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ABSTRACT 
 
 
 
Forecasting exchange rates is one of the biggest deals that econometricians have been 
challenged for years. Thanks to Engle's Nobel winning work, we have managed to develop a 
way for forecasting the volatility of exchange rate returns. In addition to this, increasing 
availability of high frequency data emerged a great literature on realized volatility. Recent 
theoretical studies showed a direct relation between return volatility predictability and return 
sign predictability. This implies that return signs could be predicted. On the other hand, 
advanced econometric models such as artificial neural networks (ANN) provides highly 
flexible functional forms to cover nonlinear relations in the data. In this study, we forecasted 
daily return sign of USD/TRL exchange rate and showed that ANN is an appropriate tool for 
sign forecasting. 
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1. INTRODUCTION 
Forecasting exchange rate returns has attracted the attentions of the researchers for many 
years. The efficient market hypothesis, however, proposes that all available information in the 
market is immediately constituted, hence no one can earn profits based on the publicly 
available data (Fama, Efficient Capital Markets: A Review of Theory and Empirical Work, 
1970). Direct implication of this hypothesis is that it is impossible to forecast future returns, 
because the returns immediately reflect all information currently known. There are some 
empirical studies with contradictory evidence which claims markets are not fully efficient at 
least in very short horizons, therefore return forecasting is possible(Jegadeesh, 1990). Some 
other studies provided some evidence for conditional mean dependence of returns at long 
horizons ((Fama & French, 1988) and (Jegadeesh, 1990), and(Mark, 1995)). This implies long 
horizon returns can be forecasted. Although, there is a continuing debate on return forecasting 
and efficiency of markets, since this paper focuses on sign or direction forecast of the returns, 
we do not need level of the market returns to be 
forecastable. 
 
Direction forecasting, on the other hand, is also as interesting as the level forecast is, because 
an accurate forecast of the direction basically means making money. A model which is able to 
forecast the sign of the tomorrow's return on some stock or exchange rate is good enough for 
market practitioners. Therefore, the sign forecasting may possibly be considered as a source 
of automated trading algorithms. Automated trading, or algorithmic trading, is roughly the use 
of computer programs for entering instant orders to the market which are based on a 
predefined algorithm. Today, there are many hedge funds, called quant funds, those are totally 
relies on this kind of algorithms. 
 
In the literature, there are many studies on forecastability on sign directions as well. Breen, 
Glosten, & Jagannathan (1989) used the negative correlation between short-term interest rates 
and nominal excess returns on stocks and developed a model for sign forecasting. Pesaran & 
Timmerman(1995) examines mainly predictability of US stock returns. Their mainfinding is 
predictive power of various economic factors change over time,especially in accordance with 
volatility changes. They also consider signforecasting and its robustness. Gencay 
(1998a,1998b) explored technicaltrading rules and their predictive power. He used single 
layer feedforwardnetworks to forecast sign of Dow Jones Industrial Index and analyzed the 
profit for comparing models. Gencay (1999) investigated the predictive powerof simple 
technical trading rules on foreign exchange rate. Christoffersen& Diebold (2006) examined 
the sign dependence in detail and suggested theusage of a volatility link. They showed that 
volatility dependence producessign dependence, as long as expected returns are nonzero, one 
should expectsign dependence, given the overwhelming evidence of volatility 
dependence.They found that due to its special nonlinear nature, sign dependence is notlikely 
to be identified via analysis of sign autocorrelations, runs tests,or traditional market timing 
tests. 
 
The artificial neural networks are also widely used for forecasting foreignexchange rates and 
their returns. Kuan& Liu (1995) investigated theout-of-sample forecasting ability of 
feedforward and recurrent neuralnetworks on foreign exchange rates. They were able to create 
some networkmodels which have significant market timing ability. Zhang & Hu 
(1998)examined the effects of the number of input and hidden layers, and at thesame time the 
size of the training sample on the in-sample and out-of-sampleperformance. Using empirical 
analysis, they found that neural networksoutperform linear models, particularly when the 
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forecast horizon is short,and the number of input layers has a greater impact on performance 
than thenumber of hidden layers. 
 
