10.6

Graphing in Polar Coordinates

Symmetry

Figure illustrates the standard polar coordinate tests for symmetry.

(a) About the x-axis
(b) About the y-axis
(c) About the origin

Slope

The slope of a polar curve $r=f(\theta)$ is given by $d y / d x$, not by $r^{\prime}=d f / d \theta$. think of the graph of f as the graph of the parametric equations

$$
x=r \cos \theta=f(\theta) \cos \theta, \quad y=r \sin \theta=f(\theta) \sin \theta .
$$

with $t=\theta$

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

$$
=\frac{\frac{d}{d \theta}(f(\theta) \cdot \sin \theta)}{\frac{d}{d \theta}(f(\theta) \cdot \cos \theta)}=\frac{\frac{d f}{d \theta} \sin \theta+f(\theta) \cos \theta}{\frac{d f}{d \theta} \cos \theta-f(\theta) \sin \theta}
$$

Slope of the Curve $r=f(\theta)$

$$
\left.\frac{d y}{d x}\right|_{(r, \theta)}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}
$$

provided $d x / d \theta \neq 0$ at (r, θ).

A Cardioid

Graph the curve $r=1-\cos \theta$.

θ	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	π
\boldsymbol{r}	$1 / 2$	1	$3 / 2$	2

$r=1+2 \sin \theta$
 $r^{2}=\sin \theta$

(a)

(c)

(d)

$r^{2}=4 \sin 2 \theta$

$$
r=\cos (\theta / 2)
$$

Find the slopes of the curve
Sketch the curves along with their tangents at these points.
Four-leaved rose $\quad r=\sin 2 \theta ; \quad \theta= \pm \pi / 4, \pm 3 \pi / 4$

Slope $=\frac{r^{\prime} \sin \theta+r \cos \theta}{r^{\prime} \cos \theta-r \sin \theta}$
\Rightarrow Slope at $\left(1, \frac{\pi}{4}\right) \mathrm{i}$

Area of the Fan-Shaped Region Between the Origin and the Curve $r=f(\boldsymbol{\theta}), \boldsymbol{\alpha} \leq \boldsymbol{\theta} \leq \boldsymbol{\beta}$

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

Find the area of the region in the plane enclosed by the cardioid $r=2(1+\cos \theta)$.

$$
\begin{aligned}
& =\int_{0}^{2(1+\cos \theta)} \quad=\int_{0}^{2 \pi} 2\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}(3+4 \cos \theta+\cos 2 \theta) d \theta \\
& =\left[3 \theta+4 \sin \theta+\frac{1}{2} r^{2} d \theta=\int_{0}^{2 \pi} \frac{1}{2} \cdot 4(1+\cos \theta)^{2} d \theta\right. \\
& =\left[2+4 \cos \theta+2 \frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =\left[\begin{array}{l}
2 \pi
\end{array}\right]_{0}^{2 \pi}=6 \pi-0=6 \pi
\end{aligned}
$$

Finding Area Between Polar Curves

Area of the Region $0 \leq r_{1}(\boldsymbol{\theta}) \leq r \leq r_{2}(\boldsymbol{\theta}), \quad \alpha \leq \boldsymbol{\theta} \leq \boldsymbol{\beta}$

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r_{2}^{2} d \theta-\int_{\alpha}^{\beta} \frac{1}{2} r_{1}^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}\left(r_{2}^{2}-r_{1}^{2}\right) d \theta
$$

Length of a Polar Curve

If $r=f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the point $P(r, \theta)$ traces the curve $r=f(\theta)$ exactly once as θ runs from α to β, then the length of the curve is

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{3}
\end{equation*}
$$

Vectors and the Geometry of Space

The Cartesian coordinate (rectangular coordinates) system is righthanded.

The three coordinate planes $\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}$ and $\mathbf{z = 0}$ divide space into eight cells called octants.

The octant in which the point coordinates are all positive is called the first octant;

There is no conventional numbering for the other seven octants.

The planes $x=0, y=0$, and $z=0$ divide space into eight octants.

$$
\begin{aligned}
& z \geq 0 \\
& x=-3 \\
& z=0, x \leq 0, y \geq 0 \\
& x \geq 0, y \geq 0, z \geq 0 \\
& -1 \leq y \leq 1 \\
& y=-2, z=2
\end{aligned}
$$

The half-space consisting of the points on and above the $x y$-plane.
The plane perpendicular to the x-axis at $x=-3$. This plane lies parallel to the $y z$-plane and 3 units behind it.
The second quadrant of the $x y$-plane.
The first octant.
The slab between the planes $y=-1$ and $y=1$ (planes included).
The line in which the planes $y=-2$ and $z=2$ intersect. Alternatively, the line through the point $(0,-2,2)$ parallel to the x-axis.

