14.1 Functions of Several Variables
• A real-world phenomenon usually depends on two or more independent variables.

• We need to extend the basic ideas of functions of a single variable to functions of several variables.

Evaluating a Function

The value of \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2} \) at the point \((3, 0, 4)\) is

\[
f(3, 0, 4) = \sqrt{(3)^2 + (0)^2 + (4)^2} = \sqrt{25} = 5.
\]
Domains and Ranges

- Avoid complex numbers or division by zero

<table>
<thead>
<tr>
<th>Function</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w = \sqrt{y - x^2})</td>
<td>(y \geq x^2)</td>
<td>([0, \infty))</td>
</tr>
<tr>
<td>(w = \frac{1}{xy})</td>
<td>(xy \neq 0)</td>
<td>((-\infty, 0) \cup (0, \infty))</td>
</tr>
<tr>
<td>(w = \sin xy)</td>
<td>Entire plane</td>
<td>([-1, 1])</td>
</tr>
</tbody>
</table>

(b) Functions of Three Variables

<table>
<thead>
<tr>
<th>Function</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w = \sqrt{x^2 + y^2 + z^2})</td>
<td>Entire space</td>
<td>([0, \infty))</td>
</tr>
<tr>
<td>(w = \frac{1}{x^2 + y^2 + z^2})</td>
<td>((x, y, z) \neq (0, 0, 0))</td>
<td>((0, \infty))</td>
</tr>
<tr>
<td>(w = xy \ln z)</td>
<td>Half-space (z > 0)</td>
<td>((-\infty, \infty))</td>
</tr>
</tbody>
</table>
Graphs, Level Curves, and Contours of Functions of Two Variables

DEFINITIONS Level Curve, Graph, Surface

The set of points in the plane where a function \(f(x, y) \) has a constant value \(f(x, y) = c \) is called a level curve of \(f \). The set of all points \((x, y, f(x, y)) \) in space, for \((x, y) \) in the domain of \(f \), is called the graph of \(f \). The graph of \(f \) is also called the surface \(z = f(x, y) \).
Graphing a Function of Two Variables

Graph \(f(x, y) = 100 - x^2 - y^2 \) and plot the level curves \(f(x, y) = 0 \), \(f(x, y) = 51 \), and \(f(x, y) = 75 \) in the domain of \(f \) in the plane.

The surface \(z = f(x, y) = 100 - x^2 - y^2 \) is the graph of \(f \).

FIGURE 14.4 The graph and selected level curves of the function
\(f(x, y) = 100 - x^2 - y^2 \)
Functions of Three Variables

DEFINITION
Level Surface
The set of points \((x, y, z)\) in space where a function of three independent variables has a constant value \(f(x, y, z) = c\) is called a level surface of \(f\).

Describe the level surfaces of the function

\[
f(x, y, z) = \sqrt{x^2 + y^2 + z^2}
\]

- \(\sqrt{x^2 + y^2 + z^2} = 1\)
- \(\sqrt{x^2 + y^2 + z^2} = 2\)
- \(\sqrt{x^2 + y^2 + z^2} = 3\)
Modeling Temperature Beneath Earth’s Surface

\[w = \cos \left(1.7 \times 10^{-2} t - 0.2x \right) e^{-0.2x} . \]
Computer-generated graphs and level surfaces of typical functions of two variables.

(a) $z = e^{-\frac{(x^2 + y^2)}{8}} \sin x^2 + \cos y^2$

(b) $z = \sin x + 2\sin y$
(c) \(z = (4x^2 + y^2)e^{-x^2-y^2} \)

(d) \(z = xye^{-y^2} \)
\[z = (\cos x)(\cos y) e^{-\sqrt{x^2 + y^2}/4} \]

\[z = -\frac{xy^2}{x^2 + y^2} \]
c.

\[z = \frac{1}{4x^2 + y^2} \]
14.2 Limits and Continuity in Higher Dimensions

THEOREM 1 Properties of Limits of Functions of Two Variables

The following rules hold if L, M, and k are real numbers and

$$
\lim_{(x,y) \to (x_0, y_0)} f(x, y) = L \quad \text{and} \quad \lim_{(x,y) \to (x_0, y_0)} g(x, y) = M.
$$

1. **Sum Rule:**
 $$\lim_{(x,y) \to (x_0, y_0)} (f(x, y) + g(x, y)) = L + M$$

2. **Difference Rule:**
 $$\lim_{(x,y) \to (x_0, y_0)} (f(x, y) - g(x, y)) = L - M$$

3. **Product Rule:**
 $$\lim_{(x,y) \to (x_0, y_0)} (f(x, y) \cdot g(x, y)) = L \cdot M$$

4. **Constant Multiple Rule:**
 $$\lim_{(x,y) \to (x_0, y_0)} (kf(x, y)) = kL \quad \text{any number } k$$

5. **Quotient Rule:**
 $$\lim_{(x,y) \to (x_0, y_0)} \frac{f(x, y)}{g(x, y)} = \frac{L}{M} \quad M \neq 0$$

6. **Power Rule:** If r and s are integers with no common factors, and $s \neq 0$, then
 $$\lim_{(x,y) \to (x_0, y_0)} (f(x, y))^{r/s} = L^{r/s}$$

provided $L^{r/s}$ is a real number. (If s is even, we assume that $L > 0$.)
Continuity

As with functions of a single variable, continuity is defined in terms of limits.