In this paper, we compared the forecasting strength of the models that uses the relation 
proposed by Christoffersen& Diebold (2006) versus ANN models. we considered both 
parametric and nonparametric distributions to extend the setup of Christoffersen& Diebold 
(2006). In addition, we used different volatility models to examine the effect of the choice of 
volatility model. In the nonparametric connection part, we considered both Kernel density 
estimator and a time-dependent density estimator. Using these nonparametric models, we 
investigated whether distribution assumption increase or decrease the performance. Finally as 
an alternative method, we employed ANN for sign forecasting. 
 
In the following section, we will summarize the ideas of sign dependence and explain how we 
can extend it by using nonparametric methods. After that we will describe the forecasting 
models and parameter assumptions. In the empirical analysis part, first we will give the 
general information of the data, secondly, we will discuss the model evaluation methods and 
thirdly report the results. Finally we will conclude. 
 
2. On Sign Dependence 
Christoffersen& Diebold (2006) showed that sign of return can be forecastable via volatility 
dependence. The main idea behind this approach is forecasting the conditional probability 
density function of tomorrow's return and calculating the probability of having a positive 
return. 
 
To show this connection, let us start with some definitions. Let ሼr୧ሽୀ

୲ be the series of returns 
on exchange rate and Ա௧be the publicly available information set at time ݐ. Then, the 
volatilityforecast for tomorrow or conditional variance is ߪ௧ାଵ|௧

ଶ ൌ  ௧ାଵ|Ա௧ሻ. The meanݎሺݎܸܽ
dependence can alsobe defined in a same manner; ߤ௧ାଵ|௧ ൌ  .௧ାଵ|Ա௧ሻݎሺܧ
 
Further if we assume that ݎ௧ାଵ|Ա௧  ,௧ାଵ|௧ߤሺܨ ௧ାଵ|௧ߪ

ଶ  ሻ where ܨሺ. ሻ is any distribution that is 
dependent only on its mean and variance. However it is mentioned before, we do not need a 
mean dependence assumption. Therefore if there is no mean dependence the conditional 
distribution turns ݎ௧ାଵ|Ա௧  ,ሺµܨ ௧ାଵ|௧ߪ

ଶ  ሻ. At this point, we have a conditional distribution 
which is based on the conditional variance. Then we can find the probability of having a 
positive return as; 
 

 ܲሺݎ௧ାଵ  0|Ա௧ሻ ൌ 1 െ ܲሺݎ௧ାଵ  0|Ա௧ሻ (1) 
 
 

                          ൌ 1 െ ܲሺ
௧ାଵݎ െ ߤ

௧ାଵ|௧ߪ
ଶ  െ

ߤ
௧ାଵ|௧ߪ

ଶ ሻ (2) 

 
     ൌ 1 െ ෨ሺെܨ

ߤ
௧ାଵ|௧ߪ

ଶ ሻ (3) 
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.෨ሺܨ ሻis the distribution of standardized return. If there is mean dependence,3 becomes 
෨ሺെܨ

ఓశభ|

ఙశభ|
మ ሻ. 

 
The approach that we quickly summarized is based on a parametric distribution. Now, let us 
extend this model by considering a nonparametric distribution of standardized returns. A 
simple nonparametric density estimator is histograms. A simple histogram can be formally 
described as follows; 
 

 
ሚ݂ሺݔሻ ൌ

1
݄݊

 1ሺݔ א ሾݔ, ݔ  ݄ሿሻ

ே

ୀଵ

 (4) 

 
 
whereݔ א ሾݔ, ݔ  ݄ሿ,݄is bandwidth,1ሺ. ሻis the indicator function, and ݊is the number of 
bins. After defining this histogram, we can calculate the cumulative distribution function by 
integrating the density function. If we use histograms for standardized returns, the alternative 
of 3 is simply the following; 

