10.6 Graphing in Polar Coordinates

Symmetry

Figure illustrates the standard polar coordinate tests for symmetry.

Slope

The slope of a polar curve $r = f(\theta)$ is given by dy/dx, not by $r' = df/d\theta$. think of the graph of f as the graph of the parametric equations

 $x = r \cos \theta = f(\theta) \cos \theta, \quad y = r \sin \theta = f(\theta) \sin \theta.$

with
$$t = \theta$$
 $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$
 $\frac{\frac{d}{d\theta}(f(\theta) \cdot \sin \theta)}{\frac{d}{d\theta}(f(\theta) \cdot \cos \theta)} = \frac{\frac{df}{d\theta}\sin \theta + f(\theta)\cos \theta}{\frac{df}{d\theta}\cos \theta - f(\theta)\sin \theta}$

Slope of the Curve $r = f(\theta)$

$$\frac{dy}{dx}\Big|_{(r,\,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta},$$

provided $dx/d\theta \neq 0$ at (r, θ) .

A Cardioid

Graph the curve $r = 1 - \cos \theta$.

$oldsymbol{ heta}$	π/3	π/2	2π/3	π
r	1/2	1	3/2	2

The curve is symmetric about the *x*-axis

$oldsymbol{ heta}$	π/3	π/2	2π/3	π
r	1/2	1	3/2	2

$r = 1 + 2 \sin \theta$

Х

Four-leaved rose $r = \sin 2\theta$; $\theta = \pm \pi/4, \pm 3\pi/4$

10.7 Areas and Lengths in Polar Coordinates

Area of the Fan-Shaped Region Between the Origin and the Curve $r = f(\theta), \alpha \le \theta \le \beta$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta.$$

Find the area of the region in the plane enclosed by the cardioid $r = 2(1 + \cos \theta)$.

$$y = 2(1 + \cos \theta)$$

$$\int_{\theta=0}^{\theta=2\pi} \frac{1}{2}r^2 d\theta = \int_0^{2\pi} \frac{1}{2} \cdot 4(1 + \cos \theta)^2 d\theta$$

$$= \int_0^{2\pi} 2(1 + 2\cos \theta + \cos^2 \theta) d\theta$$

$$= \int_0^{2\pi} (3 + 4\cos \theta + \cos 2\theta) d\theta$$

$$= \left[3\theta + 4\sin \theta + \frac{\sin 2\theta}{2} \right]_0^{2\pi} = 6\pi - 0 = 6\pi.$$

Finding Area Between Polar Curves

Area of the Region $0 \le r_1(\theta) \le r \le r_2(\theta), \qquad \alpha \le \theta \le \beta$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r_2^2 d\theta - \int_{\alpha}^{\beta} \frac{1}{2} r_1^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} (r_2^2 - r_1^2) d\theta$$

Length of a Polar Curve

If $r = f(\theta)$ has a continuous first derivative for $\alpha \le \theta \le \beta$ and if the point $P(r, \theta)$ traces the curve $r = f(\theta)$ exactly once as θ runs from α to β , then the length of the curve is

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta. \tag{3}$$

12.1 Three-Dimensional Coordinate Systems

The Cartesian coordinate (**rectangular coordinates**) system is righthanded.

The three **coordinate planes x = 0, y = 0** and **z = 0** divide space into eight cells called **octants**.

The octant in which the point coordinates are all positive is called the **first octant**;

There is no conventional numbering for the other seven octants.

The planes x = 0, y = 0, and z = 0 divide space into eight octants.

 $z \ge 0$

- x = -3
- $z = 0, x \le 0, y \ge 0$ $x \ge 0, y \ge 0, z \ge 0$ $-1 \le y \le 1$

y = -2, z = 2

The half-space consisting of the points on and above the *xy*-plane.

The plane perpendicular to the x-axis at x = -3. This plane lies parallel to the yz-plane and 3 units behind it.

The second quadrant of the xy-plane.

The first octant.

The slab between the planes y = -1 and y = 1 (planes included).

The line in which the planes y = -2 and z = 2 intersect. Alternatively, the line through the point (0, -2, 2) parallel to the *x*-axis.

What points P(x, y, z) satisfy the equations

Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space

The Standard Equation for the Sphere of Radius *a* and Center (x_0, y_0, z_0)

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

Distance

In Exercises 35–40, find the distance between points P_1 and P_2 .

35. $P_1(1, 1, 1), P_2(3, 3, 0)$ **36.** $P_1(-1, 1, 5), P_2(2, 5, 0)$ **37.** $P_1(1, 4, 5), P_2(4, -2, 7)$ **38.** $P_1(3, 4, 5), P_2(2, 3, 4)$ **39.** $P_1(0, 0, 0), P_2(2, -2, -2)$ **40.** $P_1(5, 3, -2), P_2(0, 0, 0)$

Spheres

Find the centers and radii of the spheres in Exercises 41-44.

