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Gas Transfer 

Gas is transferred from one phase to another. 

Gas phase  Liquid phase Absorption 

Liquid phase  Gas phase Desorption 
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Fig:http://www.spartanwatertreatment.com

/ozone-fine-bubble-diffusers.html 

Ömerli wtp, Courtesy of  Prof. 

Dr. A. M. Saatcı 



Gas Transfer in Water Treatment 

Systems involving gas transfer are used for variety of water 

treatment applications; 

1. Absorption of reactive gases for water stabilization or 

disinfection  

 Aeration or bubble systems are used for the absorption 

of reactive gases (O2, O3, Cl2) 

 Ozone is used for disinfection and oxidation of total 

organic carbon (TOC) 

 Chlorine is used for disinfection and sometimes 

preoxidant for the oxidation of Fe and Mg 

5 



Gas Transfer in Water Treatment 

2. Precipitation of inorganic contaminants 

 Oxygen is used for the oxidation/precipitation of 

iron and manganese 

3. Air stripping of volatile organic compounds, NH3, CO2, 

H2S, O2 

 Diffused-aeration systems are used for the stripping 

of odor causing chemicals and VOCs 

 Surface aerators primarily used for VOC removal 

 Packed-tower or spray nozzle systems are used for 

the removal of NH3, CO2, H2S, VOCs 
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Ref: aqua-engg.com 

Ref: carbo-tech.com 

Ref: 

http://markduehmig.photoshelter.com/image/

I0000gcq5vE3gUHk 



Theory of Gas Transfer 

To design and operate aeration/air stripping 

devices understanding of; 

 Equilibrium partitioning of chemicals between air 

and water 

 Mass transfer rate across the air-water interface 

is required 

Both equilibrium and mass transfer equations are 

incorporated into mass balance equations 
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Theory of Gas Transfer 

If the system is at equilibrium; 
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Number of  molecules 

leaving the system 
= Number of  molecules 

entering the system 



Dalton’s Law of Partial Pressures 

 The total pressure of a mixture of gases equals 

the sum of the pressures that each would exert if 

it were present alone. 

Ptotal = P1 + P2 + P3 + … 
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Dalton’s Law of  Partial Pressures 

V and T 

are 
constant 

P1 P2 Ptotal = P1 + P2 

11 © 2012 Pearson Education, Inc. 



Henry’s Law 

 Equilibrium partitioning of a gas or organic 

contaminant between air and water is described 

by Henry’s Law 
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Component A 

Water Vapor 

Air 

Component A 

Water 

A(air) 

A(aq) 

A closed system 

If  component A is in equilibrium with both 

phases at constant pressure, equilibrium can 

be described by; 

𝐾𝑒𝑞 =
 𝐴 𝑎𝑖𝑟

 𝐴 𝑎𝑞
 

Keq=Equilibrium constant 

{A}air=activity of  component in 

the gas phase 

{A}aq=activity of  component in 

the aqueous phase 

 

 



Henry’s Law 
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𝐻 = 𝐾𝑒𝑞 =
𝑃𝐴

𝛾 𝐴 
 

H: Henry’s law constant (atm-L/mol) 

: the activity of  A in the aq. Phase 

[A]: Molar concentration of  A (mol/L) 

PA: Pressure A exerts in the gas phase (atm) 

𝑃𝐴 = 𝐻[𝐴] 

At a pressure of  1 atm, the gas behaves ideally, so the equation becomes, 

For dilute solutions (eg. Environmental eng applications 

conc<0.1gmol/L), 

Unit of  Henry’s law constant is variable 



Henry’s Law 

Factors affecting the equilibrium partitioning 

between air and water; 
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Temperature 
Pressure 

Ionic Strength 

pH 

Surfactants 



Henry’s Law 

 H tends to increase with increasing temperature 

 Aqueous solubility of components decrease as 

the temperature increase 

 The change in H with temperature can be 

calculated using Van’t Hoff Equation 

 

