15.4 Triple Integrals in Rectangular Coordinates

We use triple integrals to calculate:
-the volumes of three-dimensional shapes
-the masses and moments of solids of varying density
-the average value of a function over a three dimensional region.

Finding Limits of Integration

We evaluate a triple integral by applying a three-dimensional version of Fubini's Theorem

1. Sketch: Sketch the region D along with its "shadow" R (vertical projection) in the $x y$ plane. Label the upper and lower bounding surfaces of D and the upper and lower bounding curves of R.

2. Find the z-limits of integration: Draw a line M passing through a typical point (x, y) in R parallel to the z-axis. As z increases, M enters D at $z=f_{1}(x, y)$ and leaves at $z=f_{2}(x, y)$. These are the z-limits of integration.

3. Find the y-limits of integration: Draw a line L through (x, y) parallel to the y-axis. As y increases, L enters R at $y=g_{1}(x)$ and leaves at $y=g_{2}(x)$. These are the y-limits of integration.

4. Find the x-limits of integration: Choose x-limits that include all lines through R parallel to the y-axis ($x=a$ and $x=b$ in the preceding figure). These are the x-limits of integration. The integral is

$$
\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} F(x, y, z) d z d y d x
$$

Follow similar procedures if you change the order of integration. The "shadow" of region D lies in the plane of the last two variables with respect to which the iterated integration takes place.

Volume of tetrahedron Write six different iterated triple integrals for the volume of the tetrahedron cut from the first octant by the plane $6 x+3 y+2 z=6$. Evaluate one of the integrals.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2} 2 \int_{0}^{3} 3 \mathrm{x} 3 \mathrm{y} / 2 \mathrm{dzdydx} \\
& =\int_{0}^{1} \int_{0}^{22 x}\left(3-3 x-\frac{3}{2} y\right) d y d x \\
& =\int_{0}^{1}\left[3(1-x) \cdot 2(1-x)-\frac{3}{4} \cdot 4(1-x)^{2}\right] d x \\
& =3 \int_{0}^{1}(1-x)^{2} d x=\left[-(1-x)^{3}\right]_{0}^{1}=1 \text {, } \\
& \int_{0}^{2} \int_{0}^{1 y / 2} \int_{0}^{3} 3 x+3 y y^{2} d z d x d y, \int_{0}^{1} \int_{0}^{3} 3 x \int_{0}^{2 z z z t}, \\
& \int_{0}^{3} \int_{0}^{1 z / 3} \int_{0}^{2 z z z z} \mathrm{dydxdz}, \int_{0}^{2} \int_{0}^{3}{ }^{3 y / 2} \int_{0}^{1 y / 2 z / 3} \\
& \int_{0}^{3} \int_{0}^{2 z / 3} \int_{0}^{1 y 2 z z} \mathrm{dx} \mathrm{dy} \mathrm{dz}
\end{aligned}
$$

Find the volume of the region D enclosed by the surfaces $z=x^{2}+3 y^{2}$ and $z=$ $8-x^{2}-y^{2}$.

$$
=\int_{-2}^{2} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}} \int_{x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} d z d y d x
$$

$$
\begin{aligned}
& =\int_{-2}^{2} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(8-2 x^{2}-4 y^{2}\right) d y d x \\
& =\int_{-2}^{2}\left[\left(8-2 x^{2}\right) y-\frac{4}{3} y^{3}\right]_{y=-\sqrt{\left(4-x^{2}\right) / 2}}^{y=\sqrt{\left(4-x^{2}\right) / 2}} d x
\end{aligned}
$$

$$
=\int_{-2}^{2}\left(2\left(8-2 x^{2}\right) \sqrt{\frac{4-x^{2}}{2}}-\frac{8}{3}\left(\frac{4-x^{2}}{2}\right)^{3 / 2}\right) d x
$$

$$
=\int_{-2}^{2}\left[8\left(\frac{4-x^{2}}{2}\right)^{3 / 2}-\frac{8}{3}\left(\frac{4-x^{2}}{2}\right)^{3 / 2}\right] d x=\frac{4 \sqrt{2}}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x
$$

$=8 \pi \sqrt{2} . \quad$ After integration with the substitution $x=2 \sin u$.

$(0,-1,1)$
 $(1,-1,1)$
 $(1,-1,0)$
 $\int_{0}^{1} \int_{0}^{1} \int_{-1}^{-\sqrt{z}} d y d x d z$
 $\int_{-1}^{0} \int_{0}^{1} \int_{0}^{y^{2}}$ dz dx dy
 $\int_{0}^{1} \int_{-1}^{0} \int_{0}^{y^{2}} d z d y d x$.

Here is the region of integration of the integral

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} d z d y d x
$$

Rewrite the integral as an equivalent iterated integral in the order
a. $d y d z d x$
b. $d y d x d z$
c. $d x d y d z$
d. $d x d z d y$
e. $d z d x d y$.
(a) $\int_{1}^{1} \int_{0}^{1 x^{2}} \int_{x^{2}}^{1 z} d y d z d x$
(b) $\int_{0}^{1} \int_{\sqrt{1 z}}^{\sqrt{1 z}} \int_{x^{2}}^{1 z} d y d x d z$
(c) $\int_{0}^{1} \int_{0}^{1 z} \int_{\sqrt{y}}^{\sqrt{y}} d x d y d z$
(d) $\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{y}}^{\sqrt{y}} \mathrm{dxdzdy}$
(e) $\int_{0}^{1} \int_{\sqrt{y}}^{\sqrt{y}} \int_{0}^{1} \mathrm{y} \mathrm{dzdx} d y$

