PRIMARY SEDIMENTATION

Assist. Prof. Dr. Neslihan Semerci

Basic Design Criteria

- Surface loading (m³/m²·hr)
- Hydraulic retention time (hr)
- Weir Loading (m³/m.gün)

Table 5-20Typical design information for primary sedimentation tanks^a

	U.S. customary units			SI units		
Item	Unit	Range	Typical	Unit	Range	Typica
Primary sedimento	ition tanks fo	ollowed by second	ary treatmen			
Detention time	h	1.5-2.5	2.0	h	1.5-2.5	20
Overflow rate						
Average flow	gal/ft²·d	800-1200	1000	m ³ /m ² ·d	30-50	40
Peak hourly flow	gal/ft²-d	2000-3000	2500	m ³ /m ² ·d	80-120	100
Weir loading	gal/ft·d	10,000-40,000	20,000	m³/m·d	125-500	250
Primary settling w	ith waste act	tivated-sludge retu	rn			
Detention time	h	1.5-2.5	2.0	h	1.5-2.5	20
Overflow rate						
Average flow	gal/ft²·d	600-800	700	m ³ /m ² ·d	24-32	28
Peak hourly flow	gal/ft²·d	1200-1700	1500	m ³ /m ² ·d	48-70	60
Weir loadina	aal/ft·d	10.000-40.000	20.000	m³/m·d	125-500	250

Table 5-21

Typical dimensional data for rectangular and circular sedimentation tanks used for primary treatment wastewater

	U.S. customary units			SI units		
Item	Unit	Range	Typical	Unit	Range	Typics
Rectangular:						
Depth	ft	10-16	14	m	3-4.9	43
Length	ft	50-300	80-130	m	15-90	24-0
Width	ft	10-80	16-32	m	3-24	4.9-91
Flight speed	ft/min	2-4	3	m/min	0.6-1.2	0.9
Circular:						
Depth	ft	10-16	14	m	3-4.9	43
Diameter	fr	10-200	40-150	m	3-60	12-5
Bottom slope	in/ft	3/4-2/ft	1.0/ft	mm/mm	1/16-1/6	1/12
Flight speed	r/min	0.02-0.05	0.03	r/min	0.02-0.05	0.03

^a If widths of rectangular mechanically cleaned tanks are greater than 6 m (20 ft), multiple bays with individual cleaning equipment may be used, thus permitting tank widths up to 24 m (80 ft) or more.

PRIMARY SEDIMENTATION TANK REMOVAL EFFICIENCIES

German ATV-DVWK-A 131 E (May, 2000)

<u>Dimensioning of Single-Stage Activated Sludge Plants</u>

Table 1: Inhabitant-specific loads in g/(I·d), which are undercut on 85 % of the days, without taking into account sludge liquor

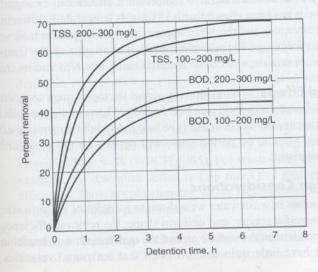
Parameter	Raw wastewater	Flow time in the primary settling stage with $Q_{h,DW}$		
	3/0.2	0.5 to 1.0 h	1.5 to 2.0 h	
BOD ₅	60	45	40	
COD	120	90	80	
DS	70	35	25	
TKN	11	10	10	
Р	1.8	1.6	1.6	

Metcalf & Eddy (2003)

BOD and TSS Removal. Typical performance data for the removal of BOD and TSS in primary sedimentation tanks, as a function of the detention time and constituent concentration, are presented on Fig. 5–46. The curves shown on Fig. 5–46 are derived from observations of the performance of actual sedimentation tanks. The curvilinear relationships in the figure can be modeled as rectangular hyperbolas using the following relationship (Crites and Tchobanoglous, 1998).

$$R = \frac{t}{1 + t}$$
 (5-45)

where R = expected removal efficiency


t = nominal detention time T

a, b = empirical constants

Figure 5–46

Typical BOD and TSS
removal in primary
sedimentation tanks.

Greeley, 1938.)

Typical values for the empirical constants in Eq. (5-45) at 20°C are as follows:

Item	а	Ь	
BOD	0.018	0.020	
TSS	0.0075	0.014	

.

PRIMARY SEDIMENTATION TANK DESIGN

Influent Structures

Feeding well diameter 15-20 % tank diameter

Depth: 1-2.5 m

Orifice velocity < 0.75 m/sn

deflection wall : not to disturb sludge

Travelling Bridge, Sludge scraping mechanism, Oil/scum and sludge

collection

■ full bridge, half bridge, 2/3 bridge

Based on tank diameter acc. DIN

standards

- bottom slope (> 3°) (1/12- 1/15)
 - Sludge withdrawal → telescopic valve
 - ■Sludge hopper, bottom slopes, volumes

Travelling Bridge, Sludge scraping mechanism, Oil/scum and sludge collection

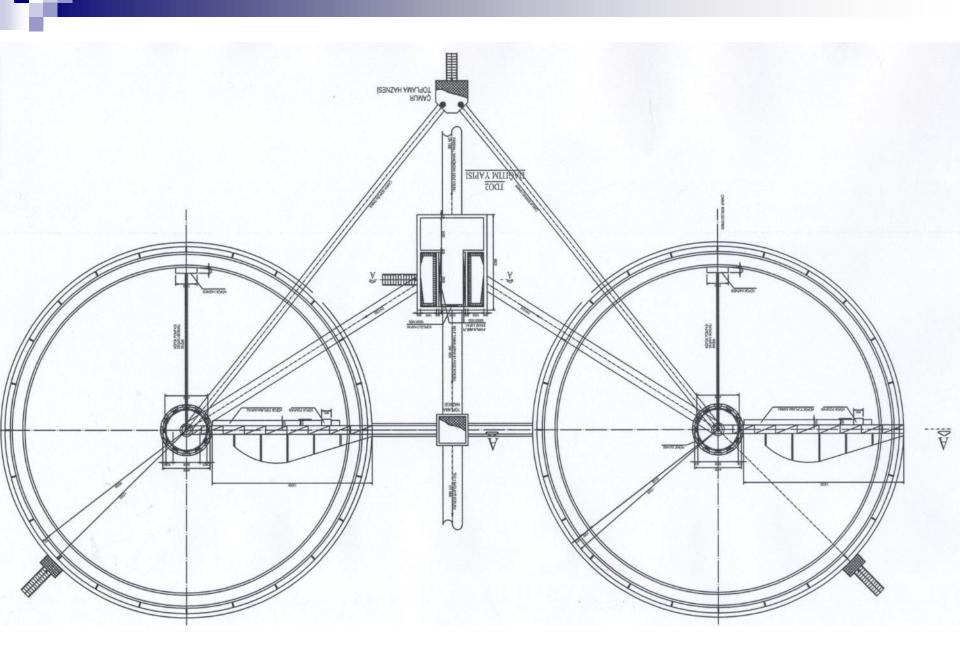
■ full bridge, half bridge, 2/3 bridge

Based on tank diameter acc. DIN

standards

■ oil/scum collection mechanism, pumps on the bridge

■ bottom slope (> 3°) (1/12- 1/15)


■ Sludge withdrawal → telescopic valve

■Sludge hopper, bottom slopes, volumes

Effluent Structures

