

How to add together infinitely many numbers. Infinite series sometimes have a finite sum.

Other infinite series do not have a finite sum, as with

 $1 + 2 + 3 + 4 + 5 + \cdots$

With some infinite series, such as the harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots$$

it is not obvious whether a finite sum exists. It is unclear whether adding more terms gets us closer to some sum, or gives sums that grow without bound.

infinite sequences and series:

• **a** method of representing a differentiable function *f*(*x*) *as an infinite sum of powers* of *x*.

•how to evaluate, differentiate, and integrate polynomials to a class of functions much more general than polynomials.

representing a function as an infinite sum of sine and cosine functions.

11.1 Sequences

A sequence is a list of numbers

 $a_1, a_2, a_3, \ldots, a_n, \ldots$

n a given order. Each of a_1 , a_2 , a_3 and so on represents a number. These are the terms of he sequence. For example the sequence

 $2, 4, 6, 8, 10, 12, \ldots, 2n, \ldots$

has first term $a_1 = 2$, second term $a_2 = 4$ and *n*th term $a_n = 2n$. The integer *n* is called the **index** of a_n , and indicates where a_n occurs in the list. We can think of the sequence

 $a_1, a_2, a_3, \ldots, a_n, \ldots$

DEFINITION Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive integers.

Sequences can be described by writing rules that specify their terms, such as

$$a_n = \sqrt{n},$$

$$b_n = (-1)^{n+1} \frac{1}{n},$$

$$c_n = \frac{n-1}{n},$$

or by listing terms,

$$\{a_n\} = \left\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots\right\}$$
$$\{b_n\} = \left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1} \frac{1}{n}, \dots\right\}$$
$$\{c_n\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n-1}{n}, \dots\right\}$$
$$\{d_n\} = \{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}.$$

We also sometimes write

$$\{a_n\} = \left\{\sqrt{n}\right\}_{n=1}^{\infty}.$$

Sequences can be represented as points on the real line or as points in the plane where the horizontal axis n is the index number of the term and the vertical axis a_n is its value.

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases. This happens in the sequence

$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}$$

whose terms approach 0 as n gets large, and in the sequence

$$\left\{0,\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\ldots,1-\frac{1}{n},\ldots\right\}$$

whose terms approach 1. On the other hand, sequences like

$$\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n}, \ldots\}$$

have terms that get larger than any number as n increases, and sequences like

$$\{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$$

bounce back and forth between 1 and -1, never converging to a single value.

DEFINITION Diverges to Infinity

The sequence $\{a_n\}$ diverges to infinity if for every number *M* there is an integer *N* such that for all *n* larger than *N*, $a_n > M$. If this condition holds we write

$$\lim_{n\to\infty}a_n=\infty \quad \text{or} \quad a_n\to\infty.$$

Similarly if for every number *m* there is an integer *N* such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

$$\lim_{n\to\infty}a_n=-\infty \quad \text{or} \quad a_n\to-\infty.$$

Calculating Limits of Sequences

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers and let *A* and *B* be real numbers. The following rules hold if $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.

- 1. Sum Rule:
- 2. Difference Rule:
- 3. Product Rule:
- 4. Constant Multiple Rule:
- 5. Quotient Rule:

$$\lim_{n \to \infty} (a_n + b_n) = A + B$$
$$\lim_{n \to \infty} (a_n - b_n) = A - B$$
$$\lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B$$
$$\lim_{n \to \infty} (k \cdot b_n) = k \cdot B \quad (\text{Any number } k)$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B} \quad \text{if } B \neq 0$$

(a)
$$\lim_{n \to \infty} \left(-\frac{1}{n} \right) = -1 \cdot \lim_{n \to \infty} \frac{1}{n} = -1 \cdot 0 = 0$$

Constant Multiple Rule and Example 1a

(b)
$$\lim_{n \to \infty} \left(\frac{n-1}{n}\right) = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1$$
 Difference Rule
and Example 1a

(c)
$$\lim_{n \to \infty} \frac{5}{n^2} = 5 \cdot \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n} = 5 \cdot 0 \cdot 0 = 0$$
 Product Rule

(d)
$$\lim_{n \to \infty} \frac{4 - 7n^6}{n^6 + 3} = \lim_{n \to \infty} \frac{(4/n^6) - 7}{1 + (3/n^6)} = \frac{0 - 7}{1 + 0} = -7.$$
 Sum and Quotient Rules

Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x \to \infty} f(x) = L \quad \Rightarrow \quad \lim_{n \to \infty} a_n = L.$$

Applying L'Hôpital's Rule to Determine Convergence

Does the sequence whose *n*th term is

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$

converge? If so, find $\lim_{n\to\infty} a_n$.