What points $P(x, y, z)$ satisfy the equations

$$
x^{2}+y^{2}=4 \quad \text { and } \quad z=3 ?
$$

Distance and Spheres in Space

The formula for the distance between two points in the $x y$-plane extends to points in space

The Distance Between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

The Standard Equation for the Sphere of Radius a and Center $\left(x_{0}, y_{0}, z_{0}\right)$

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=a^{2}
$$

Distance

In Exercises 35-40, find the distance between points P_{1} and P_{2}.
35. $P_{1}(1,1,1), \quad P_{2}(3,3,0)$
36. $P_{1}(-1,1,5), \quad P_{2}(2,5,0)$
37. $P_{1}(1,4,5), \quad P_{2}(4,-2,7)$
38. $P_{1}(3,4,5), \quad P_{2}(2,3,4)$
39. $P_{1}(0,0,0), \quad P_{2}(2,-2,-2)$
40. $P_{1}(5,3,-2), \quad P_{2}(0,0,0)$

Spheres

Find the centers and radii of the spheres in Exercises 41-44.
41. $(x+2)^{2}+y^{2}+(z-2)^{2}=8$
42. $\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}+\left(z+\frac{1}{2}\right)^{2}=\frac{21}{4}$
43. $(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}+(z+\sqrt{2})^{2}=2$
44. $x^{2}+\left(y+\frac{1}{3}\right)^{2}+\left(z-\frac{1}{3}\right)^{2}=\frac{29}{9}$

Find equations for the spheres whose centers and radii are given in

Center

45. $(1,2,3)$
46. $(0,-1,5)$
47. $(-2,0,0)$
48. $(0,-7,0)$

Radius
$\sqrt{14}$
2
$\sqrt{3}$
7

Find the centers and radii of the spheres
49. $x^{2}+y^{2}+z^{2}+4 x-4 z=0$
50. $x^{2}+y^{2}+z^{2}-6 y+8 z=0$
give a geometric description of the set of points in space whose coordinates satisfy the given pairs of equations.

$$
\begin{array}{ll}
\text { 1. } x=2, y=3 & \text { 2. } x=-1, \quad z=0 \\
\text { 3. } y=0, z=0 & \text { 4. } x=1, \quad y=0 \\
\text { 5. } x^{2}+y^{2}=4, \quad z=0 & \text { 6. } x^{2}+y^{2}=4, \quad z=-2 \\
\text { 7. } x^{2}+z^{2}=4, \quad y=0 & \text { 8. } y^{2}+z^{2}=1, \quad x=0 \\
\text { 9. } x^{2}+y^{2}+z^{2}=1, \quad x=0 & \\
\text { 10. } x^{2}+y^{2}+z^{2}=25, \quad y=-4 \\
\text { 11. } x^{2}+y^{2}+(z+3)^{2}=25, \quad z=0 \\
\text { 12. } x^{2}+(y-1)^{2}+z^{2}=4, \quad y=0
\end{array}
$$

describe the sets of points in space whose coordinates satisfy the given inequalities or combinations of equations and inequalities.
13. a. $x \geq 0, \quad y \geq 0, \quad z=0 \quad$ b. $x \geq 0, \quad y \leq 0, \quad z=0$
14. a. $0 \leq x \leq 1$
b. $0 \leq x \leq 1, \quad 0 \leq y \leq 1$
c. $0 \leq x \leq 1, \quad 0 \leq y \leq 1$,
$0 \leq z \leq 1$
15. a. $x^{2}+y^{2}+z^{2} \leq 1$
b. $x^{2}+y^{2}+z^{2}>1$
16. a. $x^{2}+y^{2} \leq 1, \quad z=0$
b. $x^{2}+y^{2} \leq 1, \quad z=3$
c. $x^{2}+y^{2} \leq 1$, no restriction on z
17. a. $x^{2}+y^{2}+z^{2}=1, \quad z \geq 0$
b. $x^{2}+y^{2}+z^{2} \leq 1, \quad z \geq 0$
18. a. $x=y, z=0 \quad$ b. $x=y$, no restriction on z

Vectors

Some of the things are determined simply by their magnitudes. To record mass, length, or time
only write down a number and name an appropriate unit of measure. more information required to describe a force, displacement, or velocity.

