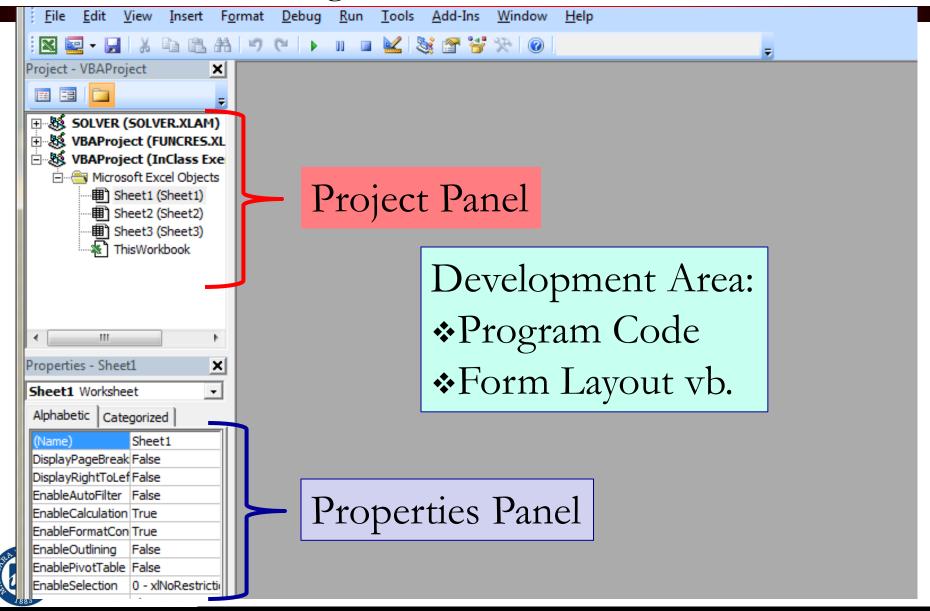
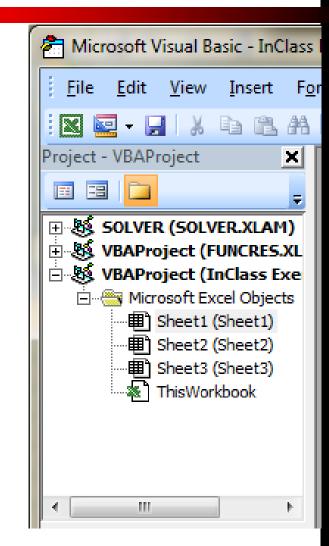
CSE 123 Introduction to Computing


Lecture 6
Programming with VBA (Projects, forms, modules, variables, flowcharts)

SPRING 2012

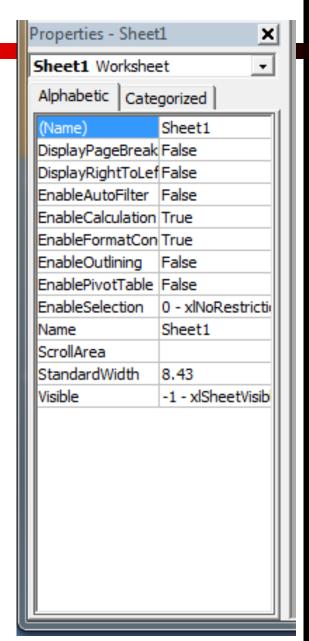
Assist. Prof. A. Evren Tugtas



Starting with the VBA Editor

Starting with the VBA Editor Project panel

- List of items in a project
- Contains all of the
 - Functions
 - Forms
 - Subprograms etc.
- It also include default three sheets Sheet 1, 2, 3
- Each project item connects to a program code for that item only



