L- 1) =12@-3)=%£:M = [¥dm
= ser -y =gy - 5] =5 B =5 (R = %M = fam= [0y -y dy

p

— 4 yj—ﬂ;:é(zl—_%):%. Therefnre,i:%:(%) () =zandy=5= (%) (5) =1

= (X,¥) = ( ) is the center of mass.



The region bounded by v = X, y = 2, x = 0 about
a. the x-axis b. the y-axis
c. thellmex =4 d. the line y = 2




*d e T = oy
@ V= [2m () () dy = [, 27(* — 0) dy

o A ) [ ot ) [
®) V= [2om () () dx
od

— [2mx (2 /x) dx=2r [ (2x - x*/2) dx

© V= [l2m (B0) (2) dx = [[274 %) (2 /%) dx

. o N ] .
@ V= [om () (k) dy = [ 272 - 9 () dy



Find the center of mass of a thin plate covering the region

bounded below by the parabola v = x> and above by the line
v = x if the plate’s density at the point (x, v) is 8(x) = 12x.







6.5 Areas of Surfaces of Revolution and the Theorems of Pappus
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DEFINITION Surface Area for Revolution About the x-Axis

If the function f(x) = 0 is continuously differentiable on [a, b], the area of the
surface generated by revolving the curve y = f(x) about the x-axis is

- ] )2 b !
S=f Zwy\l:'l + (E) dx =f 2w f(x)V1 + (f'(x)*dx. (3)

Surface Area for Revolution About the y-Axis
If x = g(y) = 0 is continuously differentiable on [c, d], the area of the surface

generated by revolving the curve x = g{y) about the y-axis is

d , 2 d
S =/ 27X \I."l + (g—;) dy =/ Eﬂg(y}"u'fl + (g'(y))* dy. (4)




Finding Area for Revolution about the y-Axis

The line segment x = 1 — »,0 = y = 1, is revolved about the y-axis to generate the
cone Find its lateral surface area (which excludes the base area).




! —
dy=[ 27(1 — y)V 2dy
0

27V/2 (1 _ %)



Surface Area of Revolution for Parametrized Curves
If a smooth curve x = f(f),y = gltf),a = t = b, is traversed exactly once as ¢
increases from a to b, then the areas of the surfaces generated by revolving the

curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y = 0):

b .' 2 2
_ (@ dy
5—£ 2my (m) - (m) dt (5)

2. Revolution about the y-axis (x = 0):

b .'II dx 2 dy 2
S=£ me\."l (E) + (E) dt (6)




Work Done by a Constant Force

When a body moves a distance d along a straight line as a result of being acted on by a
force of constant magnitude F in the direction of motion, we define the work W done by
the force on the body with the formula

W = Fd ( Constant-force formula for work). (1)

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are compressing a spring, the
formmula W = Fd has to be replaced by an integral formula that takes the variation in F
into account.



DEFINITION Work
The work done by a variable force F(x) directed along the x-axis from x = a to

x = bis

b
Hf’=f Fl(x) dx. (2)

Hooke's Law for Springs: F = kx

Hooke's Law says that the force it takes to stretch or compress a spring x length units from
its natural (unstressed) length 1s proportional to x. In symbols,

F=kx. (3)

The constant &, measured in force units per unit length, 1s a charactenistic of the spring,

called the force constant (or spring constant) of the spring. Hooke’s Law, Equation (3),
gives good results as long as the force doesn’t distort the metal in the spring. We assume

that the forces 1n this section are too small to do that.



Find the work required to compress a spring from its natural length of 1 fi to a length of
0.75 ft 1f the force constant 1s k£ = 16 |b/ft.

Compressed

— MWV F(0) = 16-0 = 0Tb
MMM

T U1 F(0.25) = 16-0.25 = 41b.
| (a)
F |
1 | 0.25 .25
5 | Hf:f 15x:ir=ﬂxl] = 0.5 fi-Ib
3 | F= l6x I 0
LL¢ I Work done by F
#‘__r,,-""‘fmmx=l] o x = 0.25
5 075 > x (i)

Amount compressed
(b)



A spring has a natural length of 1 m. A force of 24 N stretches the spring to a length of 1.8 m.

(a) Find the force constant k.
(b) How much work will it take to stretch the spring 2 m beyond its natural length?

(c) How far will a 45-N force stretch the spring?




(a) The force constant. We find the force constant from
stretches the spring (0.8 m, so

24 = k(0.8)
k=24/0.8 = 30 N/m.

(b) The work done by F on the spring fromx = Omtox = 2ms

2 2
w=[ 3{::.;:&:15:.;1} = 601,
1] 0

(c) 45 = 3, Or x = L.5m.