- We need to record the direction in which it acts as well as how large it is.

The velocity vector of a particle moving along a path (a) in the plane (b) in space. The arrowhead on the path indicates the direction of motion of the particle.

DEFINITIONS Vector, Initial and Terminal Point, Length

A vector in the plane is a directed line segment. The directed line segment $\overrightarrow{A B}$ has initial point A and terminal point B; its length is denoted by $|\overrightarrow{A B}|$. Two vectors are equal if they have the same length and direction.

The directed line segment
$\overrightarrow{A B}$.

have the same length and direction. They therefore represent the same vector, and we write $\overrightarrow{A B}=\overrightarrow{C D}=\overrightarrow{O P}=\overrightarrow{E F}$.

DEFINITION

If v is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}\right)$, then the component form of \mathbf{v} is

$$
\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle
$$

If v is a three-dimensional vector equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}, v_{3}\right)$, then the component form of \mathbf{v} is

$$
\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle .
$$

The magnitude or length of the vector $\mathbf{v}=\overrightarrow{P Q}$ is the nonnegative number

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication. A scalar is simply a real number, and is called such when we want to draw attention to its differences from vectors. Scalars can be positive, negative, or zero.

DEFINITIONS Vector Addition and Multiplication of a Vector by a Scalar

Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors with k a scalar.

Addition:

$$
\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle
$$

Scalar multiplication: $\quad k \mathbf{u}=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle$

Scalar multiples of \mathbf{u}.

(a) Geometric interpretation of the vector sum. (b) The parallelogram vector addition.

Properties of Vector Operations

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors and a, b be scalars.

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
3. $0 \mathbf{u}=0$
4. $a(b \mathbf{u})=(a b) \mathbf{u}$
5. $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$
6. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
7. $\mathbf{u}+(-\mathbf{u})=0$
8. $\quad 1 \mathrm{u}=\mathrm{u}$
9. $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$

Unit Vectors

A vector \mathbf{v} of length 1 is called a unit vector. The standard unit vectors are

$$
\begin{aligned}
& \mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \text { and } \quad \mathbf{k}=\langle 0,0,1\rangle . \\
& \mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle v_{1}, 0,0\right\rangle+\left\langle 0, v_{2}, 0\right\rangle+\left\langle 0,0, v_{3}\right\rangle \\
& =v_{1}\langle 1,0,0\rangle+v_{2}\langle 0,1,0\rangle+v_{3}\langle 0,0,1\rangle \\
& =v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k} . \\
& \vec{P}_{1} P_{2}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k} \\
& \left|\frac{1}{|\mathbf{v}|} \mathbf{v}\right|=\frac{1}{|\mathbf{v}|}|\mathbf{v}|=1
\end{aligned}
$$

The vector from P_{1} to P_{2} is $\bar{P}_{1} P_{2}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+$ $\left(z_{2}-z_{1}\right) \mathbf{k}$.

Find,

$$
\begin{aligned}
& 5 \mathbf{u}-\mathbf{v} \text { if } \mathbf{u}=\langle 1,1,-1\rangle \text { and } \mathbf{v}=\langle 2,0,3\rangle \\
& -2 \mathbf{u}+3 \mathbf{v} \text { if } \mathbf{u}=\langle-1,0,2\rangle \text { and } \mathbf{v}=\langle 1,1,1\rangle
\end{aligned}
$$

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a line segment are found by averaging.

The midpoint M of the line segment joining points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is the point

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) .
$$

Vectors Determined by Points; Midpoints

find
a. the direction of $\overrightarrow{P_{1} P_{2}}$ and
b. the midpoint of line segment $P_{1} P_{2}$.
35. $P_{1}(-1,1,5) \quad P_{2}(2,5,0)$
36. $P_{1}(1,4,5) \quad P_{2}(4,-2,7)$
37. $P_{1}(3,4,5) \quad P_{2}(2,3,4)$
38. $P_{1}(0,0,0) \quad P_{2}(2,-2,-2)$
39. If $\overrightarrow{A B}=\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$ and B is the point $(5,1,3)$, find A.
40. If $\overrightarrow{A B}=-7 \mathbf{i}+3 \mathbf{j}+8 \mathbf{k}$ and A is the point $(-2,-3,6)$, find B.