 
Φ෩ ሺݔሻ ൌ  ሚ݂ሺݔ  ሻݔ



ୀଵ

 (5) 

 
Φ෩ ሺݔ  0ሻ ൌ 1 െ  ሚ݂ሺݔ 

ߤ
௧ାଵ|௧ߪ

ଶ ሻ



ୀଵ

 (6) 

 
A bit more sophisticated way of estimating nonparametric density functions is kernel density 
estimation. The histogram itself is also kernel density estimator. However a more convenient 
way is to employ Gaussian (normal) kernels. The Gaussian kernel density estimator can be 
formalized as; 
 

 
ሚ݂ሺݔሻ ൌ

1
݄݊

 ߶ ቀ
ݔ െ ݔ

݄
ቁ

ே

ୀଵ

 (7) 

 
where߶ሺ. ሻ is standard normal distribution. Again by numerical integrating 7, we may have a 
cumulative distribution function. 
 
Hence an alternative to 3 is the usage of non-parametric density estimators such as Gaussian 
kernel density estimator. One can easily construct a density estimator of standardized returns 
with this kernel and may substitute 3. 
 
The main distinction between histogram and Gaussian kernel is their weightings for the data. 
From this perspective, although Gaussian kernel density estimators are good alternatives for 
parametric models, they do not deal with the time dependence in the data. In other words, the 
weighting of each observation in a Gaussian kernel is independent of the occurrence time of 
concerning data. Therefore a time dependent weighting may be generate better results. A 
weighting scheme which assigns highest weight to the most recent data and the lowest weight 
to the oldest data, is a basic but good way to cover this time dependency. However since we 
are assuming a parametric structure for the weighting scheme, the resulting model should be 
classified as a semi-parametric method. A possible weighting scheme is the following; 
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௧ିݓ ൌ ߣ ൬

1 െ ߣ
1 െ ఛ൰ߣ , 0 ൏ ߣ ൏ 1 (8) 

where߬ is the time number of observations and ߣ is decaying factor. 
 
3. Models for Sign Forecasting 
3.1 Distribution Connection 
As we mentioned in the previous section, Christoffersen& Diebold (2006) proposed an 
approach that is basically uses the volatility forecasting for sign forecast and they called this 
method as "volatility connection". However, their explanation and description of the 
methodology is applicable if we model the distribution without using volatility. Hence, we 
prefer to call the approach as "distribution connection". Regarding to modeling approach for 
the return distribution, the models we will use in this context can be classified broadly into 
two classes. First approach uses parametric distribution and assumes that the market returns 
follow a specific distribution, commonly normal and t distributions are employed. Second 
approach, on the other hand, assumes no-distribution for the returns instead it models the 
empirical cumulative density of the data by using Kernels or time dependent weighting 
schemes. 
 
In this paper, we will use both of these approaches. The following sections describe different 
distribution connection implementations that we used in this study. 
 
3.1.1 Distribution Connection with Parametric Distributions 
The models that we use in this part are based on a distribution assumption. In this paper, we 
will consider two distributions; normal and t. Both distribution assumptions require volatility 
estimation, for this purpose; GARCH(1,1) model , Riskmetrics model and realized volatility 
are employed. 
Now let us start with volatility models. There is a huge literature on volatility modeling and a 
variety of models are proposed. Especially the models of conditional heteroscedasticity are 
proven as robust and quite popular. Although it had many extensions, Bollerslev (1986) 
provides a common form of conditional heteroscedasticity models. This form can be shown as 
follows; 
 