A 5-lb bucket 1s lifted from the ground into the air by pulling in 20 ft of rope at a constant
speed The rope weighs 0.08 Ib/ft. How much work was spent lifting the
bucket and rope?




The bucket has constant weight so the work
done lifting it alone is

W=F.d W=5.20=100 ft.Ib

20 20
Work on rope = / (0.08)(20 — x) dx = / (1.6 — 0.08x) dx
S0

J O
= [L6x — 0.04x2 " = 32 — 16 = 16 ft-Ib.

total work for the bucket and rope combined 1s

100 + 16 = 116 fi-lb.



Pumping Liquids from Containers

How much work does it take to pump all or part of the
liquid from a container? To find out, we imagine lifting the
liquid out one thin horizontal slab at a time and applying the
Equation W=F.d to each slab. We then evaluate the integral
this leads to as the slabs become thinner and more
numerous.




The conical tank in 15 filled to within 2 ft of the top with olive o1l weighing

37 Ib/ ft’. How much work does it take to pump the o1l to the rim of the tank?

y=2xorx= -%-y

of

10—y




2
AV = w(radius)*(thickness) = ’n'(% }J) Ay = % v Ay .

The force F{y) required to lift this slab 1s equal to its weight,

STm Weight = weight per unit
Fly) = 3TAV = TJ"E Ay Ib. volume > volume

The distance through which F{ y) must act to lift this slab to the level of the im of the
cone 1s about (10 — y) ft, so the work done lifting the slab 1s about

5T

AW ==—3=(10 - vyt Ay fi-lb.



W

fﬂ 574
. 4
57

(10 — y)y~ dy




. Emptyving a cistern The rectangular cistern (storage tank for
ramnwater) shown below has its top 10 ft below ground level. The

cistern, currently full, 1s to be emptied for inspection by pumping
its contents to ground level.

a. How much work will it take to empty the cistern?
b. How long will it take a 1/2 hp pump, rated at 275 ft-Ib/sec, to
pump the tank dry?

¢. How long will 1t take the pump i part (b) to empty the tank
halfway? (It will be less than half the time required to empty
the tank completely.)

ij-"_""---.___ i{_ﬂmund level
10 |
10 fi
20 -

wR o 1AM



We will use the coordinate system given.

(a) The typical slab between the planes at y and y + Ay has
a volume of AV = (20)(12) Ay = 240 Ay ft*. The force
F required to lift the slab is equal to its weight:
F=0624AV = 624240 Ay Ib. The distance through
which F must act is about y ft, so the work done lifting
the slab is about AW = force x distance

=624 -240 -y - Ay ft- Ib. The work it takes to lift all the water is approximately W == Z AW

10

= Z 62.4 - 240y - Ay ft- Ib. This is a Riemann sum for the function 62.4 - 240y over the interval
10

20
10 < y < 20. The work it takes to empty the cistern is the limit of these sums: W = jm 62.4 - 240y dy

= (62.4)(240) [3’—} = (62.4)(240)(200 — 50) = (62.4)(240)(150) = 2,246,400 ft - b
(b) t= W - w ~~ 8168.73 sec =z 2.27 hours = 2 hr and 16.1 min
(c) Fn::]lowmg all the steps of part (a), we find that the work it takes to empty the tank halfway is
W = [ 62.4 - 240y dy = (62.4)(240) [ } N = (62.4)(240) (E — @} (62.4)(240) ( % ) = 936,000 ft.

Then the time is t = 2?:"’_@ = qq,?}.{;m ~ 3403.64 sec ~ 56.7 min




6'7 Fluid Pressures and Forces

To withstand the increasing
pressure, dams are built thicker as they go
down.



The Pressure-Depth Equation

In a fluid that 1s standing still, the pressure p at depth & 1s the flmd’s weight-

density w times h:

p = wh.

Fluid Force on a Constant-Depth Surface

Weight-density

A fluid’s weight-density is its weight per
unit volume. Typical values (Ib/ft*) are

Gasoline
Mercury
Milk
Molasses
Olive oil
Seawater
Water

42
849
64.5
100
57
64
62.4

F = pA = whA

(1)

(2)



The Integral for Fluid Force Against a Vertical Flat Plate

Suppose that a plate submerged vertically in flmd of weight-density w runs from
v = atoy = b on the y-axis. Let L(y) be the length of the honzontal strip meas-
ured from left to rght along the surface of the plate at level y. Then the force ex-
erted by the fluid against one side of the plate 1s

b
F = f w e (strip depth) - L(y) dy. (4)

Surface of fluid

Submerged vertical 1
plate Strip

T e

L(y)
Strip length at level v




A flat 1sosceles right triangular plate with base 6 ft and height 3 ft 1s submerged vertically,
base up, 2 ft below the surface of a swimming pool. Find the force exerted by the water

against one side of the plate.

v (ft)
A

=X0rXx=y.~
Pool surface at Sy =
T s -
Depth: : s
5% — v L L_j_=_jl
NN )
A (x, x) = (y.¥)
Ay \
» x (i)




N strip |
F—-[ W (dﬂpth) L(y)dy Eq. (4)

3
f 62.4(5 — v)2y dy
0

124.8 f (5 — p?) dy
0

_E 2 y°

vl
2- 3 1

124.8 = 1684.8 |b.




