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W PARTIAL DERIVATIVES



14.1 Functions of Several Variables

* Areal-world phenomenon usually depends on
two or more independent variables.

e We need to extend the basic ideas of
functions of a single variable to functions of
several variables.



Many functions depend on more than one independent variable. The function V = mr?h
calculates the volume of a right circular cylinder from its radius and height. The function
f(x,¥) = x? + y? calculates the height of the paraboloid z = x> + y? above the point

Real-valued functions of several independent real variables are defined much the way
you would imagine from the single-variable case. The domains are sets of ordered pairs
(triples, quadruples, n-tuples) of real numbers, and the ranges are sets of real numbers of
the kind we have worked with all along.

Evaluating a Function

The value of f(x,v,z) = Vx2 + y2 + zZat the point (3, 0, 4) is
£(3,0,4) = V(3)* + (02 + (42 = V25 = 5.




DEFINITIONS Function of n Independent Variables

Suppose D is a set of n-tuples of real numbers (xy, x2,...,x,). A real-valued
function f on D is a rule that assigns a unique (single) real number

w = flx;,x2,...,%,)

to each element in D). The set D 1s the function’s domain. The set of w-values
taken on by f is the function’s range. The symbol w is the dependent variable
of f, and f is said to be a function of the »n independent variables x; to x,,. We
also call the x;’s the function’s input variables and call w the function’s output

variable.



Domains and Ranges

* Avoid complex numbers or division by zero

(a)  Functions of Two Variables

Function Domain Range
w=Vy—x* y=x2 [0, 00)
w = xLy xy # 0 (—oo, 0)U (0, 00)
w = sinxy Entire plane [—1,1]

(b)  Functions of Three Variables

Function Domain Range
w= Vx2+y2+z2 Entire space [0, o0)
w = I (x,v.z) # (0,0,0) (0, 00)

¥ 2
..rz + Y-+ z°

w=xylnz Half-space z = 0 (—o0, o)



Graphs, Level Curves, and Contours of
Functions of Two Variables

DEFINITIONS  Level Curve, Graph, Surface

The set of points in the plane where a function f(x, y) has a constant value
f(x,y) = ¢ 1s called a level curve of f. The set of all points (x, y, f(x, y)) In
space, for (x, y) in the domain of £, 1s called the graph of f. The graph of f s
also called the surface 7 = f(x, y).



Graphing a Function of Two Variables

Graph f(x,y) = 100 — x? — y? and plot the level curves f(x,y) = 0, f(x,y) = 51, and
f(x.v) = 75 in the domain of f in the plane.

3
-,

The surface
100
z = flx,y)
flx,y) =175 — 100 — x2 — 2

is the graph of f. i

filx,y) =51
(a typical

— level curve in
the function’s
domain)

}I

The graph and selected
level curves of the function
flx,y) = 100 — x* — y?



The contour curve f(x.y) = 100 —x2 —y2 =75
is the circle x> + y% = 25 in the plane z = 75.

The level curve f(x,y) = 100 — x2 — y> =75
is the circle x> + y? = 25 in the xy-plane.



Functions of Three Variables

DEFINITION Level Surface
The set of points (x, v, z) in space where a function of three independent variables
has a constant value f(x, v, z) = c is called a level surface of f.

Describe the level surfaces of the function

Va2+y?+ 22 =1 fGy.z) = Va2 + 2 + 22




Modeling Temperature Beneath
Earth’s Surface

w = cos (1.7 X 107% — 0.2x)e "%
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Computer-generated graphs and level surfaces

-

of two variables.

y

of typical functions
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Limits and Continuity in Higher Dimensions

THEOREM 1  Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

I D=L and i ) =M.

[-‘i,}'}—l‘t}::lfn.-}'n} fx.y) - E-t,J-'}—l'Trn,ﬂ} g(x.)

