EXPERIMENT #4 RC COUPLED TRANSISTOR AMPLIFIER

Small signal transistor stages can be coupled by use of resistive-capacitive (RC) type networks. The use of coupling and bypass capacitors cause the transfer gain of the amplifier to fall-off at low frequencies. Amplifiers not employing coupling and bypass capacitors such as DC amplifiers are capable of amplifying very low frequency signals. The capacitor C1 in Figure 4-1 couples the AC signal source to the active device and blocks the DC components.

Figure 4-1: Single Stage RC-Coupled, Common Emitter Transistor Amplifier

The voltage gain for the transistor circuit with input coupling is:

$$A_{v}(s) = \frac{-h_{fe}R_{B}R_{C}}{\left[R_{S}(R_{B} + h_{ie}) + R_{b}h_{ie}\right]} \cdot \frac{s}{s + \frac{1}{C_{1}\left[R_{S} + (R_{B} / / h_{ie})\right]}}$$

which can be written as:

$$A_{\nu}(s) = -\frac{R_C}{r_e} \cdot \frac{R_i}{R_s + R_i} \cdot \frac{s}{s + \frac{1}{C_1(R_s + R_i)}}$$

where

$$r_e = \frac{h_{ie}}{h_{fe}} = \frac{0.026}{I_E}, \ R_i = R_B //h_{ie}$$
 and $R_B = R_1 //R_2$

The pole frequency of this transfer function is:

$$f_p = \frac{1}{2\pi C_1 \left(R_S + R_i \right)}$$

Figure 4-2: The pole-zero diagram and Bode plot of gain (the effect of coupling capacitor)

In the midband range, C1 can be assumed short circuit, hence

$$A_{o} = A_{v}(midband) = -\frac{R_{C}}{r_{e}} \cdot \frac{R_{i}}{R_{S} + R_{i}}$$
$$A_{o} \approx -\frac{R_{C}}{r_{e}} \qquad \text{if} \quad R_{S} << R_{i}$$

The pole-zero diagram and asymptotic Bode plot of gain are shown in *Figure 4-2*. The effect of adding an emitter resistor R_E with bypass capacitor C_E produces essentially the same effect as the input and output coupling capacitors. The voltage gain can be written as:

$$A_{v}(s) = \frac{-h_{fe}R_{B}R_{C}}{\left[R_{B}R_{S} + h_{ie}R_{B} + h_{ie}R_{S}\right]} \cdot \frac{s + \frac{1}{R_{E}C_{E}}}{s + \frac{1}{R_{E}C_{E}} + \frac{1 + h_{fe}}{C_{E}\left[h_{ie} + \left(R_{B} / / R_{S}\right)\right]}}$$

this can be rearranged for $h_{fe} >> 1$:

$$A_{\nu}(s) = -\frac{R_{C}}{r_{e}} \cdot \frac{R_{i}}{R_{S} + R_{i}} \cdot \frac{s + \frac{1}{R_{E}C_{E}}}{s + \frac{1}{R_{E} / [r_{e} + (R_{S} / / R_{B}) / h_{fe}]C_{E}}}$$

The zero and pole frequencies are respectively:

$$f_0 = \frac{1}{2\pi R_E C_E}$$

$$f_p = \frac{1}{2\pi \left\{ R_E / \left[r_e + \frac{R_S / R_B}{h_{fe}} \right] \right\} C_E}$$

In most cases:

and
$$(R_S // R_B) / h_{fe} << r_e << R_E$$
$$f_p \approx \frac{1}{2\pi r_e C_E}$$

In the midband frequency range, the emitter capacitor can be assumed short circuit and the gain can be found as:

Figure 4-3: The pole-zero diagram and Bode plot of gain (the effect of Emitter bypass capacitor)

In most applications, both C_E and C_1 are present and the analysis is very complicated. However, the emitter bypass capacitor usually determines the low-frequency response, and this requires that the pole frequency due to C_1 be far below the pole frequency due to C_E . This implies that:

$$\frac{1}{C_1(R_S+R_i)} << \frac{1}{C_E r_e}$$

For most cases $r_e < (R_S + R_i)$, but this situation may change when one choses $C_E >> C_1$. The amplifier input and output impedances are also frequency dependent. However, these are normally specified for the midband frequency range. For the common emitter amplifier:

$$R_i = R_B //h_{ie} \approx h_{ie} = h_{fe} r_e$$
$$R_o = R_C //(1/h_{oe}) \approx R_C$$

Figure 4-4: Emitter Follower Circuit

and for the emitter follower circuit:

$$\begin{split} R_i &= R_B \, / / \left[h_{fe} \left(r_e + R_E \right) \right] \approx R_B \, / / \left(h_{fe} R_E \right) \\ R_o &= R_E \, / / \left[r_e + \frac{R_S \, / / R_B}{h_{fe}} \right] \approx r_e \end{split}$$

EQUIPMENT

- 1. CRT oscilloscope
- 2. Audio signal generator
- 3. Electronic A.C. voltmeter
- 4. Decade resistor box
- 5. Bread-board

COMPONENTS

- 1. Transistor: BC238B or equivalent
- 2. Capacitors: 100 nF, 1µF, 10µF and 100µF
- 3. Resistors: 270k, 82k, 2k7, 1k

PROCEDURE

1. Set-up the circuit shown in *Figure 4-5*. Calculate the D.C. operating point and *Av*, *Ri*, *Ro* for both emitter follower and common emitter configuration.