12.3
 The Dot Product

- how to calculate the angle between two vectors directly from their components.
- A key part of the calculation is an expression called the dot product. also called inner or scalar products because the product results in a scalar, not a vector. finding the projection of one vector onto another

$\mathbf{u} \| \mathbf{v} \mid \cos \theta=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

Length $=|\mathbf{F}| \cos \theta$
The magnitude of the force
F in the direction of vector v is the length
$|\mathbf{F}| \cos \theta$ of the projection of \mathbf{F} onto \mathbf{v}.
$|\mathbf{u}||\mathbf{v}| \cos \theta=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
$\cos \theta=\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|\mathbf{u}||\mathbf{v}|}$
$\theta=\cos ^{-1}\left(\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|\mathbf{u}||\mathbf{v}|}\right)$

find

a. $\mathbf{v} \cdot \mathbf{u},|\mathbf{v}|,|\mathbf{u}|$
b. the cosine of the angle between \mathbf{v} and \mathbf{u}
c. the scalar component of u in the direction of v
d. the vector $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

1. $\mathbf{v}=2 \mathbf{i}-4 \mathbf{j}+\sqrt{5} \mathbf{k}, \quad \mathbf{u}=-2 \mathbf{i}+4 \mathbf{j}-\sqrt{5} \mathbf{k}$
2. $\mathbf{v}=(3 / 5) \mathbf{i}+(4 / 5) \mathbf{k}, \quad \mathbf{u}=5 \mathbf{i}+12 \mathbf{j}$
3. $\mathbf{v}=10 \mathbf{i}+11 \mathbf{j}-2 \mathbf{k}, \quad \mathbf{u}=3 \mathbf{j}+4 \mathbf{k}$
4. $\mathbf{v}=2 \mathbf{i}+10 \mathbf{j}-11 \mathbf{k}, \quad \mathbf{u}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$
5. $\mathbf{v}=5 \mathbf{j}-3 \mathbf{k}, \quad \mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
6. $\mathbf{v}=-\mathbf{i}+\mathbf{j}, \quad \mathbf{u}=\sqrt{2} \mathbf{i}+\sqrt{3} \mathbf{j}+2 \mathbf{k}$
7. $\mathbf{v}=5 \mathbf{i}+\mathbf{j}, \quad \mathbf{u}=2 \mathbf{i}+\sqrt{17} \mathbf{j}$

Triangle Find the measures of the angles of the triangle whose vertices are $A=(-1,0), B=(2,1)$, and $C=(1,-2)$.
Rectangle Find the measures of the angles between the diagonals of the rectangle whose vertices are $A=(1,0), B=(0,3)$, $C=(3,4)$, and $D=(4,1)$.

DEFINITION Orthogonal Vectors

Vectors \mathbf{u} and \mathbf{v} are orthogonal (or perpendicular) if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

Properties of the Dot Product

 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and c is a scalar, then 1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$2. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
5. $0 \cdot \mathbf{u}=0$.

$$
\begin{aligned}
\text { Work } & =\binom{\text { scalar component of } \mathbf{F}}{\text { in the direction of } \mathbf{D}}(\text { length of } \mathbf{D}) \\
& =(|\mathbf{F}| \cos \theta)|\mathbf{D}| \\
& =\mathbf{F} \cdot \mathbf{D} .
\end{aligned}
$$

DEFINITION Work by Constant Force

The work done by a constant force \mathbf{F} acting through a displacement $\mathbf{D}=\overrightarrow{P Q}$ is

$$
W=\mathbf{F} \cdot \mathbf{D}=|\mathbf{F}||\mathbf{D}| \cos \theta,
$$

where θ is the angle between \mathbf{F} and \mathbf{D}.

If $|\mathbf{F}|=40 \mathrm{~N}$ (newtons), $|\mathbf{D}|=3 \mathrm{~m}$, and $\theta=60^{\circ}$, the work done by \mathbf{F} in acting from P to Q is

Water main construction A water main is to be constructed with a 20% grade in the north direction and a 10% grade in the east direction. Determine the angle θ required in the water main for the turn from north to east.

$\mathbf{u}=10 \mathbf{i}+2 \mathbf{k}$ is parallel to the pipe in the north direction and $\mathbf{v}=10 \mathbf{j}+\mathbf{k}$ is parallel to the pipe in the east
direction. The angle between the two pipes is $\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \mathbf{v} \mid}\right)=\cos ^{-1}\left(\frac{2}{\sqrt{104} \sqrt{101}}\right) \approx 1.55 \mathrm{rad} \approx 88.88^{\circ}$.