1.  Sum Rule: lim  (flx,¥v) + glx,v)) =L+ M
{x, ¥)— (g, 30)

2. Difference Rule: lim  (flx,¥v) —glx,v)) =L - M
{x, ¥)—(xp. 30)

Y.  Product Rule: lim (flx.y)-glx,y)=L-M

{x, ¥)—(x0, y0)

4. Constant Multiple Rule: { lim : (kf(x,¥)) = kL (any number &)
)

x, ¥)—*{xg,

fe,y)
lim — = o5 M=10
x )=o) glx,y) M
6. Power Rule: 1If r and s are integers with no common factors, and 5 # (),
then

L

Quotient Rule:

lim  (f(x, )" =L

(x, ¥)—(xg, v)

provided L is a real number. (If s is even, we assume that L = 0.)
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Continuity

As with functions of a single variable, continuity 1s defined in terms of limits.

DEFINITION Continuous Function of Two Variables
A function f(x. v) 1s continuous at the point (xy, vg) 1f

1. fis defined at (xq. yo),

(x, ¥) l—laTIﬂ,H} -f{"r! J"r] 'Exiﬂl'ﬂ*
lim  f(x,y) = flxo.0).
{x, ¥)—{xg. wo)

A function 1s continuous 1f 1t 1s continuous at every point of 1ts domain.

16



Partial Derivatives

*The calculus of several variables is basically single-
variable calculus applied one at a time.

*Hold all but one of the independent variables
constant and differentiate with respect to that one
variable, we get a “partial” derivative.

*To distinguish partial derivatives from ordinary
derivatives we use the symbol 0 rather than the d
previously used

17
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4 Vertical axis in
" the plane y = yg

P(Io. Yo f (x O }’0))

z=f(x,y)
The curve z = f(x, yy)
in the plane y = yg

Tangent line

Horizontal axis in the plane y = v,

DEFINITION Partial Derivative with Respect to x
The partial derivative of fix, y) with respect to x at the point (xg. v) 15

af 0 flxo + h,yo) — flxo,30)
ax I h *
(o, pu)  H—0

provided the limit exists.



Partial Derivatives of a Function of Two Variables

If (x. ¥p) 1s a point in the domain of a function f(x, ¥), the vertical plane v = g will cut
the surface z = flx. v) in the curve z = f(x. wn)

F4
A
4 Vertical axis in
" the plane y = yg
Pixg. vo, f(xg. vo)) /
e =y

The curve z = f(x, yp)
in the plane y = y,

Tangent line

- \\‘\ - yo

x/

/ (xg. ¥o) y
(xg + A, Vo)

Horizontal axis in the plane y = v,



i

4 Vertical axis in
" the plane y = ¥,

Pixg, o flxg, ¥ol)

z = flx, y)

The curve z = fix, vg)
in the plane y = vy

Tangent line

. a I
I"“fﬁ
(xg. ¥o) ¥
(xg + h, )
Honzontal axis in the plane v = vn



DEFINITION Partial Derivative with Respect to y
The partial derivative of f(x, y) with respect to y at the point (xg, yg) 1s

af _ if[xg ) = o f(xo,y0 + h) — f(x0,30)
Dl W =y A0 h 1
Vertical axis
in the plane

> 4

X = Xp

Tangent line

%{Iﬂ,yﬂl Flxo, 1),

- Plxg. yo. f(xg, yo))

z=f(x.y)

(xg. Yo + K) \
The curve z = f(xg. y)

Honzontal axis

s in the plane x = x

X =Xp
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The notation for a partial derivative depends on what we want to emphasize:

ol
% (xp. vo) or felxo, vo) “Partial derivative of f with respect to x at (xg, vo)” or “f sub
x at (xp. yo).” Convenient for stressing the point (xg, vo).

— “Partial derivative of z with respect to x at (xg, vo).”

ox | : . - : .
(xa, yo) Common in science and engineering when you are dealing
with variables and do not mention the function explicitly.
E:If dz - . . . . LR .
fs o 20 OF o Partial derivative of f (or z) with respect to x.” Convenient

when you regard the partial derivative as a function in its
own right.

22



This tangent line ~ p, "
has slowfy(xo, )'o)- O )’o,f(xt)v Yo/

This tangent line
has slope f(xq. yg).

The curve z = f(xp. ¥)

in the plane x = x The curve z = f(x. vg)

in the plane y = yy

z= f(x,y)

(xg.¥o) *=%o y

- The tangent
lines at the point (xg, yo. f(x0. vo)) determine a plane that, in this
picture at least, appears to be tangent to the surface.