The limit leads to the indeterminate form 1^{∞} . We can apply l'Hôpital's Rule if change the form to $\infty \cdot 0$ by taking the natural logarithm of a_n :

$$\ln a_n = \ln \left(\frac{n+1}{n-1} \right)^n$$
$$= n \ln \left(\frac{n+1}{n-1} \right).$$

Then,

$$\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} n \ln \left(\frac{n+1}{n-1} \right) \quad \infty \cdot 0$$
$$= \lim_{n \to \infty} \frac{\ln \left(\frac{n+1}{n-1} \right)}{1/n} \qquad \frac{0}{0}$$
$$= \lim_{n \to \infty} \frac{-2/(n^2-1)}{-1/n^2} \qquad \text{l'Hôpital's Rule}$$
$$= \lim_{n \to \infty} \frac{2n^2}{n^2-1} = 2.$$

Since $\ln a_n \rightarrow 2$ and $f(x) = e^x$ is continuous, Theorem 4 tells us that

$$a_n = e^{\ln a_n} \to e^2.$$

The sequence $\{a_n\}$ converges to e^2 .

The following six sequences converge to the limits listed below:

1.
$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$

- $2. \quad \lim_{n \to \infty} \sqrt[n]{n} = 1$
- 3. $\lim_{n \to \infty} x^{1/n} = 1$ (x > 0)

$$4. \quad \lim_{n \to \infty} x^n = 0 \qquad (|x| < 1)$$

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \quad (\text{any } x)$$

6.
$$\lim_{n \to \infty} \frac{x^n}{n!} = 0 \quad (\text{any } x)$$

In Formulas (3) through (6), x remains fixed as $n \rightarrow \infty$.

(a) $\frac{\ln (n^2)}{n} = \frac{2 \ln n}{n} \to 2 \cdot 0 = 0$ Formula 1 (b) $\sqrt[n]{n^2} = n^{2/n} = (n^{1/n})^2 \to (1)^2 = 1$ Formula 2 (c) $\sqrt[n]{3n} = 3^{1/n} (n^{1/n}) \to 1 \cdot 1 = 1$ Formula 3 with x = 3 and Formula 2

Formula 4 with
$$x = -\frac{1}{2}$$

Formula 5 with x = -2

Formula 6 with x = 100

Recursive Definitions

So far, we have calculated each a_n directly from the value of n. But sequences are often defined recursively by giving

- 1. The value(s) of the initial term or terms, and
- A rule, called a recursion formula, for calculating any later term from terms that precede it.

Sequences Constructed Recursively

- (a) The statements $a_1 = 1$ and $a_n = a_{n-1} + 1$ define the sequence $1, 2, 3, \ldots, n, \ldots$ of positive integers. With $a_1 = 1$, we have $a_2 = a_1 + 1 = 2$, $a_3 = a_2 + 1 = 3$, and so on.
- (b) The statements $a_1 = 1$ and $a_n = n \cdot a_{n-1}$ define the sequence $1, 2, 6, 24, \ldots, n!, \ldots$ of factorials. With $a_1 = 1$, we have $a_2 = 2 \cdot a_1 = 2$, $a_3 = 3 \cdot a_2 = 6$, $a_4 = 4 \cdot a_3 = 24$, and so on.
- (c) The statements $a_1 = 1, a_2 = 1$, and $a_{n+1} = a_n + a_{n-1}$ define the sequence 1, 1, 2, 3, 5, ... of Fibonacci numbers. With $a_1 = 1$ and $a_2 = 1$, we have $a_3 = 1 + 1 = 2, a_4 = 2 + 1 = 3, a_5 = 3 + 2 = 5$, and so on.
- (d) As we can see by applying Newton's method, the statements $x_0 = 1$ and $x_{n+1} = x_n [(\sin x_n x_n^2)/(\cos x_n 2x_n)]$ define a sequence that converges to a solution of the equation $\sin x x^2 = 0$.

DEFINITION Nondecreasing Sequence

A sequence $\{a_n\}$ with the property that $a_n \leq a_{n+1}$ for all *n* is called a **nondecreasing sequence**.

- (a) The sequence $1, 2, 3, \ldots, n, \ldots$ of natural numbers
- (b) The sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$
- (c) The constant sequence $\{3\}$

DEFINITIONS Bounded, Upper Bound, Least Upper Bound

A sequence $\{a_n\}$ is bounded from above if there exists a number M such that $a_n \leq M$ for all n. The number M is an **upper bound** for $\{a_n\}$. If M is an upper bound for $\{a_n\}$ but no number less than M is an upper bound for $\{a_n\}$, then M is the **least upper bound** for $\{a_n\}$.

