### CSE 123 Introduction to Computing

#### Lecture 3 Matrix Operations

SPRING 2012 Assist. Prof. A. Evren Tugtas



#### Textbooks and other references

#### Following books are used to prepare this lecture

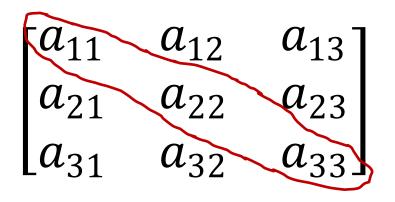
- Larsen, R.W.Engineering with Excel. 3rd ed. New Jersey. Prentice Hall. 2009. *ISBN: 0-13-601775-4*. (Textbook)
- Billo, E. J. Excel for Scientist and Engineers: Numerical Methods. Wiley. 2007. *ISBN: 978-0471387343*



- Matrix is a collection of related values, matrices show up frequently in engineering calculations.
- Matrix manipulations are a natural for Excel Worksheets; the worksheet grid provides columns and rows for the matrix operations
- Matrix calculations can be performed by using array functions rather than menu commands



# Array: Collection of values organized in rows and columns


 If you introduce data as an array, every element of the array will be subjected to same modifications

# Matrix: Collection of related values organized in rows or columns

**Vector:** Matrix with a single row or column



# Square matrix: has the same number of rows and columns



Main diagonal OR Principal diagonal



#### An Introduction to Matrix Mathematics *Addition/Substraction*

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \qquad B = \begin{bmatrix} r & s & t \\ u & v & w \\ x & y & z \end{bmatrix}$$

$$A + B = \begin{bmatrix} a+r & b+s & c+t \\ d+u & e+v & f+w \\ g+x & h+y & i+z \end{bmatrix}$$

$$A+3 = \begin{bmatrix} a+3 & b+3 & c+3 \\ d+3 & e+3 & f+3 \\ g+3 & h+3 & i+3 \end{bmatrix}$$



#### An Introduction to Matrix Mathematics

Multiplication/Division

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \qquad B = \begin{bmatrix} r & s & t \\ u & v & w \\ x & y & z \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} ar + bu + cx & as + bv + cy & at + bw + cz \\ dr + eu + fx & ds + ev + fy & dt + ew + fz \\ gr + hu + ix & gs + hv + iy & gt + hw + iz \end{bmatrix}$$



# An Introduction to Matrix Mathematics

Matrix Multiplication

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \qquad B = \begin{bmatrix} r & s & t \\ u & v & w \\ x & y & z \end{bmatrix}$$

$$A \times B = \begin{bmatrix} a \times r & b \times s & c \times t \\ d \times u & e \times v & f \times w \\ g \times x & h \times y & i \times z \end{bmatrix}$$

$$A \times 3 = \begin{bmatrix} a \times 3 & b \times 3 & c \times 3 \\ d \times 3 & e \times 3 & f \times 3 \\ g \times 3 & h \times 3 & i \times 3 \end{bmatrix}$$

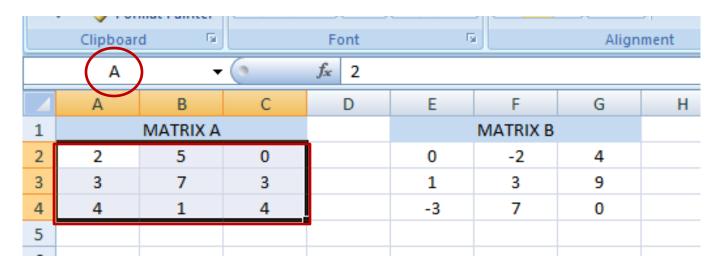


#### An Introduction to Matrix Mathematics Transposition

# Formed by exchanging rows and columns of a matrix

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$$




# An Introduction to Matrix Mathematics

Inversion

 $AA^{-1} = I$  I is the unit matrix  $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{bmatrix}$  $\xrightarrow{R2-3R1} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{bmatrix}$  $\xrightarrow{\frac{1}{2}R2} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 3/2 & -1/2 \end{bmatrix}$  $\xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3/2 & -1/2 \end{bmatrix}$ 



- Performing matrix operations in Excel is very simple.
- Assign name to a range of cells.