Figure 4-5: Experimental Single Stage Amplifier

2. Apply a 20mVpp-10kHz sine wave to the input and measure *vo*1 (when S1 is closed) and *vo*2 (when S1 is opened). Calculate the voltage and the current gains of common emitter amplifier and emitter follower circuits respectively.

$$v_{o1} = \dots + v_{o2} = \dots + A_{i2} = \dots + A_{i3} = \dots + A_{i4} = \dots + A_{$$

3. Insert a resistor decade box between the source and the input. Adjust R_s to obtain v2=v1/2. The input impedance is then equal to R_s .

 R_i (common emitter)=

4. Open the switch S1 and repeat step 3 for the emitter follower circuit.

```
Ri (emitter follower)= .....
```

5. Apply the following procedure to measure the collector and the emitter output impedances:

Measure the amplitude of the A.C. signal v1 with the switch S₂ open. Now close the switch and adjust R_L until v1 is halved. The output impedance Ro is then equal to R_L .

Ro (collector)=

6. Repeat step 5 for the emitter follower circuit.

Ro (emitter)=

7. Using the set-up in *Figure 4-5* apply a 10kHz sine wave to the amplifier and adjust *vin* until you see a distortionless output waveform. Take the peak value of this signal as your reference voltage *vr*. Then keeping the input voltage constant, change the frequency and read the output voltage *vo*. Take enough data to make a rough plot of the voltage gain as the input frequency is varied. Measure the lower 3dB frequency and compare with your calculated value.

f(Hz)	100	200	500	1000	2000	5000	10000
$\frac{20 \log (v_o / v_r)}{(\mathrm{dB})}$							0

 $f(-3dB) = \dots$

8. Sketch and dimension the Bode magnitude plots of the voltage gains on semi-log paper.

		1 1	1 1				1 1	1 1 1					1 1 1			1 1	TIT	
				+++		1 1 1 1											+++	
				++									+ + + + + + - + - + - + - + - + - + - +				+++	
								1 1 1									+++	
		1 1				1 1 1 1		1 1 1	i				<u>i i i </u>				11	i i
						1111									1111			: : .
						1111					1111				1111			
1 1 1 1 1 1 1 1 1	1 1 1 1	1 1	1 1		1 1 1 1 1 1 1 1 1	1 1 1 1	1 1	1 1 1	+ + + +	1 1 1 1 1 1 1 1	1 1 1 1	1 1	1 1 1	1 1 1 1 1 1 1 1 1 1	1111	1 1	+++	
		1 1	1 1			1 1 1 1	1 1	1 1 1	++++			1 1	+ + +				+++	+++++++++++++++++++++++++++++++++++++++
		+ + +	++++	+++		+ + + + +		+ + + + +	++++				+ + + + +		1111	+++	+++	
			1 1														++++	
																	+++	
						1 1 1 1					1111		1 1 1					
						1 1 1 1												
						1111									1111			: : .
		1 1	111										1 1 1					
				:++	1 1 1 1 1 1 1 1 1 1			1 1 1 1					1 1 1				111	
				+++		1 1 1 1							+ + + + + + - + - + + - + + - + + + + +				+++	
		+ + +		++		1 1 1 1	1 1		+++		1111		1 1 1		1111	+++	+++	
				+++		++++				+ + + + + + + + + + + + + + + + + + + +		+ + + +	+ + + + +			-++	+++	
			1 1			1 1 1 1		1 1 1							1111			
			i i i			1 1 1 1							1 1 1		1111		1	1 1
						1 1 1 1												
				: []		1 1 1 1							1 1 1		1111			
						1 1 1 1							1 1 1					
			l i l i l	+++		1111		1111									+ + +	
		1 1 1		+++		1 1 1 1							<u> </u>		1111		$\pm \pm \pm$	+++++++++++++++++++++++++++++++++++++++
																	+++	
																	+ + +	
	1111	- i - i	i i i		11111111	1111			i				i i i -		1111	- i i	1	i i -
1 1 1 1 1 1 1 1 1	1 1 1 1	1	1 1			1 1 1 1	1	1 1 1			1.1.1.1	1	1 1 1	1.1.1.1.1.1.1.1	1 1 1 1	1 1		
		-				1 1 1 1		1 1 1				1 1	1 1 1					+++++
		1 1	1 1			1 1 1 1		1 1 1					+ + + +		1 1 1 1		+++	
		-				1 1 1 1							1 1 1					1 1 -
				++									<u>+ + + + + + + + + + + + + + + + + + + </u>			+++	+++	
	1 1 1 1	1 1	1 1			1 1 1 1	!!!	1 1 1			1111	1 1	1 1 1		1111		+++	
													1 1 1				+++	
						1.1.1.1												
						1 1 1 1									1111			
		1									1 1 1 1		1 1 1		1 1 1 1		+++	
		1 1		+++	1 1 1 1 1 1 1 1 1	1 1 1 1	1 1		++++		1 1 1 1		1 1 1		1 1 1 1	1 1	+++	
				++		1 1 1 1					1111		+ + + +			+++	+++	
		+++		++		++++				+++++++		+ + + +	+ + + +			+++	+++	
				:				1 1 1 1							1 1 1 1		+++	+ + + + + + + + + + + + + + + + + + + +
				:		1 1 1					1111		+ + + +				+++	
		1.1.1		<u> </u>		1111					1111				1111	1 1		
						1 1 1 1	1						1 1 1				1	
						1 1 1											111	
						1 1 1 1										1 1	111	
													÷ ; ; -				+ + +	<u> </u>
		- i - i - i						11111									علغك	
1	2 8	1	5	в	1 2		3	6 S	8 1	2	: з	6	8	1 2	2 3		6	8 1