Let f(z,y) = yz?

d
calculate ﬁ‘_i (1,2) calculate % (1,2)

Find all of the first order partial derrvatives for the following function

X 51n
2 (5.7 = EE[:F)

24



Find the slopes of the traces to z = 10— 4x* — »* at the point 11.2).

%12

X
g “““-;.1},

Trace for x =1 Trace for y =2

X
3 q ¥

Next we'll need the two partial derivatives so we can get the slopes.
Felzy)=—8x Slxy)=-2y

To get the slopes all we need to do is evalnate the partial derivatives at the point in question
J‘;[],E)=—S fy[1,2j=—4

25



Find az/ax 1f the equation
yvz—Inz=x+y

defines z as a function of the two independent variables x and y and the partial derivative
exists.

a _ dx -:hr
With vy constant,
az ld__ _ rI|.h_. CO m;n
Vix ~ Zax = (y2) = y=
1 \dz _ |
¥ — z | 3 —
oz o

dar vz — 1° 26



it
Find i for 33 +x =5x.  implicitly

i x
., OE &z . .
Find — and — for each of the following functions
o ch?

izt —Smrz= x4y

| =

x* sin [2y—5z)=1+ycos( bzx)



EXAMPLE 5  Finding the Slope of a Surface in the y-Direction

The plane x = 1 intersects the paraboloid z = x* + y° in a parabola. Find the slope of the

tangent to the parabola at (1, 2, 3)

Solution  The slope is the value of the partial derivative dz/ay at (1, 2):

dz d . 2 2
— = —(x" + y7)
Wiy W (12)
\ ' Surfac;'c .
' | ‘z/ I=x°+y°
Pline/ =— " Tangent
X = l | /“ﬂc E
dy

l.‘_ e i, —— -

y=2

(1.2)

= 2(2) = 4.

28



Finding Second-Order Partial Derivatives

If f(x,y) = xcosy + ye’ find

P f o f &*f o~ f
g —, . and —.
ax dyelx b yi dxdy
Solution
o _ i{‘{ cosy + ve®) i _ 9 (xcosy + ve®)
ax  dx ” . Y ay  dy yry
= cosy + ye’ = —xsiny + e’
So S0
.2 e .2 2
d-f Y af L a-f I af L iy e
dydx  dy \odx Y axdy  ax \ dy y
a2 o (of . Pf o (of
= —|—=] = ye" = —|— ] = —xcosy.
g2 adx \ ox Y H.},rz dy \ dy y



The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

& f ; a*f
dydx an dxcdy

in Example 9 were equal. This was not a coincidence. They must be equal whenever
fs fxs fys frp, and f,, are continuous, as stated in the following theorem.

THEOREM 2  The Mixed Derivative Theorem

If f(x, y) and its partial derivatives f., f,, f.,, and f,, are defined throughout an
open region containing a point (a, b) and are all continuous at (a, b), then

f.l}'{ﬂ:- b) = f_}-ﬂ'{ﬂ: b).

30



Choosing the Order of Differentiation
Find o*w/axay if

e’
yi+1

H::_x}r—|—

Solution The symbol a*w/dxdy tells us to differentiate first with respect to y and then
with respect to x. If we postpone the differentiation with respect to y and differentiate first
with respect to x, however, we get the answer more quickly. In two steps,

a*w

=y and S =1

ow
ox

If we differentiate first with respect to y, we obtain #*w/axdy = 1 as well. ]

31



The Chain Rule

Functions of Two Variables

The Chain Rule formula for a function w = f(x, ) when x = x(¢) and v = y(¢) are both
differentiable functions of 7 1s given in the following theorem.