#### Basic Matrix Operations in Excel Addition

- Matrices has to be the same size
- 1) Matrix addition can be conducted element by element

|          | IF       | •        | - (• × • | ′_ <i>f</i> ∞ =A2+ | -E2 |          |    |          |          |                            |     |          |   |   |
|----------|----------|----------|----------|--------------------|-----|----------|----|----------|----------|----------------------------|-----|----------|---|---|
|          | А        | В        | С        | D                  | E   | F        | G  |          |          |                            |     |          |   |   |
| 1        |          | MATRIX A |          |                    |     | MATRIX E |    |          |          |                            |     |          |   |   |
| 2        | 2        | 5        | 0        |                    | 0   | -2       | 4  |          |          |                            |     |          |   |   |
| 3        | 3        | 7        | 3        |                    | 1   | 3        | 9  |          |          |                            |     |          |   |   |
| 4        | 4        | 1        | 4        |                    | -3  | 7        | 0  |          |          |                            |     |          |   |   |
| 5        |          |          |          |                    |     |          |    |          |          |                            |     |          |   |   |
| 6        |          |          |          |                    |     |          |    |          |          |                            |     |          |   |   |
| 7        |          | A+B      |          |                    |     |          | IF |          | - (> X 🗸 | <i>f</i> <sub>∞</sub> =C3+ | -G3 |          |   |   |
| 8        | =A2+E2   | 3        | 4        |                    |     |          | А  | В        | С        | D                          | E   | F        | G |   |
| 9        | 4        | 10       | 12       |                    |     | 1        |    | MATRIX A | 4        |                            |     | MATRIX B |   |   |
| 10       | 1        | 8        | 4        |                    |     | 2        | 2  | 5        | 0        |                            | 0   | -2       | 4 |   |
| 11       |          |          |          |                    |     | 3        | 3  | 7        | 3        |                            | 1   | 3        | 9 |   |
| 12       |          |          |          |                    |     | 4        | 4  | 1        | 4        |                            | -3  | 7        | 0 |   |
|          |          |          |          |                    |     | 5        |    |          |          |                            |     |          |   |   |
|          |          |          |          |                    |     | 6        |    |          |          |                            |     |          |   |   |
|          |          |          |          |                    |     | 7        |    | A+B      |          |                            |     |          |   |   |
|          |          |          |          |                    |     | 8        | 2  | 3        | 4        |                            |     |          |   |   |
|          |          |          |          |                    |     | 9        | 4  | 10       | =C3+G3   |                            |     |          |   |   |
| UNIVE    | Mar      | mara     |          |                    |     | 10       | 1  | 8        | 4        |                            |     |          |   |   |
| ~        | Mar      | illaid   |          |                    |     | 11       |    |          |          |                            |     |          |   |   |
| <b>~</b> | 🖉 🛙 Iniv | Prsite   | IJA      |                    |     |          |    |          |          |                            |     |          |   | 1 |

### Basic Matrix Operations in Excel Addition

- 2) Array Math can be used for matrix additon
- Any time array math is used, the size of the resulting array must be indicated before entering the array formula

|   | IF      | +        | (• x 🗸 | <i>f</i> <sub>*</sub> =A+B |    |          |   |    |
|---|---------|----------|--------|----------------------------|----|----------|---|----|
|   | А       | В        | С      | D                          | E  | F        | G | Н  |
| 1 |         | MATRIX A |        |                            |    | MATRIX B |   |    |
| 2 | 2       | 5        | 0      |                            | 0  | -2       | 4 |    |
| 3 | 3       | 7        | 3      |                            | 1  | 3        | 9 |    |
| 4 | 4       | 1        | 4      |                            | -3 | 7        | 0 |    |
| 5 |         |          |        |                            |    |          |   |    |
| 6 |         |          |        |                            |    |          |   |    |
| 7 |         | A+B      |        |                            |    |          |   |    |
| 8 | =A+B    |          |        |                            |    |          |   |    |
| 9 |         |          |        |                            |    |          |   |    |
|   | rsitesi | Ì        |        |                            |    |          |   | 13 |

