

ENVE203 Environmental Engineering Ecology (Sep 24, 2012)

Environmental Engineering Department Elif Soyer

'Environmental Science and Sustainability: Introduction'

Types of Resources

- Renewable resources
- Nonrenewable resources

 Environmental Engineering Department

Types of Resources

Two types of natural resources:

Nonrenewable and Renewable resources

- Nonrenewable resources
 - Present in limited supplies
 - Depleted by use armara University
 - Can not be replenished by natural processes within a reasonable period on the human time scale
 - Minerals (e.g. Al, Cu, Ur) and fossil fuels (coal, oil, and

natural gas)

Types of Resources

- Renewable resources
 - Can be replaced by nature fairly rapidly (on a scale of days to centuries)
 - Can be used forever as long as they are not overexploited in short term.
 - Trees, fishes, fertile agricultural soil, and fresh water
 - They are only *potentially* renewable
 - Must be used in a *sustainable* way –in a manner that gives them time to replace or replenish themselves

Natural Resources

Renewable Natural Resources

Direct solar energy

Energy of winds, tides, flowing water

Fertile soil

Clean air

Fresh water

Biological diversity (forests, food crops, fishes)

Nonrenewable Natural Resources

Metallic minerals (gold, tin)

Nonmetallic minerals (salt, phosphates, stone)

Fossil fuels (coal, oil, natural gas)

Resource Consumption

Consumption?

Human use of materials and energy

Many natural resources are used to provide

Environmental

Automobiles

Air conditioners

Cell phones

DVD players

Computers

Furniture

and many other 'comforts' of life in highly developed countries

Americans collectively consume almost 10 billion tons of materials every year! (source: Worldwatch Institute)

> Effect on natural resources and environment

Disproportionately large consumption of resources by HDC

Population explosion in the developing world

People overpopulation

A situation in which there are <u>more</u> <u>people</u> in a given geographic area <u>than</u> that area <u>can support</u>

Marmara University

- Occurs when the environment is worsening <u>because</u> there are too many people
- Even if those people consume few resources per person
- Current problem in many developing nations

Consumption overpopulation

A situation that occurs when <u>each</u> individual in a population <u>consumes</u> too large a share of resources

- Result of consumption-oriented lifestyles in HDC
- Many HDC suffer from consumption overpopulation
 Highly developed countries represent less than 20% of
 the world's population, however they consume
 significantly more than half of its resources

< 20% in population

>50% resources consumption

Total resources consumed

Highly developed countries (HDC)...

86% of aluminium used

76% of timber harvested

68% of energy produced and University

61% of meat eaten

42% of fresh water consumed

75% of the world's pollution and waste

source: Worldwatch Institute

by Mathis Wackernagel and William Rees

A definition to help people visualize what they use from the environment

Each person has an ecological footprint

An amount of

- productive land,
- fresh water, and
- ocean

required on a continuous basis to supply that person with

gmeering Department food,

- wood,
- energy,
- water,
- housing,
- clothing,
- transportation, and
- waste disposal

Bioproductive Land Rindiversity

In 2008: 'Living Planet Report'

Earth has ~ 11.4 billion hectares of productive land & water

$$\frac{11.4 \ billion \ hectares}{human \ population} = Each \ person \ has \ alloted \sim 1.8 \ ha$$

However...

The average global ecological footprint is currently about 2.7 hectares per person!

'We humans have depleted our ecological footprint'

Earth's ecological footprint has been increasing over time.

'Ecological overshoot'

By 2005, humans were using the equivalent of 1.3 Earths, a situation that is not sustainable

Ecological overshoot

Short-term results

Forest destruction

Degredation of croplands

Loss of biological diversity

Declining fisheries

Local water shortages, and earn Department

Increasing pollution

• Long-term result is potentially disastrous (if we do not seriously address our consumption of natural resources)

Per capital ecological footprint 10 8 6 (hectares / 4 2 United India France States

Total ecological footprint

If everyone in the world had the same level of consuption as the average American, it would take the resources and area of 5 Earths!

'Note the change in India's footprint' Why?