THEOREM 5  Chain Rule for Functions of Two Independent Variables

Ifw = f(x, y) has continuous partial derivatives f, and f, and if x = x(f),y = (1)
are differentiable functions of ¢, then the composite w = f(x(7), y(¢)) is a differ-
entiable function of 7 and

d
j: = fulx(0), (1)) - x"(2) + folx(2), »(1)) - ¥' (1),

or

dw  9f dx N df dy
dt oxdt oydt”




Chain Rule

dw _aw dx _aw dy
dt  ax dt  av di

Dependent
variable

Intermediate
variables

Independent
variable

33



THEOREM 6  Chain Rule for Functions of Three Independent Variables
If w = f(x,y, z) 1s differentiable and x, y, and z are differentiable functions of 7,

then w 1s a differentiable function of f and

dw fdx Ofdyv  f gz

dt  oxdt  oydt  ozdt

Dependent
variable

Intermediate
variables

Independent

= 34
variable




~ Use a tree diagram to write down the chain rule for the given derivatives.

cw

= forw= f(x,yz).x=g/(t), y=g,(t).and z = g,(¢)

SN
b

cham rule for this case should be.
aw _Gax & dy o az
dit dxdf dvdi ozdi &



Use a tree diagram to write down the chain rule for the given derivatives.

ow

— forw=F(xyz).x=g (str). y=g(str). and z=g(s,t7)

W

I/L\E
N AN I\

w _Fx Fy ¥
> oxor o oo




Express dw/dr and dw/ds in terms of r and s if

W:IZ_}-’Z, X — F — 8§, ¥

Ftrs

= 4+ = —— + ——

ar dx dr  dy dr 0§ dx ds dy os
= (2x)(1) + (2y)(1) (2x)(—1) + (2y)(1)

=2(r —s) + 2(r +s) —2(r —s) + 2(r + 5)
= 4 = 4

dw _ dw ox dw Y dw dw dx dw dy

37



Ifw = f(x)and x = g(r, 5), then

ow _ dw ix

dw  dw dx

ar dx or and s dx ds
Chain Rule
f=fu}

dw dw ox

ﬂ" 1 —

- dr — dx ar
dw dw ox
as  dx as

38



THEOREM 8 A Formula for Implicit Differentiation

Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y
as a differentiable function of x. Then at any point where F, # 0,

O

d«  F,°

d
Find d_y for xcos(3y)+ 2y = 3x—e”.
x

xcos(3)V+ x5y —3x+e? =0
wd [I, yj m our formula so all we need to do 1s use the formula

dy cos(3y)+3x%y” =3+ ye”
dx  —3xsin(3y)+5xy" + xeV




14.4 Chain Rule

The Chain Rule for functions of
two or more variables



* Chain Rule has several forms.

* The form depends on how many variables are
involved

e works like the Chain Rule in Section 3.5

THEOREM 5  Chain Rule for Functions of Two Independent Variables

I[fw = f(x, y) has continuous partial derivatives f, and f,and if x = x(7), y = y(1)
are differentiable functions of ¢, then the composite w = f(x(¢), y(¢)) is a differ-
entiable function of t and

df
o = falx(t), W(1)) - x' (1) + folx(2), y(2)) -y (1),

or

dw 9fdx  ofdy

dt ox dt  dy dt

41



Example 1 w=x2+y2, x =cost, y=smnl; =

(a) ‘%%=21,‘%’—:=Ey,%=—siﬂt+%3—:=cust = d—d‘{=—sziﬂt—i—ﬁycust:—Ecustsint—i—isintcnﬂt

=0w=x*+y’=cos’t+sin*t=1 = ¥ =0
(b) % (m) =0

THEOREM 6  Chain Rule for Functions of Three Independent Variables

If w = f(x, v, z) is differentiable and x, y, and z are differentiable functions of ¢,
then w is a differentiable function of f and

dw _ W dx A 9 dz
dt dx dt dy dt dz dt’

42



Chain Rule diagrams

W= flx, y)

.

dw N, dw

.. L
dx / s dv
L -
.-.-.- M'H.
L]

F L
' L
' L
X g Yy
L] & -

L] 'l
" o~
L] '
-\..\. ;
R &
R &
- k '

dx ™, dv
—_— N A
5 o
dt ™ S dt
L '

LY &

% i
% o
‘- '

dw  dw dx N dw dy
dt  dx dt ' dy dt

Dependent
variable

Intermediate
variables

Independent
variable

w = f(x.v.z) Dependent
s variable
ﬂ .-'"'; , H.H"
dx ./ ow 0
/S ay A _
i _ Intermediate
e Y | F :
variables
x'\-\.x ﬂr}"' .-_.-".
dx ™, di / dz
de | / dt
. Independent
t variable

dw dw dx  dw dy L 9w dz
dt ~ ox di  ay dr | oz di

43



THEOREM 7

Dependent
variable

Intermediate
variables

Independent
variables

Intermediate Variables

Suppose that w = f(x,y,z),x = glr,s5),v = h(r,s), and z = k(r, s). If all four
functions are differentiable, then w has partial derivatives with respect to » and s,
given by the formulas

aw

dwdx | awdy | awaz

Ay

aw

ax or

dy dr

dz dr

dwax | awdV  awaz

05

w = f(eglr, 5). h(r,s5). k(r, 5))