 
௧ߪ

ଶ ൌ ߱   ௧ିݎߙ



ୀ

  ௧ିߪߚ
ଶ



ୀ

 (9) 

whereݎ௧ି is the excess return on mean; ݎ௧ ൌ ௧ߤ   ,௧߳௧. Under unconditionality of the meanߪ
 In this study, however, we used 6-month moving .ߤ ௧ can be set to a constant such asߤ
average as conditional mean. GARCH model can be estimated by using maximum likelihood 
approach, therefore GARCH model itself requires a distribution assumption. Again, we used 
both normal and t distributions. When normal distribution is assumed for sign direction, it is 
used in the estimation of the GARCH model as well. 
A specific form of GARCH model is called Riskmetrics and especially it is a common tool for 
risk management practices. In its original form Riskmetrics has only a single parameter and 
requires no parameter estimation because it is predefined. However, since it is an integrated-
GARCH(1,1) model the parameter can be estimated via maximum likelihood methods. The 
functional form of the Riskmetrics model is as follows; 
 

௧ߪ 
ଶ ൌ ሺ1 െ ௧ିଵݎሻߣ  ௧ߪߣ

ଶ (10) 
whereߣ is decaying factor and it is set to 0.94 as it is proposed by Riskmetrics. Equation 9 
will be equal to 10, if the following conditions are satisfied; 
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ߙ   ߚ ൌ 1 (11) 
 ߱ ൌ 0 (12) 

Since, Riskmetrics constrained the parameter values to satisfy ߙ  ߚ ൌ 1 condition, this 
model is an integrated-GARCH model. 
Another alternative for volatility forecasting is to use realized volatility. Especially, as the 
data storage capacity of computers increased and trading orders are handled by computers in 
all over the world, intradaily data becomes accessible at least in more developed markets. 
Thus, a literature on this kind of frequent data set rapidly increases. One of the most popular 
analysis, in this context, is modeling realized volatility. Realized volatility is derived from the 
notion of integrated volatility which can be defined as follows; 
 

 
ܫ ௧ܸ

ௗ ൌ ඨන ଶሺ߳ሻ݀߳ߪ
௧

௧ିௗ
 (13) 

where߳ is the instant changes in the data. Integrated volatility provides an approach for 
calculating the real volatility occurred. Realized volatility is a discrete approximation of 
integrated volatility and it is defined as follows; 
 

 

ܴ ௧ܸ
 ൌ ඩ ௧ିݎ

ଶ



ୀଵ

 (14) 

whereΔ is the number of intradaily observations. As the number of intradaily observations, Δ, 
goes to infinity, realized volatility, RV௧

 , tends to integrated volatility, ܫ ௧ܸ
ௗ. 

After describing the volatility models, now let us start to investigate how the "volatility 
connection" is implemented in this paper. In volatility connection models, I followed the 
similar approach to Christoffersen&Diebold(2006) by using different volatility models and 
assuming different return distribution. Christoffersen& Diebold (2006) describes conditional 
probability of a positive return as; 
 

 ܲሺݎ௧ାଵ  0|Ա௧ሻ ൌ 1 െ ܲ ൬
௧ାଵݎ െ ߤ

௧ାଵߪ
൏

ߤ
௧ାଵߪ

|Ա௧൰ ൌ Φ ൬
ߤ

௧ାଵߪ
൰ (15) 

As it mentioned before, apart from them, we used 6-month moving average returns as 
conditional mean. 
 
3.1.2 Distribution Connection with Non-parametric Distributions 
An alternative to parametric distribution connection for sign forecast is to use non-parametric 
distribution forecasting. In this study, a Gaussian Kernel density estimator and a time-
dependent weighting in the form of equation 9 is applied. For each density forecast last 252 
observations are used recursively. Under both models, after constructing the distribution 
forecast, the conditional probability of a positive return is calculated as; 

 
ܲሺݎ௧ାଵ  0|Ա௧ሻ ൌ 1 െ ෨ܨ ቆെ

ߤ
௧ାଵ|௧ߪ

ቇ ൌ ෨ܨ ቆ
ߤ

௧ାଵ|௧ߪ
ቇ (16) 