15 

𝐻2 = 𝐻1 × 𝑒𝑥𝑝  
−∆𝐻𝑜

𝑅
 
1

𝑇2
−
1

𝑇1
   

Ho =Standard enthaphy change in 

water due to dissolution of  

component (kcal/kmol) 

R= Universal gas constant 

  



Henry’s Law 

 pH does not directly affect Henry’ Law constant, 

however, it does affect the distribution of species 

between ionized and unionized forms 

 Only unionized species are volatile 

 Therefore, pH affects the overall gas-liquid 

distribution 
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Henry’s Law 

 Surfactants lower volatility of compounds by 

several mechanism 

 Most important mechanism is that, surfactants 

tend to collect at the air-water interface 

 In untreated water, solubility of oxygen can be 

lowered 30-50% due to the presence of 

surfactants 
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Mass Transfer 

The driving force for mass 

transfer from one phase to 

another derives from the 

displacement of the system 

from equilibrium 
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Ref: American Water Works Association. Water 

Quality and Treatment: A handbook of  

community water supplies. 5th ed. McGraw Hill, 

1999, page 499 



Mass Transfer 

 PG: Partial pressure of the 

solute gas in the bulk 

 PGİ: Partial pressure of the 

solute gas at the gas interface 

 CL: Concentration of the solute 

gas in the bulk liquid 

 CLİ: Concentration of the 

solute gas at the liquid interface 
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Mass Transfer 

Two Film Theory 
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The transfer of a solute gas from a gas mixture into a liquid that is in 

contact with the mixture can be described by the two-film theory of 

Lewis and Whitman. 

 For gases that are very soluble in water/liquid, the rate limiting 

step is the diffusion of the solute gas through the gas film (GAS-

FILM CONTROLLED) 

 Ammonia 

 For gases that are slightly soluble in water (O2 in water), the rate 

limiting step is the diffusion of solute gas through the liquid film 

(LIQUID FILM CONTROLLED) 

 For gases with intermediate solubility, equal resistance from both 

films (MIXED FILM CONTROLLED) 



Mass Transfer 

dC/dt: rate of oxygen transfer, mass/volume.time 

KL: diffusion transfer coefficient 

a: interfecial bubble area per unit volume of water 

KLa: overall liquid mass transfer coefficient, time-1 

Cs: Saturation dissolved oxygen concentration, 

mass/volume 

CL: dissolved oxygen concentration in the liquid, 

mass/volume 
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𝑑𝐶

𝑑𝑡
= 𝐾𝐿𝑎(𝐶𝑠 − 𝐶𝐿) 

𝐾𝐿 =
𝐷

𝛿𝑙
 

D: Diffusivity coefficient of  oxygen in water 

l : Film thickness   



Absorption of Gas 
Unsteady state gas transfer 
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𝑑𝐶

𝑑𝑡
= 𝐾𝐿𝑎(𝐶𝑠 − 𝐶𝐿) 

 
−𝑑𝐶

𝐶𝑠 − 𝐶

𝐶𝑡

𝐶𝑜

= 𝐾𝐿𝑎  −𝑑𝑡
𝑡

0

 

ln 𝐶𝑠 − 𝐶𝑡 = ln 𝐶𝑠 − 𝐶𝑜 − 𝐾𝐿𝑎𝑡 

Absorption of  gas into a solution C<Cs 



Desorption of Gas 
Unsteady state gas transfer 
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Desorption of  gas out of  a solution C>Cs 

h: depth of  reactor 𝑑𝐶

𝑑𝑡
ℎ = −𝐾𝐿(𝐶 − 𝐶𝑆) 

 
𝑑𝐶

𝐶 − 𝐶𝑠

𝐶𝑡

𝐶𝑜

=
𝐾𝐿

ℎ
 −𝑑𝑡

𝑡

0

 

ln 𝐶𝑡 − 𝐶𝑠 = ln 𝐶0 − 𝐶𝑠 −
𝐾𝐿

ℎ
𝑡 