### Basic Matrix Operations in Excel Addition

- Excel requires special character sequence when entering array formulas
- [CTRL-Shift-Enter] after entering the formula, it tells to fill the entire array

|   | IF   |          | (• × 🗸 | <i>f</i> ∞ =A+B |    |    |   |   |
|---|------|----------|--------|-----------------|----|----|---|---|
|   | А    | В        | С      | D               | E  | F  | G | Н |
| 1 |      | MATRIX A |        |                 |    |    |   |   |
| 2 | 2    | 5        | 0      |                 | 0  | -2 | 4 |   |
| 3 | 3    | 7        | 3      |                 | 1  | 3  | 9 |   |
| 4 | 4    | 1        | 4      |                 | -3 | 7  | 0 |   |
| 5 |      |          |        |                 |    |    |   |   |
| 6 |      |          |        |                 |    |    |   |   |
| 7 |      | A+B      |        |                 |    |    |   |   |
| 8 | =A+B |          |        |                 |    |    |   |   |
|   |      |          |        |                 |    |    |   |   |

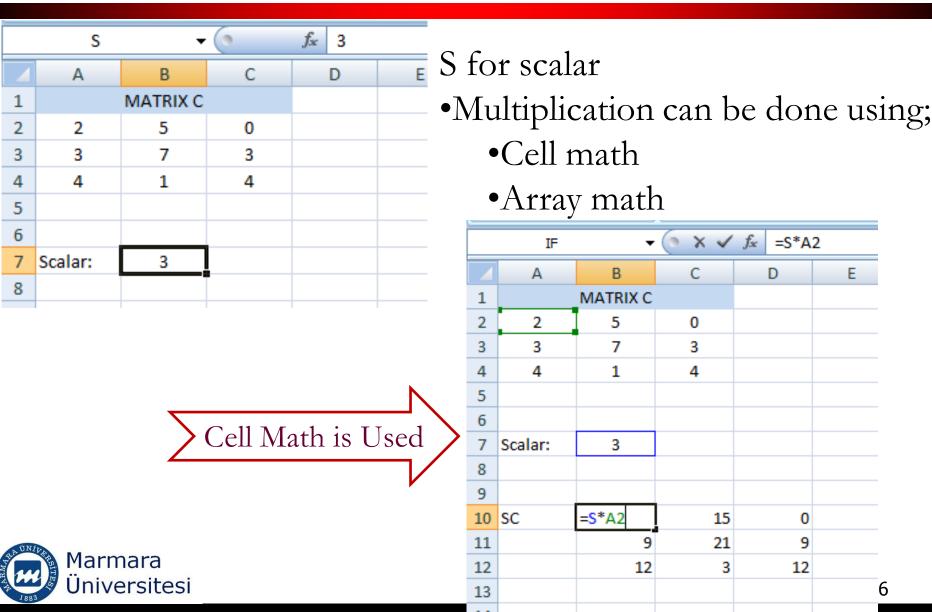


tesi

### Basic Matrix Operations in Excel Addition

• After [CTRL-Shift-Enter]

The braces indicate that array math was used and the result is


|    | Спрроаг | a        |    | run              | ar       | narray | Align | men |
|----|---------|----------|----|------------------|----------|--------|-------|-----|
|    | SUM     | -        | (  | <i>f</i> } {=A+B | }        |        |       |     |
|    | А       | В        | С  | D                | E        | F      | G     |     |
| 1  |         | MATRIX A |    |                  | MATRIX B |        |       |     |
| 2  | 2       | 5        | 0  |                  | 0        | -2     | 4     |     |
| 3  | 3       | 7        | 3  |                  | 1        | 3      | 9     |     |
| 4  | 4       | 1        | 4  |                  | -3       | 7      | 0     |     |
| 5  |         |          |    |                  |          |        |       |     |
| 6  |         |          |    |                  |          |        |       |     |
| 7  |         | A+B      |    |                  |          |        |       |     |
| 8  | 2       | 3        | 4  |                  |          |        |       |     |
| 9  | 4       | 10       | 12 |                  |          |        |       |     |
| 10 | 1       | 8        | 4  |                  |          |        |       |     |
| 11 |         |          |    |                  |          |        |       |     |
|    |         |          |    |                  |          |        |       |     |