11.2 Infinite Series

An *infinite series* is the sum of an infinite sequence of numbers

 $a_1 + a_2 + a_3 + \cdots + a_n + \cdots$

The goal of this section is to understand the meaning of such an infinite sum and to develop methods to calculate it. Since there are infinitely many terms to add in an infinite series, we cannot just keep adding to see what comes out. Instead we look at what we get by summing the first *n* terms of the sequence and stopping. The sum of the first *n* terms

$$s_n=a_1+a_2+a_3+\cdots+a_n$$

For example, to assign meaning to an expression like

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

We add the terms one at a time from the beginning and look for a pattern in how these partial sums grow.

Partial sum		Suggestive expression for partial sum	Value
First:	$s_1 = 1$	2 - 1	1
Second:	$s_2 = 1 + \frac{1}{2}$	$2 - \frac{1}{2}$	$\frac{3}{2}$
Third:	$s_3 = 1 + \frac{1}{2} + \frac{1}{4}$	$2 - \frac{1}{4}$	$\frac{7}{4}$
:		:	:
<i>n</i> th:	$s_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}$	$2 - \frac{1}{2^{n-1}}$	$\frac{2^n-1}{2^{n-1}}$

Indeed there is a pattern. The partial sums form a sequence whose *n*th term is

$$s_n = 2 - \frac{1}{2^{n-1}}.$$

This sequence of partial sums converges to 2 because $\lim_{n\to\infty}(1/2^n) = 0$. We say

"the sum of the infinite series
$$1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{n-1}} + \cdots$$
 is 2."

DEFINITIONS Infinite Series, *n*th Term, Partial Sum, Converges, Sum Given a sequence of numbers $\{a_n\}$, an expression of the form

 $a_1 + a_2 + a_3 + \cdots + a_n + \cdots$

is an infinite series. The number a_n is the *n*th term of the series. The sequence $\{s_n\}$ defined by

 $s_1 = a_1$ $s_2 = a_1 + a_2$: $s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$:

is the sequence of partial sums of the series, the number s_n being the *n*th partial sum. If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L. In this case, we also write

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n = L.$$

If the sequence of partial sums of the series does not converge, we say that the series **diverges**.

A useful shorthand understood

Geometric Series

Geometric series are series of the form

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

in which a and r are fixed real numbers and $a \neq 0$. The series can also be written as $\sum_{n=0}^{\infty} ar^n$. The ratio *r* can be positive, as in

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} + \dots,$$

$$s_{n} = a + ar + ar^{2} + \dots + ar^{n-1}$$

$$rs_{n} = ar + ar^{2} + \dots + ar^{n-1} + ar^{n}$$

$$s_{n} - rs_{n} = a - ar^{n}$$

$$s_{n}(1 - r) = a(1 - r^{n})$$

$$s_{n} = \frac{a(1 - r^{n})}{1 - r}, \quad (r \neq 1).$$

Multiply s_n by r. Subtract rs_n from s_n . Most of the terms on the right cancel. Factor.

We can solve for s_n if $r \neq 1$.

If |r| < 1, then $r^n \to 0$ as $n \to \infty$ (as in Section 11.1) and $s_n \to a/(1 - r)$. If |r| > 1, then $|r^n| \to \infty$ and the series diverges.

If |r| < 1, the geometric series $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ converges to a/(1-r):

$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}, \qquad |r| < 1.$$

If $|r| \ge 1$, the series diverges.

Index Starts with n = 1

The geometric series with a = 1/9 and r = 1/3 is

$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots = \sum_{n=1}^{\infty} \frac{1}{9} \left(\frac{1}{3}\right)^{n-1} = \frac{1/9}{1 - (1/3)} = \frac{1}{6}.$$

Index Starts with n = 0

The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$$

is a geometric series with a = 5 and r = -1/4. It converges to

$$\frac{a}{1-r} = \frac{5}{1+(1/4)} = 4.$$

A Bouncing Ball

You drop a ball from a meters above a flat surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but less than 1. Find the total distance the ball travels up and down

The total distance is

$$s = a + 2ar + 2ar^{2} + 2ar^{3} + \dots = a + \frac{2ar}{1 - r} = a\frac{1 + r}{1 - r}$$

This sum is $\frac{2ar}{(1 - r)}$.

If a = 6 m and r = 2/3, for instance, the distance is

$$s = 6 \frac{1 + (2/3)}{1 - (2/3)} = 6 \left(\frac{5/3}{1/3} \right) = 30 \text{ m}.$$