41.
$$(x + 2)^2 + y^2 + (z - 2)^2 = 8$$

42. $\left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 + \left(z + \frac{1}{2}\right)^2 = \frac{21}{4}$
43. $\left(x - \sqrt{2}\right)^2 + \left(y - \sqrt{2}\right)^2 + \left(z + \sqrt{2}\right)^2 = 2$
44. $x^2 + \left(y + \frac{1}{3}\right)^2 + \left(z - \frac{1}{3}\right)^2 = \frac{29}{9}$

Find equations for the spheres whose centers and radii are given in

CenterRadius45. (1, 2, 3) $\sqrt{14}$ 46. (0, -1, 5)247. (-2, 0, 0) $\sqrt{3}$ 48. (0, -7, 0)7

Find the centers and radii of the spheres

49. $x^2 + y^2 + z^2 + 4x - 4z = 0$ 50. $x^2 + y^2 + z^2 - 6y + 8z = 0$ give a geometric description of the set of points in space whose coordinates satisfy the given pairs of equations.

2. x = -1, z = 01. x = 2, y = 33. y = 0, z = 04. x = 1, y = 06. $x^2 + v^2 = 4$, z = -25. $x^2 + v^2 = 4$, z = 07. $x^2 + z^2 = 4$, y = 08. $v^2 + z^2 = 1$, x = 09. $x^2 + v^2 + z^2 = 1$. x = 010. $x^2 + v^2 + z^2 = 25$, v = -411. $x^2 + y^2 + (z + 3)^2 = 25$, z = 012. $x^2 + (v - 1)^2 + z^2 = 4$, v = 0

describe the sets of points in space whose coordinates satisfy the given inequalities or combinations of equations and inequalities.

13. a. $x \ge 0$, $y \ge 0$, z = 0 b. $x \ge 0$, $y \le 0$, z = 0**b.** $0 \le x \le 1$, $0 \le y \le 1$ 14. a. $0 \le x \le 1$ c. $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ **15.** a. $x^2 + y^2 + z^2 \le 1$ b. $x^2 + y^2 + z^2 > 1$ 16. a. $x^2 + y^2 \le 1$, z = 0 b. $x^2 + y^2 \le 1$, z = 3c. $x^2 + y^2 \le 1$, no restriction on z 17. a. $x^2 + y^2 + z^2 = 1$, $z \ge 0$ b. $x^2 + y^2 + z^2 \le 1$, $z \ge 0$ 18. a. x = y, z = 0**b.** x = y, no restriction on z 12.2

- Some of the things are determined simply by their magnitudes. To record mass, length, or time
- only write down a number and name an appropriate unit of measure.
- more information required to describe a force, displacement, or velocity.
- We need to record the direction in which it acts as well as how large it is.

The velocity vector of a particle moving along a path (a) in the plane (b) in space. The arrowhead on the path indicates the direction of motion of the particle.

DEFINITIONS Vector, Initial and Terminal Point, Length

A vector in the plane is a directed line segment. The directed line segment \overline{AB} has initial point A and terminal point B; its length is denoted by |AB|. Two vectors are equal if they have the same length and direction.

The directed line segment

have the same length and direction. They therefore represent the same vector, and we write $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{OP} = \overrightarrow{EF}$.

DEFINITION Component Form

If v is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point (v_1, v_2) , then the component form of v is

$$\mathbf{v} = \langle v_1, v_2 \rangle.$$

If v is a three-dimensional vector equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3) , then the component form of v is

 $\mathbf{v}=\langle v_1,v_2,v_3\rangle.$

Vector Algebra Operations

Two principal operations involving vectors are *vector addition* and *scalar multiplication*. A **scalar** is simply a real number, and is called such when we want to draw attention to its differences from vectors. Scalars can be positive, negative, or zero.

DEFINITIONS Vector Addition and Multiplication of a Vector by a Scalar Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar.

Addition: $\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ Scalar multiplication: $k\mathbf{u} = \langle ku_1, ku_2, ku_3 \rangle$

Scalar multiples of u.

 (a) Geometric interpretation of the vector sum. (b) The parallelogram vector addition.

Properties of Vector Operations

Let **u**, **v**, **w** be vectors and *a*, *b* be scalars.