# Basic Matrix Operations in Excel Multiplying by a scalar

Е

6



# Basic Matrix Operations in Excel Multiplying by a scalar

- •Name the matrix range (MC in this case)
- •Determine the size of the matrix
- •Write the formula

|    | IF      | Ŧ        | (∘ x √ | <i>f</i> <sub>∞</sub> =MC* | 'S |
|----|---------|----------|--------|----------------------------|----|
|    | А       | В        | С      | D                          | E  |
| 1  |         | MATRIX C |        |                            |    |
| 2  | 2       | 5        | 0      |                            |    |
| 3  | 3       | 7        | 3      |                            |    |
| 4  | 4       | 1        | 4      |                            |    |
| 5  |         |          |        |                            |    |
| 6  |         |          |        |                            |    |
| 7  | Scalar: | 3        |        |                            |    |
| 8  |         |          |        |                            |    |
| 9  |         |          |        |                            |    |
| 10 | SC      | =MC*S    |        |                            |    |
| 11 |         |          |        |                            |    |
| 12 |         |          |        |                            |    |
| 13 |         |          |        |                            |    |
| 14 | Marma   | ra       |        |                            |    |

|    | B10     | Ŧ        | 0  | <i>f<sub>x</sub></i> {=MC* | ۴S} |
|----|---------|----------|----|----------------------------|-----|
|    | А       | В        | С  | D                          |     |
| 1  |         | MATRIX C |    |                            |     |
| 2  | 2       | 5        | 0  |                            |     |
| 3  | 3       | 7        | 3  |                            |     |
| 4  | 4       | 1        | 4  |                            |     |
| 5  |         |          |    |                            |     |
| 6  |         |          |    |                            |     |
| 7  | Scalar: | 3        |    |                            |     |
| 8  |         |          |    |                            |     |
| 9  |         |          |    |                            |     |
| 10 | SC      | 6        | 15 | 0                          |     |
| 11 |         | 9        | 21 | 9                          |     |
| 12 |         | 12       | 3  | 12                         |     |
| 12 |         |          |    |                            |     |

# Basic Matrix Operations in Excel Multiplying two matrices

- Number of columns in the first matrix should be equal to the number of rows in the second matrix
- Matrix multiplication array function;
  =MMULT(first matrix, second matrix)
- Press [CTRK-Shift-Enter] not just Enter

|    | Clipboar | d 🕞      |               | Font           | 5        | i        | Align | men |
|----|----------|----------|---------------|----------------|----------|----------|-------|-----|
|    | IF       | •        | (• × 🗸        | <i>f</i> ∗ =MM | ULT(D,E) |          |       |     |
|    | А        | В        | С             | D              | E        | F        | G     |     |
| 1  |          | MATRIX D |               |                |          | MATRIX E |       |     |
| 2  | 2        | 5        | 0             |                | 0        | -2       | 4     |     |
| 3  | 3        | 7        | 3             |                | 1        | 3        | 9     |     |
| 4  | 4        | 1        | 4             |                | -3       | 7        | 0     |     |
| 5  |          |          |               |                |          |          |       |     |
| 6  |          |          |               |                |          |          |       |     |
| 7  | D x E    | =MMULT(  | D,E)          | 53             |          |          |       |     |
| 8  |          | MMULT(   | array1, array | 2) <b>75</b>   |          |          |       |     |
| 9  |          | -11      | 23            | 25             |          |          |       |     |
| 10 |          |          |               |                |          |          |       |     |



# Basic Matrix Operations in Excel Transposing a Matrix

- Two ways to transpose a matrix
  - As values
  - Using array function TRANSPOSE()