Starting with the VBA Editor

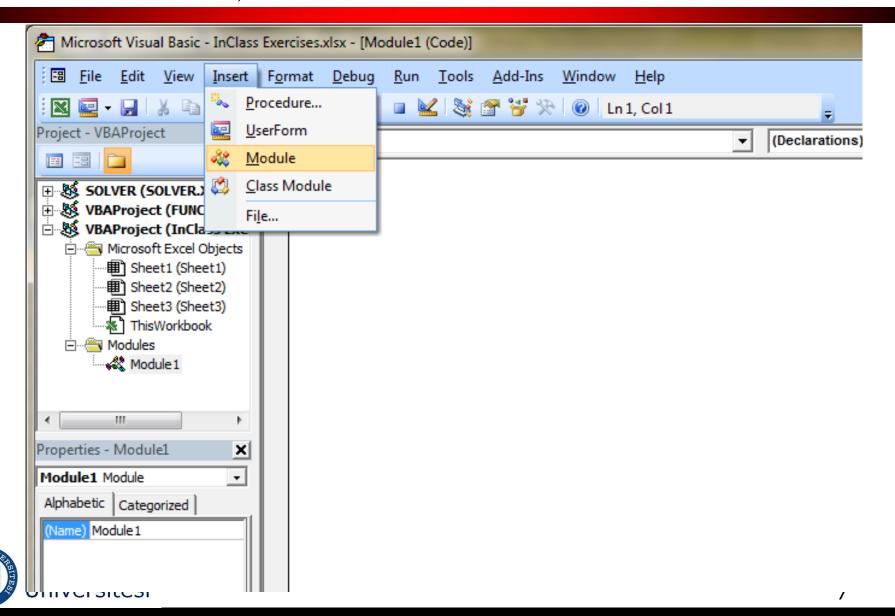
Properties Panel

Properties panel is used to

 Access and modify various properties of the current selected object

Starting with the VBA Editor Development Area

- Development area is used to
 - Write a program code
 - View/Edit macros
 - Create/modify user forms



Projects, Forms, and Modules

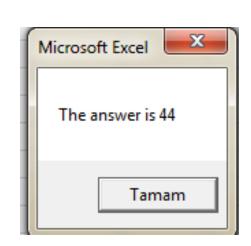
- A typical VB project includes
 - *Forms* to collect and present information to the user
 - Modules to hold variable definitions and program code
- A program code that is not specifically tied to an object (sheet, form, or form object) normally stored in a *module*
- *A module*, stores program code such as variable definitions, subs and functions

Projects, Forms, and Modules

Sub procedures

- A self contained unit of code
- All the macros are sub procedures
- Each Sub procedure begins with Sub ends with End
 Sub statement

```
General)


Sub Add()

SUM = 34 + 10

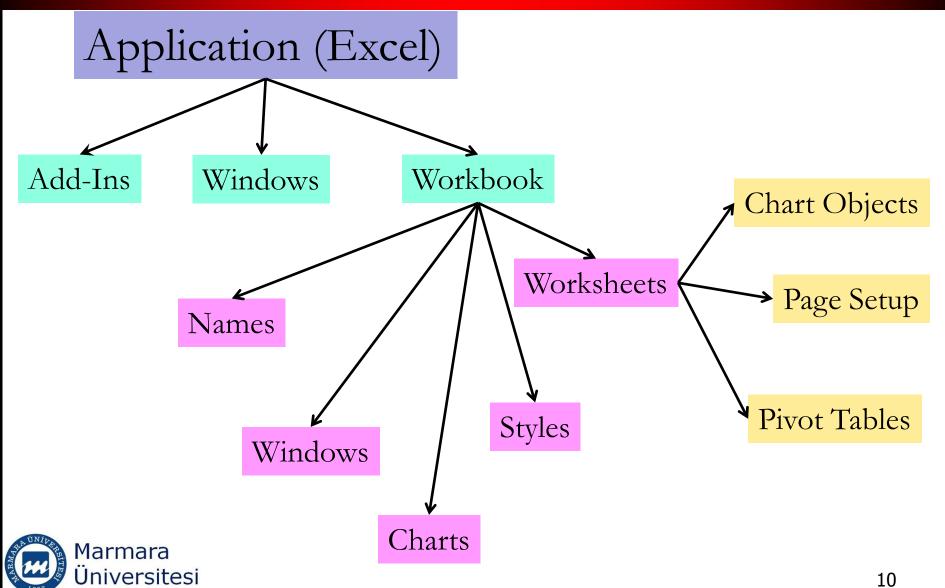
MsgBox " The answer is " & SUM

End Sub

RUN
```