- 1. u + v = v + u
- 3. u + 0 = u
- 5. $0\mathbf{u} = \mathbf{0}$
- 7. $a(b\mathbf{u}) = (ab)\mathbf{u}$
- $9. \quad (a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$

2. (u + v) + w = u + (v + w)4. u + (-u) = 06. 1u = u8. a(u + v) = au + av

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

$$\mathbf{i} = \langle 1, 0, 0 \rangle, \quad \mathbf{j} = \langle 0, 1, 0 \rangle, \quad \text{and} \quad \mathbf{k} = \langle 0, 0, 1 \rangle$$
$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle = \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle$$
$$= v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle$$
$$= v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}.$$
$$\overrightarrow{P_1 P_2} = (x_2 - x_1) \mathbf{i} + (y_2 - y_1) \mathbf{j} + (z_2 - z_1) \mathbf{k}$$

$$\left|\frac{1}{|\mathbf{v}|}\mathbf{v}\right| = \frac{1}{|\mathbf{v}|}|\mathbf{v}| = 1$$

The vector from P_1 to P_2 is $\overline{P_1P_2} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$.

Find,

$5\mathbf{u} - \mathbf{v}$ if $\mathbf{u} = \langle 1, 1, -1 \rangle$ and $\mathbf{v} = \langle 2, 0, 3 \rangle$ $-2\mathbf{u} + 3\mathbf{v}$ if $\mathbf{u} = \langle -1, 0, 2 \rangle$ and $\mathbf{v} = \langle 1, 1, 1 \rangle$

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a line segment are found by averaging.

The midpoint *M* of the line segment joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is the point

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right).$$

Vectors Determined by Points; Midpoints find

- a. the direction of P_1P_2 and
- **b.** the midpoint of line segment P_1P_2 .
- **35.** $P_1(-1, 1, 5) = P_2(2, 5, 0)$
- **36.** $P_1(1, 4, 5) \qquad P_2(4, -2, 7)$
- **37.** $P_1(3, 4, 5) \qquad P_2(2, 3, 4)$
- **38.** $P_1(0, 0, 0) \qquad P_2(2, -2, -2)$
- 39. If $\overrightarrow{AB} = \mathbf{i} + 4\mathbf{j} 2\mathbf{k}$ and *B* is the point (5, 1, 3), find *A*.
- 40. If $\overrightarrow{AB} = -7\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ and A is the point (-2, -3, 6), find B.

- how to calculate the angle between two vectors directly from their components.
- A key part of the calculation is an expression called the *dot product*.
- also called *inner* or *scalar* products because the product <u>results in a scalar</u>, <u>not a vector</u>. finding the **projection** of one vector onto another

The magnitude of the force F in the direction of vector v is the length $|F| \cos \theta$ of the projection of F onto v.

 $|\mathbf{u}| |\mathbf{v}| \cos \theta = u_1 v_1 + u_2 v_2 + u_3 v_3$ $\cos\theta = \frac{u_1v_1 + u_2v_2 + u_3v_3}{|\mathbf{u}||\mathbf{v}|}$ $-1\left(\frac{u_1v_1 + u_2v_2 + u_3v_3}{u_1v_1 + u_2v_2 + u_3v_3}\right)$ Ĥ

$$u = \cos^{-1} \left(\frac{\frac{u_1 v_1}{u_1 v_1} + \frac{u_2 v_2}{u_2 v_2} + \frac{u_3 v_3}{u_3 v_3} \right)$$

find

- a. $\mathbf{v} \cdot \mathbf{u}$, $|\mathbf{v}|$, $|\mathbf{u}|$
- b. the cosine of the angle between v and u
- c. the scalar component of u in the direction of v

d. the vector projv u.

1. $v = 2i - 4j + \sqrt{5k}$, $u = -2i + 4j - \sqrt{5k}$ 2. $\mathbf{v} = (3/5)\mathbf{i} + (4/5)\mathbf{k}$, $\mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$ 3. v = 10i + 11j - 2k, u = 3j + 4k4. v = 2i + 10j - 11k, u = 2i + 2j + k5. v = 5j - 3k, u = i + j + k6. v = -i + j, $u = \sqrt{2}i + \sqrt{3}j + 2k$ 7. v = 5i + j, $u = 2i + \sqrt{17}j$

- **Triangle** Find the measures of the angles of the triangle whose vertices are A = (-1, 0), B = (2, 1), and C = (1, -2).
- **Rectangle** Find the measures of the angles between the diagonals of the rectangle whose vertices are A = (1, 0), B = (0, 3), C = (3, 4), and D = (4, 1).

DEFINITION Orthogonal Vectors

Vectors **u** and **v** are orthogonal (or perpendicular) if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$(c\mathbf{u})\cdot\mathbf{v} = \mathbf{u}\cdot(c\mathbf{v}) = c(\mathbf{u}\cdot\mathbf{v})$$

$$3. \quad \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

4.
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$

5. $0 \cdot u = 0$.

Work =
$$\begin{pmatrix} \text{scalar component of } \mathbf{F} \\ \text{in the direction of } \mathbf{D} \end{pmatrix}$$
 (length of \mathbf{D})
= $(|\mathbf{F}| \cos \theta) |\mathbf{D}|$
= $\mathbf{F} \cdot \mathbf{D}$.

