14.4 Chain Rule

The Chain Rule for functions of
two or more variables



* Chain Rule has several forms.

* The form depends on how many variables are
involved

e works like the Chain Rule in Section 3.5

THEOREM 5  Chain Rule for Functions of Two Independent Variables

I[fw = f(x, y) has continuous partial derivatives f, and f,and if x = x(7), y = y(1)
are differentiable functions of ¢, then the composite w = f(x(¢), y(¢)) is a differ-
entiable function of t and

df
o = falx(t), W(1)) - x' (1) + folx(2), y(2)) -y (1),

or

dw 9fdx  ofdy

dt ox dt  dy dt



Example 1 w=x2+y2, x =cost, y=smnl; =

(a) ‘%%=21,‘%’—:=Ey,%=—siﬂt+%3—:=cust = d—d‘{=—sziﬂt—i—ﬁycust:—Ecustsint—i—isintcnﬂt

=0w=x*+y’=cos’t+sin*t=1 = ¥ =0
(b) % (m) =0

THEOREM 6  Chain Rule for Functions of Three Independent Variables

If w = f(x, v, z) is differentiable and x, y, and z are differentiable functions of ¢,
then w is a differentiable function of f and

dw _ W dx A 9 dz
dt dx dt dy dt dz dt’




Chain Rule diagrams
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THEOREM 7

Dependent
variable

Intermediate
variables

Independent
variables

Intermediate Variables

Suppose that w = f(x,y,z),x = glr,s5),v = h(r,s), and z = k(r, s). If all four
functions are differentiable, then w has partial derivatives with respect to » and s,
given by the formulas

aw

dwdx | awdy | awaz

Ay

aw

ax or

dy dr

dz dr

dwax | awdV  awaz

05

w = f(eglr, 5). h(r,s5). k(r, 5))

(a)

ax ds

av ds

dw _dw x| aw dy
dr  dx dr dy dr

(b)

0z os

dr dr

dw  dw dx

3 ox as

Chain Rule for Two Independent Variables and Three

aw ay
dy ds
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dw dz

t 9z os
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Example 2 w=J|§LJ+_}x'E+IE:. X = U + v, yV=u—v, I =,
(u.v) = (1/2. 1)

SClBlEER  Draw a tree diagram and write a Chain Rule formula

lJ'W oW

o and == forw = h(x.y.z). x = flu.v), y=gluv),

= Ku, v)
Gw _ Ow Ax , Aw 9y |, dw 2 3 Bw gw 8y |, Aw Sz
n—mamtmats: e R




THEOREM 8 A Formula for Implicit Differentiation

Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y
as a differentiable function of x. Then at any point where F, # 0,

@& _ K
dx |
i 2 _
oyt o 1)
z_ Ko ez b
ax Fooan ay E
Use these equations to find the values of dz/dx and dz/dy at the

points in

Example 5 z’ — Xy T )z +J"3_ 2=0 (L,L1)

SCLECH ve ! + pe® + 2Inx — 2 —-3mn2=0, (1,In2,In3)
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14.7 Extreme Values and
Saddle Points



Continuous functions of two variables assume
extreme values on closed, bounded domains

we can narrow the search for extreme values by
examining the first partial derivatives.

extreme values only at domain boundary points
or at interior domain points

where both first partial derivatives are zero or

where one or both of the first partial
derivatives fails to exist.




>




Derivative Tests for Local Extreme
Values

DEFINITIONS Local Maximum, Local Minimum

Let f(x, y) be defined on a region R containing the point (a, #). Then

1. f(a, b) is a local maximum value of f if f(a, b) = f(x,y) for all domain
points (x, ) in an open disk centered at (a, b).

2.  f(a, b) is a local minimum value of f if f(a, b) = f(x, v) for all domain
points (x, y) in an open disk centered at (a, b).
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Local maxima
(no greater :ralue of fnearby)
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Local minimum
(no smaller value
of f nearby)
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THEOREM 10 First Derivative Test for Local Extreme Values

If f(x, y) has a local maximum or minimum value at an interior point (a, b) of its
domain and if the first partial derivatives exist there, then f.(a, b) = 0 and

fila.b) = 0.

DEFINITION Critical Point

An interior point of the domain of a function f(x, y) where both f, and f, are zero
or where one or both of f, and f, do not exist is a critical point of f.