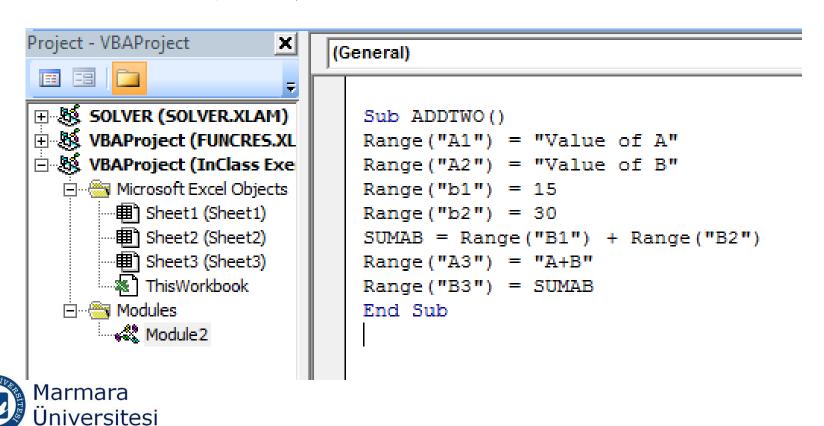

Function Procedure

Performs calculations and returns a single value


```
Function CubeRoot(number)
CubeRoot = number ^ (1/3)
End Function
```

 You cannot execute a function directly, you need to call it from another procedure

```
Sub CallerSub()
Ans = CubeRoot(125)
MsgBox Ans
End Sub
```



Objects

Object

- Excel does not have a Cell object
- To manipulate a single cell
 - Use *Range* object with only one cell in it

Range

Range(Cells(1, 1), Cells(10, 10))

```
Range("A1:J10").Value = 99
Range(Cells(1, 1), Cells(10, 10)).Value = 99
```

```
Range("A1").Offset(1, 2)

below right
```


Methods

- Objects also have methods
- Methods are actions taken within an object
- Range objects have a Clear method
- Methods are connected to an object with a dot.

- Activate
- Close
- Save
- Save as

Methods

- Excel does not require you to declare varibles using the Dim statement before you use them in your code.
- However, it is useful to declare variables to prevent errors due to misspelling
- Suppose you declare variable called BOD in your code and later you misspelled the name as BOS, if you did not use a Dim statement, the compiler will not flag it as an error and will create a new variable called BOS, which will cause an error in your code.

- Option Explicit
- This statement requires that all variables be declared using a Dim statement
- If you have *Options Explicit* statement at the top, you have to declare all your variables.
- If you declare your variables using a Dim statement, misspelled names will be flagged as error by the compiler.

e.g.

Dim J, K, L As Single

Single

- Single presicion real numbers (4 bytes)
- -3.402823E38 to 3.402823E38
- Used for general low presicion math

Examples 10.23, 3412.90, -230.23

Double

- Double presicion real numbers (8 bytes)
- -1.7976931348623**E**308 to 1.7976931348623**E**308
- Used for general high presicion math

• Example 10.2334234

Integer

- Small integer numbers (2 bytes)
- -32768 to 32768
- Used for counters, index values

■ Example 1 3 8900 76393

Long

- Long integer numbers (4 bytes)
- -2147483648 to 2147483648
- Used for counters, index values for long numbers

■ Example 1280000

Boolean

- Logical values (2 bytes)
- TRUE or FALSE
- Status variables

Date

- Date values (8bytes)
- Used for dates and times

String

- Text strings
- "the result is:"
- "C:\my Documents"