(a)

ax ds

av ds

dw _dw x| aw dy
dr  dx dr dy dr

(b)

0z os

dr dr

dw  dw dx

3 ox as

Chain Rule for Two Independent Variables and Three

aw ay
dy ds

(c)

dw dz

t 9z os

44



Example 2 w=J|§LJ+_}x'E+IE:. X = U + v, yV=u—v, I =,
(u.v) = (1/2. 1)

SClBlEER  Draw a tree diagram and write a Chain Rule formula

lJ'W oW

o and == forw = h(x.y.z). x = flu.v), y=gluv),

= Ku, v)
Gw _ Ow Ax , Aw 9y |, dw 2 3 Bw gw 8y |, Aw Sz
n—mamtmats: e R

45




THEOREM 8 A Formula for Implicit Differentiation

Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y
as a differentiable function of x. Then at any point where F, # 0,

@& _ K
dx |
i 2 _
oyt o 1)
z_ Ko ez b
ax Fooan ay E
Use these equations to find the values of dz/dx and dz/dy at the

points in

Example 5 z’ — Xy T )z +J"3_ 2=0 (L,L1)

Example 6 [Fr-lims ],JE."? +2Inx —2—-—3In2 = ﬂ, {1,][‘]2, In3) \

6



14.7 Extreme Values and
Saddle Points



Continuous functions of two variables assume
extreme values on closed, bounded domains

we can narrow the search for extreme values by
examining the first partial derivatives.

extreme values only at domain boundary points
or at interior domain points

where both first partial derivatives are zero or

where one or both of the first partial
derivatives fails to exist.




>




Derivative Tests for Local Extreme
Values

DEFINITIONS Local Maximum, Local Minimum

Let f(x, y) be defined on a region R containing the point (a, #). Then

1. f(a, b) is a local maximum value of f if f(a, b) = f(x,y) for all domain
points (x, ) in an open disk centered at (a, b).

2.  f(a, b) is a local minimum value of f if f(a, b) = f(x, v) for all domain
points (x, y) in an open disk centered at (a, b).

50



Local maxima
(no greater :ralue of fnearby)

AN
AN

.....
Ny '».f -:“%‘ :.-: : .\ o

Local minimum
(no smaller value
of f nearby)

51
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THEOREM 10 First Derivative Test for Local Extreme Values

If f(x, y) has a local maximum or minimum value at an interior point (a, b) of its
domain and if the first partial derivatives exist there, then f.(a, b) = 0 and

fila.b) = 0.

DEFINITION Critical Point

An interior point of the domain of a function f(x, y) where both f, and f, are zero
or where one or both of f, and f, do not exist is a critical point of f.

DEFINITION Saddle Point

A differentiable function f(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there are domain points (x, v) where
flx,v) = f(a, b) and domain points (x, v) where f(x,v) < f(a, b). The corre-
sponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a saddle point of

53



THEOREM 11 Second Derivative Test for Local Extreme Values
Suppose that f(x, y) and its first and second partial derivatives are continuous

throughout a disk centered at (a, b) and that f.(a. b) = f,(a, b) = 0.Then

i. f hasa local maximum at (a, b)if f, < Oand f.. f,, — f_ﬂ.2 = 0 at (a, b).
ii. f hasa local minimum at (a, b) if f,, = Oand f.f,, — f_ﬂ.E = 0 at (a, b).
iii. f has a saddle pointat (a, b) if . f,, — f_ﬂ.z << 0 at (a, b).

iv. The test is inconclusive at (a, b) if f.. f,, — fn.z = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).

54




Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

i. boundary points of the domain of f

ii. critical points (interior points where f, = f, = 0 or points where f, or f,
fail to exist).