3.2 Artificial Neural Networks 
In this section artificial neural network (ANN) model for sign forecasting will be examined, 
however before that let us take look at the basic concepts in neural networks. ANNs are first 
developed to mimic neurons in the human brain. Therefore ANNs are information processing 
structures, containing some interconnected elements. These elements are called neurons. An 
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individual neuron receives input from direct data sources or other neurons and produces an 
output. 
The input of a neuron is determined by the synapse. A full synapse, the most used type of 
synapses, provides a linear combination of inputs; the combination is defined by the 
weighting matrix of the synapse. The input for a single neuron is than; 

 
ߟ ൌ  ߱ݔ  ܾ



ୀଵ

ൌ ߱࢞   (17) ࢈

where ߱ is the jth vector of weighting matrix and ܾ is the bias. Figure 1shows a single 
neuron. 
The output of the neuron, on the other hand, is determined by the activation function. The 
computed values of inputs are transformed into the output value by employing an activation 
function. There are several alternatives for activation functions, but in general, functions those 
are able to map input values to the interval of [-1,1] or [0,1] are used. In this study we used 
logistic sigmoidal function that can be formalized as; 

 
݂൫ߟ൯ ൌ

1
1  exp ሺെߟሻ

 (18) 

whereߟ is the input. Logistic sigmoidal function maps inputs to [0,1] interval. Since our aim 
is to model a probability, this feature avoids the unpleasant outputs like negative probabilities. 
 

 
Figure 1 : Input / Output relations of a single neuron  

Another important concept is layers. A layer is a group of neurons which are not connected 
with each other. Neurons within the same layer receive inputs from the same group of neurons 
and provide outputs for the same group of neurons. The first layer of the network is often 
called as input layer, last one as output layer, and the layers between them as hidden layer(s). 
Figure 2 shows a simple network with two hidden layers. 
Parameter fitting procedure of synapses is called learning algorithm. Among several methods 
I preferred to usedbackpropagation algorithm. Backpropagation algorithm is a supervised 
learning algorithm in which the parametersof the network is updated iteratively to  fit a set of 
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given outputs via a setof input vectors (training data). Backpropagation algorithm requires a 
costfunction to minimize; root mean squared error (RMSE) is a common andmost of the time 
appropriate choice. 
As an example the output of a network which has one hidden layer is; 

ࢎ  ൌ ൯࢞ࢎ൫߱ߟ   (19) ࢎ࢈
࢟  ൌ ሻ࢞ሺ߱ߠ   (20) ࢈

where ߟ and ߠ are activation functions of hidden and output layers respectively, x is input 
vector, h is output of hidden layer, ߱ is weight matrices, and b bias vectors. 
 

 
Figure 2 : A simple neural network 

RMSE,then, can be written as; 
ܧܵܯܴ  ൌ ඥሺ࢟ െ ࢟ሻ்ሺ࢟ െ  ሻ (21)࢟

where࢟ is the vector of desired output. Using numerical optimization techniques, the 
parameter matrices of synapses can be found by minimizing RMSE. 
Another important issue is network design. Unfortunately, there is no common rule for 
designing a neural network. However, earlier literature provides some suggestions. Kruschke 
(1989) and Looney(1996) suggested that succeeding layers should be smaller than the 
preceding ones. In most of the studies a two-layer network is used, however, the 
determination of the appropriate layer size requires many trial and error methods. Another 
alternative is to select network size by using a constructive approach in which the network 
starts with a minimal size and grows gradually with respect to RMSE performance. 
In this study, I used a 4-layer network with 2 hidden layers. The input layer is consisted of 11 
inputs. All synapses are full synapse in which each neuron is connected with all neurons of 
neighboring layers. The first hidden layer has 5 neurons and the second has 2 neurons. 
Finally, the output layer has only one neuron whose output shows the probability of having a 
positive return. In all layers logistic sigmoidal function is used as activation function. 
 