Fluid Forces and Centroids
The force of a fluid of weight-density w against one side of a submerged flat ver-
tical plate 1s the product of w, the distance & from the plate’s centroid to the fluid

surface, and the plate’s area:

F = whA. (5)

Surface level of fluid

I = centroid depth

i P

Plate centroid




The cubical metal tank shown here has a parabolic gate, held in
place by bolts and designed to withstand a fluid force of 160 b

without rupturing. The liguid you plan to store has a weight-
density of 50 Ib/ft”.

a. What is the fluid force on the gate when the liquid is 2 ft deep?

b. What 15 the maximum height to which the container can be
filled without exceeding its design limitation?

41t

y (1)
F
(-1, 1) (1. 1)
\ o
[t
. | | .
4 fi > T 0 T x
Parabolic gate Enlarged view of

parabolic gate



The coordinate system is given in the text. The right-hand edge is x = , /v and the total width is L(y) = 2x = 2.\/;
S|
(a) The depth of the strip is (2 — y) so the force exerted by the liquid on the gate is F = L] wi(2 — y)L(y) dy
. _ g _ ! (o gm 32 2 5/2]]
= [,50@ =) 2,/y dy =100 [ /2= y)\/¥dy = 100 [ (25" = ¥*?) dy = 100[§y** = §y°/7]
= ]':}I[Zi(}1 — %} = (%’} (20— 6) =93.33 |b
+ ] _ .
(b) We need to solve 160 = ,L] w(H —y)- 2, /y dy for h. 160 = 100 (F -

| ]

) =H=31t



The region shown here is to be revolved about the x-axis to gener-

ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be

required in each case? Explain.




Find the volume of the solid generated by revolving the region
bounded by the x-axis, the curve y = 3.:4, and the lines x = 1
and x = —1 about (a) the x-axis; (b) the y-axis; (c¢) the line
x = 1;(d)the line y = 3.

(a) disk method: Y

sh 0 W | - Wl
V= [aR%0dx= [ 7(3x") dx=7 [ 0x®dx

=T [x”] ]_] = 2

(b) shell method:

radius height

v= [Tom (e () dx = [T2nx(3xt) dx = 273 [ %P dx = 2z - 3 5] =

Note: The lower limit of integration is 0 rather than —1.
(c) shell method:

P shell shell ! i’ - _ 3 3 1
V= ,_L 2w {radim) (hclght) dx = ETT,_’ |(1 o K] (3)&4] dx = 2m {T o %] = 2m [{ﬁ o ']]) o (_ 5 ']])] _ TT
(d) washer method:
b . .,
RX) =31 =3-3x'=3(1-x) = V= [7[R0—rx]dc= [ 7][9-9(1-x)"] dx
1

Wl ol i )
=or [ [1-(1-2x'+x") dx=9r [ (' —x*) dx =9 | & - ¥]

=1



Find the center of mass of a thin, flat plate covering the region en-
closed by the parabola ¥* = x and the line x = 2y if the density
function is 8(y) = 1 + y. (Use horizontal strips.)

A typical horizontal strip has: center of mass: (¥ .V ) Y
= (3’ ,’d‘l',y) length: 2y — y~, width: dy,

area: dA = (2y — y°) dy, mass: dm = § - dA

= (1+y)(2y —y*)dy = the moment about the

x-axis is¥ dm = y(1 +y) (2y — y°) dy %
= (2y" + 2y —y' —y') dy

= (2y* 4+ y* — y*) dy: the moment about the y-axis is

Xdm=(S2) (1 +y) 2y —y) dy =L (4 —y) (1 +y) dy = L (4" +4y° —y' —y") dy

= M= [Ydm=[ (25 +y' —y) dy = [%}’”+ b-% = (F+E-F)=16(+5-3)

-0+ 13-20= fan= v = [Xan [[162 447 5oy = [yt % 5]

=H(F Y- -F) =24 =42 D = FaM = Jam= [Ta ey @y -y dy
:1’0(2}+y!_yﬂd:ﬁ: [y‘+3—_j]”_[4+%—§):§ = x=%=(¥ () =2?amdy=%
= (#) (%} = j—?} = '—U Therefore, the center of mass is (X, y) = (%, :—'}



