154 Triple Integrals in Rectangular Coordinates

We use triple integrals to calculate:
*the volumes of three-dimensional shapes

*the masses and moments of solids of varying
density

*the average value of a function over a three
dimensional region.



Finding Limits of Integration

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem

1. Sketch: Sketch the region D along with its “shadow™ R (vertical projection) in the xy-
plane. Label the upper and lower bounding surfaces of D and the upper and lower
bounding curves of R.
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2. Find the z-limits of integration: Draw a line M passing through a typical point (x, y) in
R parallel to the z-axis. As z increases, M enters D at z = f,(x, y) and leaves at
z = f3(x, ). These are the z-limits of integration.
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3.  Find the y-limits of integration: Draw a line L through (x, y) parallel to the y-axis. As y
increases, L enters R at y = gy(x) and leaves at y = g»(x). These are the y-limits of
integration.
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Find the x-limits of integration: Choose x-limits that include all lines through R paral-

lel to the y-axis (x = a and x = b in the preceding figure). These are the x-limits of
integration. The integral is
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Follow similar procedures if you change the order of integration. The “shadow™ of
region D lies in the plane of the last two variables with respect to which the iterated
integration takes place.






Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by
the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.

L1L[: :!J’: n 2n:l:n:l:,«'n:i.'::

= LIL[: 11{3 — Ix - %y} dy dx

= [[30=%-201 =% = 3 -4(1 - x)?] ds
=3 [ —xPdx=[-(1-xP]} =1,
j:j: h JJ’;L a ”dr{d}' dz




Find the volume of the region D enclosed by the surfaces z = x* + 3y and z =
8 —x? —y~
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Here is the region of integration of the integral
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Rewrite the integral as an equivalent iterated integral in the order
a. dydzdx b. dydx dz
c. dxdyd:z d. dx dz dy

e. dzdxdy.
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