# Basic Matrix Operations in Excel Transposing a Matrix – As Values

- Copy the Matrix
- Indicate the cell that will contain the top left corner of the results matrix
- Open the paste special dialog
- Click Transpose check box

|    | A      | 9 🗸                  | 0 | <i>f</i> <sub>x</sub> 2 |                        |                  |     |
|----|--------|----------------------|---|-------------------------|------------------------|------------------|-----|
|    | А      | В                    | С | D                       | E                      | F                | G   |
| 1  |        | MATRIX A             |   |                         |                        |                  |     |
| 2  | 2      | 5                    | 0 |                         |                        |                  |     |
| 3  | 3      | 7                    | 3 |                         |                        |                  |     |
| 4  | 4      | 1                    | 4 |                         |                        |                  |     |
| 5  | (      |                      |   |                         |                        | ? <u> </u>       | 2   |
| 6  | _      | Paste Special        |   |                         |                        | 8 2              |     |
| 7  | A-tran | Paste                |   |                         |                        |                  | _   |
| 8  | _      | All                  |   | © 4                     | All using Sourc        | e t <u>h</u> eme |     |
| 9  | 2      | Eormulas             |   | © /                     | All except bor         | ders             |     |
| 10 | 5      | Values               |   | 0                       | Column <u>w</u> idths  | ;                |     |
| 11 | 0      | Formats              |   | © F                     | ormulas and            | number forma     | ats |
| 12 | - 1    | © Comments           | ; | 0                       | /al <u>u</u> es and nu | mber formats     |     |
| 13 | - 1    | Validation           |   |                         |                        |                  |     |
| 14 | - 1    | Operation            |   |                         |                        |                  |     |
| 15 | - 1    | None                 |   | 0                       | <u>M</u> ultiply       |                  |     |
| 16 |        | ) A <u>d</u> d       |   | ()<br>()                | Divide                 |                  |     |
| 17 | _      | Subtract             |   |                         |                        |                  |     |
| 18 | _      | Chip black           | _ | <b>P</b> 3              |                        |                  |     |
| 19 | _      | 🔲 Skip <u>b</u> lank | 5 | <b>V</b>                | Transpos <u>e</u>      |                  |     |
| 20 | _      | Paste Link           |   |                         | ОК                     | Cancel           |     |
| 21 |        |                      |   |                         |                        |                  |     |
| 22 |        |                      |   |                         |                        |                  |     |



Basic Matrix Operations in Excel Transposing a Matrix – Using an array function

- Use the following function;=TRANSPOSE(matrix)
- After entering the function, press [CTRL-Shift-Enter]

|    | IF        | _        | 6 × 1  | <i>f</i> ∗ =TRA |          | D)                 |
|----|-----------|----------|--------|-----------------|----------|--------------------|
|    | 1         | •        | (~ ^ v | Jac – I NA      | NSPUSE   |                    |
|    | А         | В        | С      | D               | E        |                    |
| 1  |           | MATRIX A |        |                 |          |                    |
| 2  | 2         | 5        | 0      | Mar             |          |                    |
| 3  | 3         | 7        | 3      | Inall           | lie of u | ne cell range is A |
| 4  | 4         | 1        | 4      |                 |          |                    |
| 5  |           |          |        |                 |          |                    |
| 6  |           |          |        |                 |          |                    |
| 7  | A-transpo | se       |        |                 |          |                    |
| 8  |           |          |        |                 |          |                    |
| 9  | =         | 3        | 4      |                 |          |                    |
| 10 | TRANSPO   | 7        | 1      |                 |          |                    |
| 11 | SE(AB)    | 3        | 4      |                 |          |                    |
| 12 |           |          |        |                 |          |                    |
|    | 1         |          |        |                 |          | 2                  |