Average ecological footprint of a person

'Each Indian requires 0.9 ha of productive land and ocean to meet his/her resource requirements'

- Human impacts on the environment are difficult to assess
- Proposed by Paul Ehrlich and physicist John Holdren (1970)

Environmental Engineering Department

Mathematical relationship between environmental impacts and the forces driving them

How changes in one part of the system will affect the rest of the system

- Estimation using the three factors most important in determining environmental impact (/) is possible:
 - The number of people (P)
 - Affluence, which is a measure of the consumption or amount of resources used per person (A)
 - The environmental effects of the technologies used to obtain and consume the resources (*T*)

$I = P \times A \times T$

Example

Determine the environmental impact of emissons of the greenhouse gas CO₂ from motor vehicles

Marmara University Multiplyironmental Engineering Department

- The pollution
- The number of cars per person (affluence/consumption per person)
- The average car's annual CO₂ emmisions per year (technological impact)

To reduce pollution and environmental degradation...

- Developing cleaner technologies of motor vehicles
- Population control
- Per capita consuption control
 - The number of people (P)
 - Affluence, which is a measure of the consumption or amount of resources used per person (A)
 - The environmental effects of the technologies used to obtain and consume the resources (*T*)

Limited usefulness for long-term predictions?

Marmara University
Environmental Engineering Department

Environmental Sustainability

Sustainability

Humans can manage natural resources indefinetely without the environment going into a decline from the stresses imposed by human society on the natural systems that maintain life. Natural systems: fertile soil, water, and air.

Environmental Sustainability

Humanity's present needs are met without endangering the welfare of future generations

environment is used sustainably

Environmental sustainability applies at many levels:

- Individual
- Community
- Regional
- National, and
- Global levels

Environmental Sustainability

Stabilize human population	Prevent pollution where possible	Restore degraded environments
Protect natural ecosystems	Focus on Sustainability	Use resources efficiently
Educate all boys and girls	Prevent and reduce waste	Eradicate hunger and poverty

Ideas of which the Environmental Sustainability is based on

- Consider the effects of actions on natural ecosystems
- Live within ecological limits that let renewable resources regenerate for future needs (*Earth's* resources not in infinite supply)
- Understand all the costs to the environment/and society of the products consumed
- Share the responsibility for environmental sustainability

Why human society is not operating sustainably?

- Use of nonrenewable resources as if they are present in unlimited supplies
- Use of renewable resources faster than natural systems can replenish them
- Polluting the environment with toxins as if the capacity of the environment to absorb them is limitless
- Numbers of population continue to grow despite Earth's finite ability to feed us, sustain us, and absorb our wastes

'The Tragedy of Commons' Article by G. Hardin (*Science*, 1968)

Our inability to solve many environmental problems is the result of the struggle between short-term individual welfare and long-term environmental sustainability and social welfare

'The Tragedy of Commons' Article by G. Hardin (*Science*, 1968)

Common-pool resources:

Those part of environment available to everyone but for which no single individual has responsibility

- Atmosphere and climate
- Fresh water
- Forests
- Wildlife
- Ocean fisheries

Global Plans for Sustainable Development

- In 1987: 'Our Common Future' World Commission on Environment and Development Report
- In 1992: U.N. Conference on Environment and Development – most of the world's countries met in Rio de Janerio, Brazil
 - Environmental problems of international scope
 - Pollution and deterioration of the planet's atmosphere and ocean
 - Decline in the number and kinds of organisms
 - Destruction of forests

Sustainable Development

Environmentally Sound Decisions

Environmentally sound decisions do not harm the environment or deplete natural resources

Economically viable decisions consider all costs, including long-term environmental and social costs

Sustainable Development Socially equitable decisions reflect the needs of society and ensure that all groups share costs and benefits equally

Economically Viable Decisions

Socially Equitable Decisions

Environmental Science

Encompasses many interconnected issues

- Human population
- Earth's natural resources
- Environmental pollution

Ecology

- The branch of biology that studies the interrelationships between organisms and their environment
- A basic tool of environmental science

Ecosystem

- A natural system consisting of a community of organisms and its physical environment
- Biological processes (e.g. photosynthesis) interact with physical and chemical processes to
 - Modify the composition of gases in the atmosphere
 - Transfer energy from the sun to living organisms
 - Recycle waste products
 - Respond to environmental changes

Dynamic Equilibrium

Marmara University

Rate of change in one direction is the same as the rate of change in the opposite direction

Change in one part

leads to a change in another part

EEDBACK

- Negative feedback
- Positive feedback

Negative Feedback

Fish in a pond

Number of fish increases

Available food decreases Fewer fish survive Fish Population Declines

Response to change: Negative feedback

Positive Feedback

Melting of polar / glacial ice

Greater absorption of solar heat by the exposed land area

More rapid melting

(Reprinted with special permission of King Features Syndicate)