DEFINITION Continuous Function of Two Variables

A function $f(x, y)$ is continuous at the point (x_0, y_0) if

1. f is defined at (x_0, y_0),
2. $\lim_{(x, y) \to (x_0, y_0)} f(x, y)$ exists,
3. $\lim_{(x, y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0)$.

A function is **continuous** if it is continuous at every point of its domain.
• The calculus of several variables is basically single-variable calculus applied one at a time.

• Hold all but one of the independent variables constant and differentiate with respect to that one variable, we get a “partial” derivative.
Partial Derivatives of a Function of Two Variables

If \((x_0, y_0)\) is a point in the domain of a function \(f(x, y)\), the vertical plane \(y = y_0\) will cut the surface \(z = f(x, y)\) in the curve \(z = f(x, y_0)\) (Figure 14.13). This curve is the graph

\[
\begin{align*}
\frac{\partial f}{\partial x} \bigg|_{(x_0, y_0)} &= \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},
\end{align*}
\]

provided the limit exists.
The curve $z = f(x, y_0)$ in the plane $y = y_0$.

Tangent line

$P(x_0, y_0, f(x_0, y_0))$

Vertical axis in the plane $y = y_0$

$z = f(x, y)$

Horizontal axis in the plane $y = y_0$.

(x_0, y_0)

$(x_0 + h, y_0)$
The notation for a partial derivative depends on what we want to emphasize:

\[\frac{\partial f}{\partial x}(x_0, y_0) \text{ or } f_x(x_0, y_0) \]
“Partial derivative of \(f \) with respect to \(x \) at \((x_0, y_0)\)” or “\(f \) sub \(x \) at \((x_0, y_0)\).” Convenient for stressing the point \((x_0, y_0)\).

\[\frac{\partial z}{\partial x} \bigg|_{(x_0, y_0)} \]
“Partial derivative of \(z \) with respect to \(x \) at \((x_0, y_0)\).” Common in science and engineering when you are dealing with variables and do not mention the function explicitly.

\[f_x, \frac{\partial f}{\partial x}, z_x, \text{ or } \frac{\partial z}{\partial x} \]
“Partial derivative of \(f \) (or \(z \)) with respect to \(x \).” Convenient when you regard the partial derivative as a function in its own right.
The definition of the partial derivative of \(f(x, y) \) with respect to \(y \) at a point \((x_0, y_0)\) is similar to the definition of the partial derivative of \(f \) with respect to \(x \). We hold \(x \) fixed at the value \(x_0 \) and take the ordinary derivative of \(f(x_0, y) \) with respect to \(y \) at \(y_0 \).

DEFINITION \textbf{Partial Derivative with Respect to \(y \)}

The partial derivative of \(f(x, y) \) with respect to \(y \) at the point \((x_0, y_0)\) is

\[
\frac{\partial f}{\partial y} \bigg|_{(x_0, y_0)} = \frac{d}{dy} f(x_0, y) \bigg|_{y=y_0} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h},
\]

provided the limit exists.

The slope of the curve \(z = f(x_0, y) \) at the point \(P(x_0, y_0, f(x_0, y_0)) \) in the vertical plane \(x = x_0 \) (Figure 14.14) is the partial derivative of \(f \) with respect to \(y \) at \((x_0, y_0)\). The tangent line to the curve at \(P \) is the line in the plane \(x = x_0 \) that passes through \(P \) with this slope. The partial derivative gives the rate of change of \(f \) with respect to \(y \) at \((x_0, y_0)\) when \(x \) is held fixed at the value \(x_0 \). This is the rate of change of \(f \) in the direction of \(j \) at \((x_0, y_0)\).

The partial derivative with respect to \(y \) is denoted the same way as the partial derivative with respect to \(x \):

\[
\frac{\partial f}{\partial y} (x_0, y_0), \quad f_y(x_0, y_0), \quad \frac{\partial f}{\partial y}, \quad f_y.
\]

Notice that we now have two tangent lines associated with the surface \(z = f(x, y) \) at
FIGURE 14.15 Figures 14.13 and 14.14 combined. The tangent lines at the point \((x_0, y_0, f(x_0, y_0))\) determine a plane that, in this picture at least, appears to be tangent to the surface.
EXAMPLE 1 Finding Partial Derivatives at a Point

Find the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(4, -5)$ if

$$f(x, y) = x^2 + 3xy + y - 1.$$

Solution To find $\frac{\partial f}{\partial x}$, we treat y as a constant and differentiate with respect to x:

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x^2 + 3xy + y - 1) = 2x + 3 \cdot 1 \cdot y + 0 - 0 = 2x + 3y.$$

The value of $\frac{\partial f}{\partial x}$ at $(4, -5)$ is $2(4) + 3(-5) = -7$.