# Basic Matrix Operations in Excel Inverting a Matrix

- Only square matrices can be inverted
- Use MINVERSE(matrix) function
- Press [CTRL-Shift-Enter]

|    | IF       | •           | (◦ × ✓ | f <sub>x</sub> =MIN | VVERSE(I)  |  |
|----|----------|-------------|--------|---------------------|------------|--|
|    | А        | В           | С      | D                   | E          |  |
| 1  |          | MATRIX I    |        |                     |            |  |
| 2  | 2        | 5           | 0      |                     |            |  |
| 3  | 3        | 7           | 3      |                     |            |  |
| 4  | 4        | 1           | 4      |                     |            |  |
| 5  |          | N           | ame of | the cel             | l range is |  |
| 6  |          | 1 10        |        |                     | i range 15 |  |
| 7  |          |             |        |                     |            |  |
| 8  | Inverse  |             |        |                     |            |  |
| 9  | =MINVERS | E(I)        | 0.3    |                     |            |  |
| 10 | MINVER   | SE(array) 6 | -0.12  |                     |            |  |
| 11 | -0.5     | 0.36        | -0.02  |                     |            |  |
| 12 |          |             |        |                     |            |  |
| 12 |          |             |        |                     |            |  |



## Basic Matrix Operations in Excel Matrix Determinant

- Determinant is a single value calculated from a matrix and it is often used in solving systems of equations
- Determinant can only be calculated for square matrices
- Use MDETERM(matrix) function

| -  | <b>`</b>  | /        | · ·    |                           |          |
|----|-----------|----------|--------|---------------------------|----------|
|    | IF        | •        | () X 🗸 | <i>f</i> <sub>∞</sub> =MD | ETERM(J) |
|    | А         | В        | С      | D                         | E        |
| 1  |           | MATRIX J |        |                           |          |
| 2  | 2         | 3        | 5      |                           |          |
| 3  | 7         | 2        | 4      |                           |          |
| 4  | 8         | 11       | 6      |                           |          |
| 5  |           |          |        |                           |          |
| 6  |           |          |        |                           |          |
| 7  |           |          |        |                           |          |
| 8  | Determina | ant      |        |                           |          |
| 9  | =MDETERN  | (L)N     |        |                           |          |
| 10 | MDETER    | M(array) |        |                           |          |
| 11 |           |          |        |                           |          |



#### Solving Systems of Linear Equations

- Matrix operations can be used to solve systems of linear algebraic equations
  - $3x_1+2x_2+4x_3=5$  $2x_1+5x_2+3x_3=17$  $7x_1+2x_2+2x_3=11$
- Write the equations in matrix form



#### Solving Systems of Linear Equations

$$3x_1+2x_2+4x_3=5$$
  
 $2x_1+5x_2+3x_3=17$   
 $7x_1+2x_2+2x_3=11$ 

$$\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \begin{bmatrix} a \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 5 & 3 \\ 7 & 2 & 2 \end{bmatrix}$$

$$[r] = \begin{bmatrix} 5\\17\\11 \end{bmatrix}$$



#### Solving Systems of Linear Equations

# [x]=[coefinv][rhs]

|    | IF           | - (0  | $X \checkmark f_x$ | =MMULT( | coefinv, rł | ıs) |   |          |               |    |
|----|--------------|-------|--------------------|---------|-------------|-----|---|----------|---------------|----|
|    | А            | В     | С                  | D       | E           | F   | G | Н        | - I           | J  |
| 1  |              |       |                    |         |             |     |   |          |               |    |
| 2  |              |       |                    |         |             |     |   |          |               |    |
| 3  | Coefficients | 3     | 2                  | 4       |             |     |   | rhs      | 5             |    |
| 4  |              | 2     | 5                  | 3       |             |     |   |          | 17            |    |
| 5  |              | 7     | 2                  | 2       |             |     |   |          | 11            |    |
| 6  |              |       |                    |         |             |     |   |          |               |    |
| 7  |              |       |                    |         |             |     |   |          |               |    |
| 8  |              |       |                    |         |             |     |   |          |               |    |
| 9  | Coeff invert | -0.05 | -0.05              | 0.18    |             |     |   | =MMULT(  | coefinv, rh   | s) |
| 10 |              | -0.22 | 0.28               | 0.01    |             |     |   | MMULT    | array1, array | 2) |
| 11 |              | 0.40  | -0.10              | -0.14   |             |     |   | -1.30769 |               |    |
| 12 |              |       |                    |         |             |     |   |          |               |    |
| 13 |              |       |                    |         |             |     |   |          |               |    |