Used for words, phrases, file names

- Sometimes you need to access a variable from an outside procedure in which the variable is declared.
 In this case you need to declare a wider scope variable
 - Public
 - Private
 - Procedure

- Procedure:
- Available only to procedure that contains it. Used oly for the variables that operate in the procedure in which they are declared.
- Implicit declarations are automatically assigned as a procedure scope

```
Sub apple()
Dim A As String
Dim B As Long
End Sub
```

You cannot pass A and B to other procedures

- Public:
- Available to all procedures in all modules in the project that contains it

Option Explicit Public A As Integer

- Private:
- Available to all procedures in the module that contains it, but not to procedures in other modules.

```
Sub apple()
Private A As String
End Sub
```


VBA – Example

Calculate the volume occupied by an ideal gas
 PV=nRT

C7	+ (f _x =gasvolume(C3,C4,C5)		
	В	С	D	Е
	Volume of an ideal gas			
	Pressure (atm)	1		
	Temperature (K)	273.15		
	Number of moles	1		
	Volume (L)	22.41		

Flowcharts

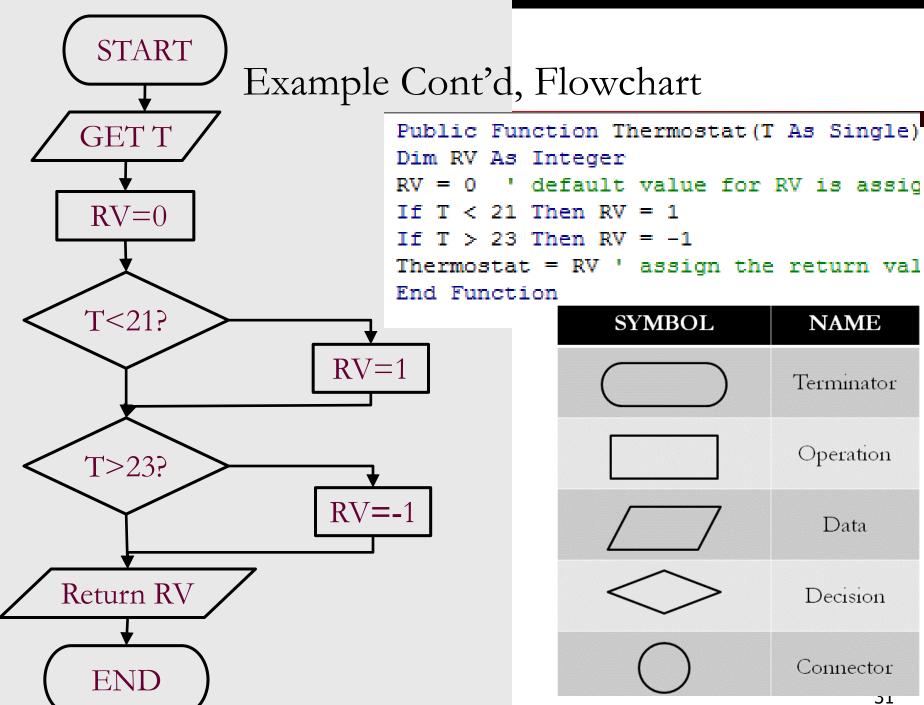
- A flowchart is a visual depiction of a program's operation
- It is designed to show what a program does in a step by step fashion
- It is the programmers assistin the development of a program
- There are standard symbols used in computer flowcharts.