4. Empirical Analysis 
4.1 Data 
Distribution connection method uses only exchange rate data itself, however ANN method 
uses several explanatory inputs. Daily values for the period 2003:01 to 2007:06 of USD/TRL 
exchange rate is collected from Electronical Data Distribution System (EDDS) of Central 
Bank of Turkey. The data is based on interbank exchange rate o 
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ers. The original data is intradaily and consists of 6 one-hour data for each trading date 
starting from 10:30 AM to 3:30 PM. The realized volatility calculations based on this data. 
Inputs of ANN model for the same time period are logarithmic return of USD/TRL, 
logarithmic return of 30-day, 90-day, 180-day, and 360-day treasury rates, logarithmic return 
of Istanbul Stock Exchange's (ISE) ISE-100 index, realized volatility of USD/TRL returns, 
Riskmetrics volatility forecast of USD/TRL returns and percentage change in term spread 
between 360-day and 30-day, 360-day and 90-day, and 360-day and 180-day interest rates. 
Yield curves for the treasury rates are constructed by daily price data of treasury bills and 
bonds. The required data for yield curves is collected from the ISE's daily reports. ISE-100 
data is again obtained EDDS of Central Bank of Turkey. 
All data series are consists of 1086 daily observations, first 724 observations are used for 
model estimation and ANN training, the last 362 observations are used for out-of-sample 
forecasting. 
For parametric distribution connection models the volatility estimation is central. One-step 
head volatility forecasts of four volatility models are presented in Figure 3. 
4.2 Model Evaluation 
I will compare the results of the models by using three different approaches. First of all, I will 
apply a likelihood ratio test to examine whether the results are statistically likely to occur 
under the null hypothesis. The null hypothesis for our case is that the probability of having a 
positive return is 50%. If a model fails to reject the null, then the results are not better than 
coin tossing. In other words, a failure in the rejection means that tossing a coin may possible 
generate similar performance. The likelihood test is constructed as follows. Let the resulting 
sequence be defined; 

 ߳௧ ൌ ൜
1, ݂݅ሺՅ௧ ൌ ௧݂ሻ
0, ݁ݏ݅ݓݎ݄݁ݐ

 (22) 

 

 
Figure 3 : Volatility graphs 

whereՅ௧ is an indicator which is equal to 1 if the excess return at time t is bigger than zero, 
otherwise it is zero. ௧݂is another indicator that represents the forecast of the model in the same 
manner. Then, ith element of ߳௧ sequence will be 1, if ith element of Յ௧ and  ௧݂  are equal, in 
other words, when the forecast is correct, and it will be zero otherwise. 



9 
 

The sequence, ߳௧, can be modeled as independent draws from a Bernoulli distribution with 
50% probability of having a positive return. Christoffersen(1998) suggest a likelihood ratio 
test for a similar problem. Under the null hypothesis that; 

:ܪ  ොߙ ൌ  (23) ߙ
 
whereߙො ML estimate of ߙ. Likelihood of an i.i.d. Bernoulli distributedsequence can be written 
as; 

 
ሻߙሺܮ ൌ ෑሺ1 െ ఢߙሻଵିఢߙ

்

௧ୀଵ

ൌ ሺ1 െ ሻߙ బ்ߙ భ் 
(24) 

where ܶ is the number of incorrect forecasts and ଵܶ is the number of correct forecasts. ML 
estimate of  is; 

 
ොߙ ൌ ଵܶ

ሺ ܶ  ଵܶሻ
 (25) 

Now, we can easily find the likelihood of the sample by plugging the MLestimate into 
equation 23; 

 
ොሻߙሺܮ ൌ ൬1 െ ଵܶ

ܶ
൰

బ்

൬ ଵܶ

ܶ
൰

భ்

 (26) 

 
Then, likelihood ratio test is; 

ܴܮ ൌ 2൫݈ሺߙොሻ െ ݈ሺߙሻ൯  χଵ
ଶ 

 
where݈ሺ. ሻis the log-likelihood function which defined asln ሺܮሻ. 
 