DEFINITION Work by Constant Force

The work done by a constant force F acting through a displacement $D = \overrightarrow{PQ}$ is

$$W = \mathbf{F} \cdot \mathbf{D} = |\mathbf{F}| |\mathbf{D}| \cos \theta,$$

where θ is the angle between F and D.

If $|\mathbf{F}| = 40$ N (newtons), $|\mathbf{D}| = 3$ m, and $\theta = 60^{\circ}$, the work done by F in acting from P to Q is

Water main construction A water main is to be constructed with a 20% grade in the north direction and a 10% grade in the east direction. Determine the angle θ required in the water main for the turn from north to east.

 $\mathbf{u} = 10\mathbf{i} + 2\mathbf{k}$ is parallel to the pipe in the north direction and $\mathbf{v} = 10\mathbf{j} + \mathbf{k}$ is parallel to the pipe in the east

direction. The angle between the two pipes is $\theta = \cos^{-1}\left(\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right) = \cos^{-1}\left(\frac{2}{\sqrt{104}\sqrt{101}}\right) \approx 1.55 \text{ rad} \approx 88.88^{\circ}$.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors **u** and **v** in space. If **u** and **v** are not parallel, they determine a plane. We select a unit vector **n** perpendicular to the plane by the **right-hand rule**. This means that we choose **n** to be the unit (normal) vector that points the way your right thumb points when your fingers curl through the angle θ from **u** to **v** . Then the **cross product u** \times **v** ("**u** cross **v**") is the *vector* defined as follows.

DEFINITION Cross Product

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}| |\mathbf{v}| \sin \theta) \mathbf{n}$$

DEFINITION Cross Product

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}| |\mathbf{v}| \sin \theta) \mathbf{n}$$

Parallel Vectors

Nonzero vectors **u** and **v** are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Properties of the Cross Product If **u**, **v**, and **w** are any vectors and *r*, *s* are scalars, then

1.
$$(r\mathbf{u}) \times (s\mathbf{v}) = (rs)(\mathbf{u} \times \mathbf{v})$$

$$2. \quad \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

3.
$$(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$$

$$4. \quad \mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$$

$$\mathbf{5.} \quad \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

Diagram for recalling these products

 $\mathbf{i} \times \mathbf{j} = -(\mathbf{j} \times \mathbf{i}) = \mathbf{k}$

- $\mathbf{j} \times \mathbf{k} = -(\mathbf{k} \times \mathbf{j}) = \mathbf{i}$
- $\mathbf{k} \times \mathbf{i} = -(\mathbf{i} \times \mathbf{k}) = \mathbf{j}$

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

$|\mathbf{u} \times \mathbf{v}|$ Is the Area of a Parallelogram

Because **n** is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is

 $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| |\sin \theta| |\mathbf{n}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.$

Calculating Cross Products Using Determinants If $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, then $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_2 \end{vmatrix}$. Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2)

$$\overrightarrow{PQ} = (2-1)\mathbf{i} + (1+1)\mathbf{j} + (-1-0)\mathbf{k} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

$$\overrightarrow{PR} = (-1-1)\mathbf{i} + (1+1)\mathbf{j} + (2-0)\mathbf{k} = -2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} \mathbf{k}$$

$$= 6\mathbf{i} + 6\mathbf{k}.$$

Solution The area of the parallelogram determined by P, Q, and R is $|\vec{PQ} \times \vec{PR}| = |6\mathbf{i} + 6\mathbf{k}|$ Values from $= \sqrt{(6)^2 + (6)^2} = \sqrt{2 \cdot 36} = 6\sqrt{2}.$

The triangle's area is half of this, or $3\sqrt{2}$.

The area of triangle PQRis half of $|\overrightarrow{PQ} \times \overrightarrow{PR}|$

Torque

When we turn a bolt by applying a force **F** to a wrench, the torque we produce acts along the axis of the bolt to drive the bolt forward

Magnitude of torque vector = $|\mathbf{r}| |\mathbf{F}| \sin \theta$,

Triple Scalar or Box Product

The product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the triple scalar product of \mathbf{u} , \mathbf{v} , and \mathbf{w} (in that order). As you can see from the formula

 $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = |\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos \theta|,$

the absolute value of the product is the volume of the parallelepiped (parallelogram-sided box) determined by \mathbf{u} , \mathbf{v} , and \mathbf{w}). The number $|\mathbf{u} \times \mathbf{v}|$ is the area of the base parallelogram. The number $|\mathbf{w}| |\cos \theta|$ is the parallelepiped's height. Because of this geometry, $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is also called the **box product** of \mathbf{u} , \mathbf{v} , and \mathbf{w} .

The number $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ is the volume of a parallelepiped.

Calculating the Triple Scalar Product

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