12.4 The Cross Product

The Cross Product of Two Vectors in Space

We start with two nonzero vectors \mathbf{u} and \mathbf{v} in space. If \mathbf{u} and \mathbf{v} are not parallel, they determine a plane. We select a unit vector n perpendicular to the plane by the right-hand rule. This means that we choose \mathbf{n} to be the unit (normal) vector that points the way your right thumb points when your fingers curl through the angle θ from \mathbf{u} to \mathbf{v}

Then the cross product $\mathbf{u} \times \mathbf{v}$ (" \mathbf{u} cross \mathbf{v} ") is the vector defined as follows.

DEFINITION Cross Product

$$
\mathbf{u} \times \mathbf{v}=(|\mathbf{u}||\mathbf{v}| \sin \theta) \mathbf{n}
$$

DEFINITION Cross Product

$$
\mathbf{u} \times \mathbf{v}=(|\mathbf{u}||\mathbf{v}| \sin \theta) \mathbf{n}
$$

Parallel Vectors

Nonzero vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.

Properties of the Cross Product

 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and r, s are scalars, then 1. $(r \mathbf{u}) \times(s \mathbf{v})=(r s)(\mathbf{u} \times \mathbf{v})$2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
3. $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$
4. $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$
5. $0 \times \mathbf{u}=0$

$\mathbf{u} \times \mathbf{v} \mid$ Is the Area of a Parallelogram

Because \mathbf{n} is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}||\sin \theta||\mathbf{n}|=|\mathbf{u}||\mathbf{v}| \sin \theta
$$

Calculating Cross Products Using Determinants

If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, then

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

Find the area of the triangle with vertices $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$

$$
\begin{aligned}
\overrightarrow{P Q} & =(2-1) \mathbf{i}+(1+1) \mathbf{j}+(-1-0) \mathbf{k}=\mathbf{i}+2 \mathbf{j}-\mathbf{k} \\
\overrightarrow{P R} & =(-1-1) \mathbf{i}+(1+1) \mathbf{j}+(2-0) \mathbf{k}=-2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \\
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & -1 \\
-2 & 2 & 2
\end{array}\right|=\left|\begin{array}{rr}
2 & -1 \\
2 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
1 & 2 \\
-2 & 2
\end{array}\right| \mathbf{k} \\
& =6 \mathbf{i}+6 \mathbf{k} .
\end{aligned}
$$

Solution The area of the parallelogram determined by P, Q, and R is

$$
\begin{aligned}
|\stackrel{\rightharpoonup}{P Q} \times \overrightarrow{P R}| & =|6 \mathbf{i}+6 \mathbf{k}| \\
& =\sqrt{(6)^{2}+(6)^{2}}=\sqrt{2 \cdot 36}=6 \sqrt{2}
\end{aligned}
$$

The triangle's area is half of this, or $3 \sqrt{2}$.

The area of triangle $P Q R$
is half of $|\overrightarrow{P Q} \times \overrightarrow{P R}|$

Torque

When we turn a bolt by applying a force F to a wrench, the torque we produce acts along the axis of the bolt to drive the bolt forward

Magnitude of torque vector $=|\mathbf{r}||\mathbf{F}| \sin \theta$,

Triple Scalar or Box Product

The product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the triple scalar product of \mathbf{u}, \mathbf{v}, and \mathbf{w} (in that order). As you can see from the formula

$$
|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|=|\mathbf{u} \times \mathbf{v}||\mathbf{w}||\cos \theta|
$$

the absolute value of the product is the volume of the parallelepiped (parallelogram-sided box) determined by \mathbf{u}, \mathbf{v}, and $\mathbf{w} \quad$. The number $|\mathbf{u} \times \mathbf{v}|$ is the area of the base parallelogram. The number $|\mathbf{w}||\cos \theta|$ is the parallelepiped's height. Because of this geometry, $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is also called the box product of \mathbf{u}, \mathbf{v}, and \mathbf{w}.

$$
\begin{aligned}
\text { Volume } & =\text { area of base } \cdot \text { height } \\
& =|\mathbf{u} \times \mathbf{v}||\mathbf{w}||\cos \theta| \\
& =|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|
\end{aligned}
$$

The number $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ is the volume of a parallelepiped.

Calculating the Triple Scalar Product

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

$$
\begin{aligned}
\text { Volume } & =\text { area of base } \cdot \text { height } \\
& =|\mathbf{u} \times \mathbf{v}||\mathbf{w}||\cos \theta| \\
& =|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|
\end{aligned}
$$

