

Lecture 11

 Programming with Arrays

SPRING 2012

Assist. Prof. A. Evren Tugtas

CSE 123

Introduction to Computing

Array Variables Review

 For detailed information on array variables look

at the notes of Lecture 7.

 Array Variables hold one bit of data under a

name

 Array variable holds more bits of information

under a name

Dim Vegetables (1) as String

Vegetables(0)=“Carrot”

Vegetables(1)=“Cauliflower”

 2

Array Variables in VBA

 Array is a variable that can contain number of

values that have the same data type.

 Array is treated as a single value in VBA

 You can refer to array itself to work with all the

values it contains.

 You can also refer to individual numbers stored

within the array by using their index numbers

 MsgBox Vegetables(2) ---- Celery

3

Array Variables in VBA

 An array is bounded by a lower and upper bound

 By default the lower bound is ZERO, therefore,

the first item in an array is indexed as ZERO

 This could be confusing because the index

number is always one lower than the items

position in an array.

4

Dim Vegetables (1) as String

Vegetables(0)=“Carrot”

Vegetables(1)=“Cauliflower”

Array Variables in VBA

 VBA lets you change the default lower bound.

 Using Option Base 1 statement at the begining

of your code makes the default index number of

the first item in an array 1.

 Option Base 1 statement makes the index

number for each item in an array the same as the

item’s position in that array.

 Other programming languages do not have this

option, by default their arrays are zero based.

5

Declaring an Array

 Alternatively lower bound of an array can be

specified as;

 Dim Sample (1 to 10)

6

Declaring an Array

 Number of items in an array are declared by an

array subscript.

 Following statement declares that the array

named A assigns the Single data type and

contains 6 items. A is a one dimensional array.

Dim A(5) as Single

7

Be carefull, it is a ZERO BASED array

Multidimensional Arrays

 In multidimensional arrays the information in any series

does not have to be related to eachother.

 You can assign 10 folder names to first dimension as

string

 10 filenames to second dimension as string

 Names of 10 cities to the third dimension

 Later on you can access the any information you like by

specifying the location.

 Excel workbook of worksheets, rows and columns is a

three-dimensional array.

8

Multidimensional Arrays

 Array with dimensions 500 rows and 2 columns

 Dim myarray(500, 2)

9

Returning Dimensions of an Array

 Dim Sample (4, 500)

 Ubound(Sample, 1) returns 4

 Uboung(Sample, 2) returns 500

10

Declaring a Dynamic Array

 Arrays can be declared as fixed-size arrays or

dynamic arrays.

 Dim A(6)  Fixed-size array

 Dynamic arrays are used when you are storing

changing number of arrays

 If you do not know what array size you will need

to handle a particular problem, you can create a

dynamic array.



11

Declaring a Dynamic Array

 You should not specify the item number when

you are declaring a dynamic array.

 Dim Power()  dynamic array, size is not

declared

12

Redimensioning an Array

 ReDim Statement

 You can change the size of an Array by using

ReDim Statement

ReDim Countries(5)

 When you redimension the arrays using ReDim

statement, you lose the values currently in the

array.

13

Redimensioning an Array

 ReDim Statement

Dim MeanX(), MeanY()

.

.

‘Get the number cells to use in calculation

n=Inputbox(Number of cells?)

ReDim MeanX(n), MeanY(n)

 If you use ReDim command to change the size

of an array, all the stored data will be erased

14

Preserving data in dynamic arrays

Dim MeanX(), MeanY()

.

.

‘Get the number cells to use in calculation

n=Inputbox(Number of cells?)

ReDim Preserve MeanX(n), MeanY(n)

 Limitation: Only upper bound of the last

dimension will be preserved.

 If you use preserve, you cannot use redim

command to change the number of dimensions

15

Array Formulas in Excel

 If you pull down the cursor all the cells will

include the formula for the multiplication of the

calues in A and B columns

16

Array Formulas in Excel

 An alternative way, treat them as matrices

 CTRL+SHIFT+ENTER

17

Working with Arrays in Sub Procedures

Passing Values from Worksheet to VBA

There are two ways to get data to VBA array.

1) Setup a loop and read the value of each cell and

store the value in appropriate array element

(easy)

2) You can assign the VBA array to a worksheet

range

 If you need to access array elements a number of

times, it will be more time efficient to store the

values in an internal array

18

Working with Arrays in Sub Procedures

 If a variable in a VBA Sub is set equal to a range of

cells in a worksheet, that variable can be used as an

array;

 Dim statement is not necessary

Myarray=Range(“A2:A19")

19

Working with Arrays in Sub Procedures

Passing Values from VBA to Worksheet

 One Dimensional Array - Problems:

 Arrays can cause confusions when you try to

write it back to the worksheet

 VBA considers a one-dimensional array to have

the elements of the array in a row

 For Example

 Range(“A1:A12”).Value=MyArray

 MISTAKE: The first element of the array will be

entered to all cells in the column

20

Working with Arrays in Sub Procedures

Passing Values from VBA to Worksheet

 Correct way:

 Range(“A1:L1”).Value=MyArray

 Each cell of the range will receive the correct

value

 There are three solutions to this problem

 Write a loop

 Specify both row and column dimensions

 Use TRANSPOSE worksheet function

21

Working with Arrays in Sub Procedures

Passing Values from VBA to Worksheet

Sub Example2()

‘Second way to solve row-column problem

‘by specifying the row and column dimensions

Dim MyArray(12,1)

 statements to populate the array

Range(“A1:A12”).Value=MyArray

End Sub

22

Working with Arrays in Sub Procedures

Passing Values from VBA to Worksheet

Sub Example3()

‘Third way to solve row-column problem

‘is the use of TRANSPOSE worksheet function

‘Transpose creates 1-base array

Dim MyArray(12)

 statements to populate the array

Range(“A1:A12”).Value=Application.Transpose (MyArray)

End Sub

23

Arrays in Function Procedures

 A sub procedure is a program that you can run

 A Function procedure is a program that calculates a

value and returns it

 A Function procedure cannot change the worksheet

environment

 A range passed to a Function procedure can be

used as an array

24

Arrays in Function Procedures

 Dim statement is not necessary

 Function calc(y_values, x_values)

 Passes the worksheet ranges y_values and

x_values to the VBA procedure

25

Passing indefinite number of Arguments to a Function

 E.g. Sum function requires indefinite number of

arguments

 Sum (number1, number 2,.....)

 ParamArray keyword is used

 Function Example4(ParamArray rng())

26

Passing indefinite number of Arguments to a Function

Function Example3(ParamArray rng())

For i=0 to Ubound(rng)

 n=rng(i)columns.count

 For K=1 to n

 statements

 Next K

Next i

27

Example

 Number of students

 Number of classes each student is taking

 Final grade of each class

28

Sub array1()

Dim namest(100) As String

Dim classnum(100) As Integer

Dim class(100, 100), grade(100, 100) As Double

1

n = InputBox("enter the total number of students")

If n > 100 Then

 MsgBox ("number of students should be less than 100, please enter again")

 GoTo 1

End If

For i = 1 To n

namest(i) = InputBox("Enter the name of " & i & ". student")

classnum(i) = InputBox("Enter the number of classes " & namest(i) & " is taking")

 For j = 1 To classnum(i)

 class(i, j) = InputBox("Enter the name of the " & j & ". class " & namest(i) & "

is taking")

 grade(i, j) = InputBox("Enter " & namest(i) & "s grade for " & class(i, j) & ".")

 Next j

Next i

End Sub 29