Secondly, we will assess the performance by using Brier scores of forecasts. The Brier score 
can be defined as; 

 
ݎ݁݅ݎܤ ൌ

1
ܶ

 2൫ ܲሺݎ௧ାଵ  0ሻ െ Յ௧൯
ଶ

்

௧ୀ

 
(27) 

where ܲሺݎ௧ାଵ  0ሻ is the forecasted probability of having positive return and Յ௧ is again the 
same indicator that is defined as Յ௧ ൌ 1ሺݎ௧ାଵ  0ሻ. The best Brier score is zero that occurs 
when the forecasts consist of 0 or 1 and each time correct. The worst Brier score is 2 and it 
occurs only if the forecasts consist of 0 or 1 again, but this time each of them is incorrect. If 
we use the conventional cut-off value of 0.5, the correct forecasts will have a Brier score 
between 0 and 0.5, whereas incorrect forecasts have scores between 0.5 and 2. Thus, the Brier 
score of a successful model should be somewhere between 0 and 0.5, while the score of a bad 
model will be between 0.5 and 2. When comparing different models, the model with lowest 
Brier score is the best among them. 
Finally I will compare out-of-sample trading performances of the models. The basic idea is 
the following; as long as we know the sign of tomorrow's exchange rate return, we may buy 
or sell the foreign exchange and gain profit. Then, a good model should generate higher profit 
than the buy and hold strategy that is suggested by the market efficiency theory. The best 
model among different models is the one that generate the highest profit. Assuming short 
selling is possible and avoiding the transaction costs, the profit generated by the model is; 

 
Π ൌ  ߳௧|ݎ௧|

்

௧ୀ

 (28) 

 
where߳௧ is 1 when the forecast is correct, and otherwise it is zero. 
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4.3 Results 
Figures 4 to 10 shows the probability forecasts of the models. For all models except ANN, the 
sign forecast changes rarely. Although the volatility choice affect the level of probability, as 
we passed to sign forecast, the volatility choice becomes unimportant. Therefore all of the 
volatility connection models -including not only different volatility models but also different 
distribution assumptions- created the same sign forecast sequence.  
Table 1 shows the results of likelihood ratio test. As it is obvious in the table, ANN model 
clearly outperforms the others. Moreover, all the models except ANN are failed to reject the 
null hypothesis. The proportion of correct forecast to all forecasts is less than 0.5 for volatility 
connection models. Nonparametric distribution connection models performed a bit better but 
their correct forecast ratio is not statistically different from 0.5 either. ANN, on the other hand 
has forecasted correctly 66.30% of all out-of-sample forecasting period. Although I did not 
report the in-sample results, ANN has forecasted correctly 77.62% of the data, while correct 
forecast ratio of other models quite similar to their out-of-sample performances. 
Brier scores of the out-of-sample forecasts are presented in table 2. Robustness of ANN 
model over other techniques is again obvious. All methods except ANN had Brier scores 
around 0.5, which is nearly equal to our cut-off value and that means all methods but ANN 
had poor performances. Finally, let us take look at the cumulative profit that models generate. 
Table 3 shows the cumulative profits of each model. Unsurprisingly ANN model is the best. 
All other model causes losses those are even worse than the result of buy and hold strategy. 
The loss of buy and hold strategy is 1.41% for this period. Interestingly nonparametric models 
caused higher losses than parametric models, although they -even the difference insignificant- 
outperformed the others in statistical tests. 
All the results show that ANN model is a better choice for sign forecasting. The main 
disadvantage of the models that uses volatility or distribution dependence is their sluggish 
changes in the direction. This problem may be overwhelmed by applying the model to less 
frequent data, like monthly or quarterly data. ANN on the other hand, is a powerful tool for 
the sign forecasting because of its nonlinear nature. Especially, the activation functions like 
we used provides the required nonlinearity in sign forecasts. 
 