DEFINITION Saddle Point

A differentiable function f(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there are domain points (x, v) where
flx,v) = f(a, b) and domain points (x, v) where f(x,v) < f(a, b). The corre-
sponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a saddle point of
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THEOREM 11 Second Derivative Test for Local Extreme Values
Suppose that f(x, y) and its first and second partial derivatives are continuous

throughout a disk centered at (a, b) and that f.(a. b) = f,(a, b) = 0.Then

i. f hasa local maximum at (a, b)if f, < Oand f.. f,, — f_ﬂ.2 = 0 at (a, b).
ii. f hasa local minimum at (a, b) if f,, = Oand f.f,, — f_ﬂ.E = 0 at (a, b).
iii. f has a saddle pointat (a, b) if . f,, — f_ﬂ.z << 0 at (a, b).

iv. The test is inconclusive at (a, b) if f.. f,, — fn.z = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).
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Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

i. boundary points of the domain of f

ii. critical points (interior points where f, = f, = 0 or points where f, or f,
fail to exist).

If the first- and second-order partial derivatives of f are continuous throughout a
disk centered at a point (a, b) and f.(a, b) = f,(a, b) = 0, the nature of f(a, b)
can be tested with the Second Derivative Test:

I. fo < Oand fi fy, — j'“_,q_.E = 0at(a, b) = local maximum

ii. fo = 0and fif,, — fy° = Oat(a,b) = local minimum
iii. fuf,y — fu- < Oat(a,b) = saddle point

iv. fufw — fu- = 0at(a, b)) = testis inconclusive.

iy
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Fmd all lrsrcal ma:!-:jma: local minima, and saddle points of the function
flxvi=x y Y 1y Axy

The critical points for this function are (0, 0}, (1, -1), and (-1, 1).

_ 2 _ 2 —
f:lr:lr_lzx fyl}-_lzy fx.}l_4
_ — —_ ¥ _ =
(00 f =0 S, =0 A0, S =0-16<0

The point (0, 0) is a saddle point, and £ (0, 0) = 0.

(L-1 f,=12 f,, =
Fow 20 Fondoy — Fon =(120(12) - 16 > 0

The point (1, -1} is a local minimum, and £(1, -1) = -2

(-L1) fiy =12 f,, =
Fox 20 Fandyy — Sy =(120{(12)-16 > 0
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The point (-1, 1) 1is a local minimum, and £(-1, 1) = -



19. f(x,y) = 6x* — 2x° + 3y + 6xy

f(x,y) = 12x — 6x* + 6y = Dand f(x. y) =6y + 6x =0 = x=0andy=0.orx =landy = -1 = critical
points are (0, 0) and (1, — 1) for (0, 0): fu,(0,0) = 12 — 12x] o, = 12, £,,(0,0) = 6, £,,(0,0) = 6 = f,mf,,:lr f'
= 36 = ODand f;, > 0 = local minimum of f(0, 0) = 0; for (1, —1): £, (1, -1)=0.f (1.-1)=

fy(l, =1) =6 = fifyy — f' = —36 < () = saddle point

flx,y) =x" +y + 3x* — 3y° — 8§

o y) =3 +6x=0 = x=0o0rx=-2if(x,y) =3y"—6y=0 = y=00ry =2 = the critical points
(0, 00, (0, 2), (~2.0), and (-2, 2); for (0, 0): £4,(0, 0) = 6x + 6] 5, = 6. £,(0,0) = by — E'lr_ﬂ:u] = —6,
fo(0,0) =0 = f,f,, — f'3 = —36 < 0 = saddle point; for (0, 2): f,,(0,2) = 6, f,,(0, 2) = 6, f;,(0, 3"} =
= frafyy — f' =36 = 0and f;x, =0 = local mnimum of {0, 2) = —12: for(—2.0): f(—2.0) =
fy(—=2,0) = —6,f,,(=2,0) =0 = f,fyy — f' 36 = 0and f,, < 0 = local maximum of fi—2,0) = —
for (—=2,2) ful—2,2) = =6, f,(-2.2) =6, £, (-2.2) =0 = f.f,, - FEF = —36 < 0 = saddle p::rint



3 fla,y) =2y —5x" = 2p* + dx + 4y — 4
4. flx,y) =2y — 5x* = 2p* + 4x — 4

5. flx,y)

XY Hxy+ 3+ 2+ 5

3. R, y) =2y - 10x+4=0and fy(x,y)=2x -4y 4+ 4 =0 = 1=%£u1d}'=‘§ = critical point 1s {%%},

10,y (3.3) = 4. £ (3.3) =2 = fufyy — L =36 > 0and iy <0 = local maximum of

4 fix,y)=2y — 10x+4=0andfy(x, y)=2x —dy =0 = x= g and y = % = critical point 1s {g._ %} !
fa (3.8) = —10.f,(3.3) = 4.1 (3.5) =2 = fufyy - fr, =36 > 0and fy; < 0 = local maximum of

((33)=-3

. Lxy)=2x+4+y+3=0andf(x,y)=x+2=0 = x=-2andy=1 = critical point is (-2, 1);
fax(—=2, 1) =2, f (-2, )= 0., (-2, 1) =1 = ffy, — ff}. = —1 < 0 = saddle point