If the first- and second-order partial derivatives of f are continuous throughout a
disk centered at a point (a, b) and f.(a, b) = f,(a, b) = 0, the nature of f(a, b)
can be tested with the Second Derivative Test:

I. fo < Oand fi fy, — j'“_,q_.E = 0at(a, b) = local maximum

ii. fo = 0and fif,, — fy° = Oat(a,b) = local minimum
iii. fuf,y — fu- < Oat(a,b) = saddle point

iv. fufw — fu- = 0at(a, b)) = testis inconclusive.

iy

LY
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Fmd all lrsrcal ma:!-:jma: local minima, and saddle points of the function
flxvi=x y Y 1y Axy

The critical points for this function are (0, 0}, (1, -1), and (-1, 1).

_ 2 _ 2 —
f:lr:lr_lzx fyl}-_lzy fx.}l_4
_ — —_ ¥ _ =
(00 f =0 S, =0 A0, S =0-16<0

The point (0, 0) is a saddle point, and £ (0, 0) = 0.

(L-1 f,=12 f,, =
Fow 20 Fondoy — Fon =(120(12) - 16 > 0

The point (1, -1} is a local minimum, and £(1, -1) = -2

(-L1) fiy =12 f,, =
Fox 20 Fandyy — Sy =(120{(12)-16 > 0

58

The point (-1, 1) 1is a local minimum, and £(-1, 1) = -



19. f(x,y) = 6x* — 2x° + 3y + 6xy

f(x,y) = 12x — 6x* + 6y = Dand f(x. y) =6y + 6x =0 = x=0andy=0.orx =landy = -1 = critical
points are (0, 0) and (1, — 1) for (0, 0): fu,(0,0) = 12 — 12x] o, = 12, £,,(0,0) = 6, £,,(0,0) = 6 = f,mf,,:lr f'
= 36 = ODand f;, > 0 = local minimum of f(0, 0) = 0; for (1, —1): £, (1, -1)=0.f (1.-1)=

fy(l, =1) =6 = fifyy — f' = —36 < () = saddle point

flx,y) =x" +y + 3x* — 3y° — 8§

o y) =3 +6x=0 = x=0o0rx=-2if(x,y) =3y"—6y=0 = y=00ry =2 = the critical points
(0, 00, (0, 2), (~2.0), and (-2, 2); for (0, 0): £4,(0, 0) = 6x + 6] 5, = 6. £,(0,0) = by — E'lr_ﬂ:u] = —6,
fo(0,0) =0 = f,f,, — f'3 = —36 < 0 = saddle point; for (0, 2): f,,(0,2) = 6, f,,(0, 2) = 6, f;,(0, 3"} =
= frafyy — f' =36 = 0and f;x, =0 = local mnimum of {0, 2) = —12: for(—2.0): f(—2.0) =
fy(—=2,0) = —6,f,,(=2,0) =0 = f,fyy — f' 36 = 0and f,, < 0 = local maximum of fi—2,0) = —
for (—=2,2) ful—2,2) = =6, f,(-2.2) =6, £, (-2.2) =0 = f.f,, - FEF = —36 < 0 = saddle p::rint



3 fla,y) =2y —5x" = 2p* + dx + 4y — 4
4. flx,y) =2y — 5x* = 2p* + 4x — 4

5. flx,y)

XY Hxy+ 3+ 2+ 5

3. R, y) =2y - 10x+4=0and fy(x,y)=2x -4y 4+ 4 =0 = 1=%£u1d}'=‘§ = critical point 1s {%%},

10,y (3.3) = 4. £ (3.3) =2 = fufyy — L =36 > 0and iy <0 = local maximum of

4 fix,y)=2y — 10x+4=0andfy(x, y)=2x —dy =0 = x= g and y = % = critical point 1s {g._ %} !
fa (3.8) = —10.f,(3.3) = 4.1 (3.5) =2 = fufyy - fr, =36 > 0and fy; < 0 = local maximum of

((33)=-3

. Lxy)=2x+4+y+3=0andf(x,y)=x+2=0 = x=-2andy=1 = critical point is (-2, 1);
fax(—=2, 1) =2, f (-2, )= 0., (-2, 1) =1 = ffy, — ff}. = —1 < 0 = saddle point