5. Conclusion 
In this study, I examined the forecastability of sign-direction. I consider mainly two 
approaches;  first is based on the volatility connection of Christoffersen& Diebold (2006) and 
second is ANN. 
Although volatility connection and the models using the same idea based on a strong 
theoretical explanation, in practice the forecasts of these models are not able to mimic 
frequent changes in the direction. They follow very stable direction patterns that are unlikely 
in daily return series. 
ANN models, on the other hand, best fits the problem, they are flexibleand nonlinear models. 
Thus their forecasts can change direction very frequently comparing to volatility connection 
based models. Moreover, ANNmodels require neither modeling nor assumptions for the data 
generating process. The similar result can be obtained with many other network designs. 
As for future work, the empirical analysis can be replicated for other markets and longer time-
periods, to assure that the results are the same across different markets, different assets and 
different time-periods. Another direction of further study is to compare sign direction forecast 
of ANN models against several trading strategies by considering the transaction costs. ANN 
models may be better alternatives for these kinds of strategies, since they provide more 
complex structures. 
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7. Appendix Graphs & Tables 

 
Figure 4 : Probability forecast under volatility connection with GARCH(1,1)and Normal distribution 

 
Figure 5 : Probability forecast under volatility connection with GARCH(1,1)and t distribution 



13 
 

 
Figure 6 : Probability forecast under volatility connection with Riskmetricsvolatility and Normal distribution 

 
Figure 7 : Probability forecast under volatility connection with Riskmetricsvolatility and t distribution 
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Figure 8Probability forecast under volatility connection with realizedvolatility and Normal distribution 

 
Figure 9 : Probability forecast under volatility connection with realizedvolatility and t distribution 
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Figure 10 : Probability forecast of ANN 

 
Table 1 : Table 1: Table shows the results of Likelihood ratio test applied of theout-of-sample forecasts. V-Conn-1 is 
the volatility connection model withGARCH(1,1) and normality assumption, V-Conn-2 is the volatility connection 

model with GARCH(1,1) and t-distribution assumption, V-Conn-3 isthe volatility connection model with Riskmetrics 
volatility and normalityassumption, V-Conn-4 is the volatility connection model with Riskmetricsvolatility and t 

distribution assumption, V-Conn-5 is the volatility connection model with realized volatility and normality 
assumption, V-Conn-6is the volatility connection model with realized volatility, and t distribution assumption. ANN is 

the neural network model, Kernel is the Gaussian kernel based non-parametric distribution connection model and 
finallyTW-Nonparam is non-parametric distribution connection model with time dependent weighting scheme. 
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Table 2 : Table shows the results of Brier score of the out-of-sample forecasts. V-Conn-1 is the volatility connection 
model with GARCH(1,1) andnormality assumption, V-Conn-2 is the volatility connection model withGARCH(1,1) 

and t-distribution assumption, V-Conn-3 is the volatility connection model with Riskmetrics volatility and normality 
assumption, V-Conn-4 is the volatility connection model with Riskmetrics volatility andt distribution assumption, V-
Conn-5 is the volatility connection model withrealized volatility and normality assumption, V-Conn-6 is the volatility 

connection model with realized volatility, and t distribution assumption. ANNis the neural network model. 

 

 
Table 3 : Table shows the profit provided by the out-of-sample forecasts. V-Conn-1 is the volatility connection model 

with GARCH(1,1) and normalityassumption, V-Conn-2 is the volatility connection model with GARCH(1,1)and t-
distribution assumption, V-Conn-3 is the volatility connection modelwith Riskmetrics volatility and normality 

assumption, V-Conn-4 is thevolatility connection model with Riskmetrics volatility and t distribution assumption, V-
Conn-5 is the volatility connection model with realized volatilityand normality assumption, V-Conn-6 is the volatility 
connection model withrealized volatility, and t distribution assumption. ANN is the neural network model, Kernel is 

the Gaussian kernel based non-parametric distributionconnection model and finally TW-Nonparam is nonparametric 
distributionconnection model with time-dependent weighting scheme. 