To find $\frac{\partial f}{\partial y}$, we treat x as a constant and differentiate with respect to y:

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 + 3xy + y - 1) = 0 + 3 \cdot x \cdot 1 + 1 - 0 = 3x + 1.$$

The value of $\frac{\partial f}{\partial y}$ at $(4, -5)$ is $3(4) + 1 = 13$.

EXAMPLE 2 Finding a Partial Derivative as a Function

Find $\frac{\partial f}{\partial y}$ if $f(x, y) = y \sin xy$.

Solution We treat x as a constant and f as a product of y and $\sin xy$:

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (y \sin xy) = y \frac{\partial}{\partial y} \sin xy + (\sin xy) \frac{\partial}{\partial y} (y)$$

$$= (y \cos xy) \frac{\partial}{\partial y} (xy) + \sin xy = xy \cos xy + \sin xy.$$
EXAMPLE 4 Implicit Partial Differentiation

Find $\frac{\partial z}{\partial x}$ if the equation

$$yz - \ln z = x + y$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant and treating z as a differentiable function of x:

$$\frac{\partial}{\partial x} (yz) - \frac{\partial}{\partial x} \ln z = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x}$$

$$y \frac{\partial z}{\partial x} - \frac{1}{z} \frac{\partial z}{\partial x} = 1 + 0$$

$$+ y^2$$

$$\left(y - \frac{1}{z} \right) \frac{\partial z}{\partial x} = 1$$

With y constant,

$$\frac{\partial}{\partial x} (yz) = y \frac{\partial z}{\partial x}.$$
EXAMPLE 5 Finding the Slope of a Surface in the y-Direction

The plane $x = 1$ intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at $(1, 2, 5)$ (Figure 14.16).

Solution The slope is the value of the partial derivative $\frac{\partial z}{\partial y}$ at $(1, 2)$:

$$\left. \frac{\partial z}{\partial y} \right|_{(1,2)} = \left. \frac{\partial}{\partial y} (x^2 + y^2) \right|_{(1,2)} = 2y \bigg|_{(1,2)} = 2(2) = 4.$$

$$\left. \frac{dz}{dy} \right|_{y=2} = \left. \frac{d}{dy} (1 + y^2) \right|_{y=2} = 2y \bigg|_{y=2} = 4.$$
Finding Second-Order Partial Derivatives

If \(f(x, y) = x \cos y + ye^x \), find

\[
\frac{\partial^2 f}{\partial x^2}, \quad \frac{\partial^2 f}{\partial y \partial x}, \quad \frac{\partial^2 f}{\partial y^2}, \quad \text{and} \quad \frac{\partial^2 f}{\partial x \partial y}.
\]

Solution

\[
\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x \cos y + ye^x)
\]

\[= \cos y + ye^x\]

So

\[
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -\sin y + e^x
\]

\[
\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = ye^x.
\]

\[
\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x \cos y + ye^x)
\]

\[= -x \sin y + e^x\]

So

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -\sin y + e^x
\]

\[
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -x \cos y.
\]

23
The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

$$\frac{\partial^2 f}{\partial y \partial x} \quad \text{and} \quad \frac{\partial^2 f}{\partial x \partial y}$$

in Example 9 were equal. This was not a coincidence. They must be equal whenever f, f_x, f_y, f_{xy}, and f_{yx} are continuous, as stated in the following theorem.

THEOREM 2 The Mixed Derivative Theorem

If $f(x, y)$ and its partial derivatives f_x, f_y, f_{xy}, and f_{yx} are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$f_{xy}(a, b) = f_{yx}(a, b).$$
EXAMPLE 10 Choosing the Order of Differentiation

Find $\frac{\partial^2 w}{\partial x \partial y}$ if

$$w = xy + \frac{e^y}{y^2 + 1}.$$

Solution The symbol $\frac{\partial^2 w}{\partial x \partial y}$ tells us to differentiate first with respect to y and then with respect to x. If we postpone the differentiation with respect to y and differentiate first with respect to x, however, we get the answer more quickly. In two steps,

$$\frac{\partial w}{\partial x} = y \quad \text{and} \quad \frac{\partial^2 w}{\partial y \partial x} = 1.$$

If we differentiate first with respect to y, we obtain $\frac{\partial^2 w}{\partial x \partial y} = 1$ as well.