Flowcharts

SYMBOL	NAME	USAGE
	Terminator	Indicates the start or end of a program
	Operation	Indicates a computation step
	Data	Indicates and input or output step
	Decision	Indicates a decision point in a program
Marmara Marmara	Connector	Indicates that the flowchart continues in another location

Example

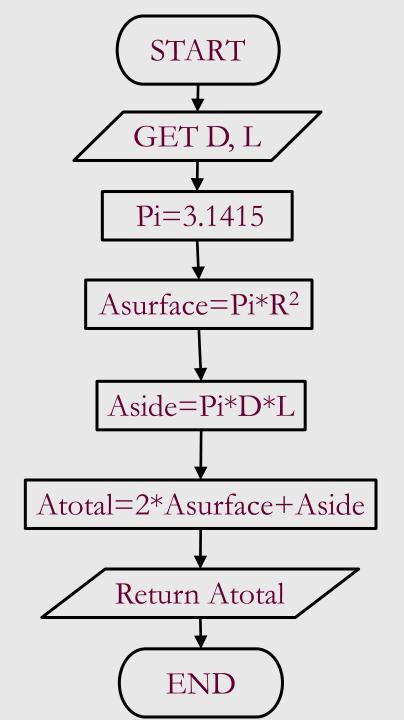
Consider a thermostat function that is designed to return a code value to turn a heater on or off


- If temperature is below 21°C, return the value 1 to indicate the heater should be activated
- If temperature is above 23°C, return the value -1 to indicate that the heater should shut off
- If the temperature is between 21°C and 23°C, return the value 0 to indicate that there should be no change in heaters status

Example Cont'd, Code

```
Public Function Thermostat(T As Single) As Integer Dim RV As Integer RV = 0 ' default value for RV is assigned If T < 21 Then RV = 1 If T > 23 Then RV = -1 Thermostat = RV ' assign the return value to the return variable End Function
```


SYMBOL	NAME
	Terminator
	Operation
	Data
	Decision
	Connector


Example

Calculate the area of a cylinder

```
Public Function CylArea (D As Single, L As Single) As Single
Dim SurfaceArea As Single
Dim SideArea As Single
Dim TotalArea As Single
Dim Pi As Single
Pi = 3.1415
SurfaceArea = Pi * (D / 2) ^ 2
SideArea = Pi * D * L
TotalArea = 2 * SurfaceArea + SideArea
CvlArea = TotalArea
```

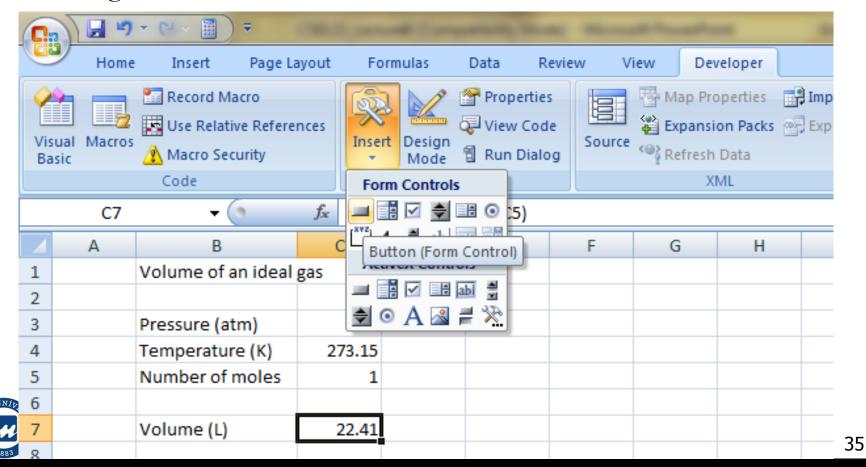
End Function

Public Function CylArea (D As Single, L As Single)
Dim SurfaceArea As Single
Dim SideArea As Single
Dim TotalArea As Single
Dim Pi As Single
Pi = 3.1415
SurfaceArea = Pi * (D / 2) ^ 2
SideArea = Pi * D * L
TotalArea = 2 * SurfaceArea + SideArea
CylArea = TotalArea

End Function

SYMBOL	NAME
	Terminator
	Operation
	Data
	Decision
	Connector

Programming Tips


■ If the code line is too long you can break the statement into two lines

```
Sheets("Sheet1").Range("B1").Value = _
Sheets("Sheet1").Range("A1").Value
```


Executing a Sub Procedure from a button

- Add button from
- Developer/Insert/Form Controls
- Assigne button to the to a macro

