ENVE 301
 Environmental Engineering Unit Operations

Lecture 4
Gas Transfer - I

SPRING 2014
Assist. Prof. A. Evren Tugtas

Marmara
Üniversitesi

Gas Transfer

Lecture notes from

- Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996. (Textbook)
- American Water Works Association. Water Quality and Treatment: A handbook of community water supplies. 5th ed. McGraw Hill, 1999 ISBN: 0-0070016593

Gas Transfer

Gas is transferred from one phase to another. Gas phase \rightarrow Liquid phase Absorption
Liquid phase \rightarrow Gas phase Desorption

Fig:http://www.spartanwatertreatment.com /ozone-fine-bubble-diffusers.html

Ömerli wtp, Courtesy of Prof. Dr. A. M. Saatc1

Gas Transfer in Water Treatment

Systems involving gas transfer are used for variety of water treatment applications;

1. Absorption of reactive gases for water stabilization or disinfection

- Aeration or bubble systems are used for the absorption of reactive gases $\left(\mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{Cl}_{2}\right)$
- Ozone is used for disinfection and oxidation of total organic carbon (TOC)
- Chlorine is used for disinfection and sometimes preoxidant for the oxidation of Fe and Mg

Gas Transfer in Water Treatment

2. Precipitation of inorganic contaminants

- Oxygen is used for the oxidation/precipitation of iron and manganese

3. Air stripping of volatile organic compounds, $\mathrm{NH}_{3}, \mathrm{CO}_{2}$, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{O}_{2}$

- Diffused-aeration systems are used for the stripping of odor causing chemicals and VOCs
- Surface aerators primarily used for VOC removal
- Packed-tower or spray nozzle systems are used for the removal of $\mathrm{NH}_{3}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}$, VOCs

Ref:
http://markduehmig.photoshelter.com/image/ I0000gcq5vE3gUHk

Theory of Gas Transfer

To design and operate aeration/air stripping devices understanding of;

- Equilibrium partitioning of chemicals between air and water
- Mass transfer rate across the air-water interface is required
Both equilibrium and mass transfer equations are incorporated into mass balance equations

Theory of Gas Transfer

If the system is at equilibrium;

$\underset{\text { leaving the system }}{\text { Number of molecules } \uparrow} \uparrow=\downarrow \begin{gathered}\text { Number of molecules } \\ \text { entering the system }\end{gathered}$

Dalton's Law of Partial Pressures

- The total pressure of a mixture of gases equals the sum of the pressures that each would exert if it were present alone.

$$
\begin{aligned}
P_{\text {total }} & =P_{1}+P_{2}+P_{3}+\ldots \\
P_{i} & =n_{i}\left(\frac{R T}{V}\right)
\end{aligned}
$$

Dalton's Law of Partial Pressures

Henry's Law

- Equilibrium partitioning of a gas or organic contaminant between air and water is described by Henry's Law

Component A Water Vapor Air	A(air)
Component A Water	$A(a q)$

A closed system
If component A is in equilibrium with both phases at constant pressure, equilibrium can be described by;
$\mathrm{K}_{\text {eq }}=$ Equilibrium constant

$$
K_{e q}=\frac{\{A\}_{a i r}}{\{A\}_{a q}} \quad \begin{aligned}
& \{\mathrm{A}\}_{\text {air }}=\text { activity of component in } \\
& \text { the gas phase } \\
& \{\mathrm{A}\}_{\text {aq }}=\text { activity of component in } \\
& \text { the aqueous phase }
\end{aligned}
$$

Henry's Law

At a pressure of 1 atm , the gas behaves ideally, so the equation becomes,

$$
H=K_{e q}=\frac{P_{A}}{\gamma[A]} \quad \begin{aligned}
& \text { H: Henry's law constant (atm-L/mol) } \\
& \begin{array}{l}
\gamma: \text { the activity of } \mathrm{A} \text { in the aq. Phase } \\
{[\mathrm{A}]: \text { Molar concentration of } \mathrm{A}(\mathrm{~mol} / \mathrm{L})} \\
\text { PA: Pressure A exerts in the gas phase (atm) }
\end{array}
\end{aligned}
$$

For dilute solutions (eg. Environmental eng applications conc $<0.1 \mathrm{gmol} / \mathrm{L}$),

$$
P_{A}=H[A]
$$

Unit of Henry's law constant is variable
Marmara
Üniversitesi

Henry's Law

Factors affecting the equilibrium partitioning

 between air and water;

Pressure

Surfactants

Henry's Law

- H tends to increase with increasing temperature
- Aqueous solubility of components decrease as the temperature increase
- The change in H with temperature can be calculated using Van't Hoff Equation

$$
H_{2}=H_{1} \times \exp \left[\frac{-\Delta H^{0}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right]
$$

$\Delta \mathrm{H}^{\circ}=$ Standard enthaphy change in water due to dissolution of component (kcal/kmol)
$\mathrm{R}=$ Universal gas constant

Henry's Law

- pH does not directly affect Henry' Law constant, however, it does affect the distribution of species between ionized and unionized forms
- Only unionized species are volatile
- Therefore, pH affects the overall gas-liquid distribution

Henry's Law

- Surfactants lower volatility of compounds by several mechanism
- Most important mechanism is that, surfactants tend to collect at the air-water interface
- In untreated water, solubility of oxygen can be lowered $30-50 \%$ due to the presence of surfactants

Mass Transfer

Marmara
Üniversitesi

The driving force for mass transfer from one phase to another derives from the displacement of the system from equilibrium

Ref: American Water Works Association. Water Quality and Treatment: A handbook of community water supplies. 5th ed. McGraw Hill, 1999, page 499

Mass Transfer

P_{G} : Partial pressure of the solute gas in the bulk
P_{GI} : Partial pressure of the solute gas at the gas interface
C_{L} : Concentration of the solute gas in the bulk liquid C_{Li} : Concentration of the solute gas at the liquid interface

Mass Transfer
 Two Film Theory

The transfer of a solute gas from a gas mixture into a liquid that is in contact with the mixture can be described by the two-film theory of Lewis and Whitman.

- For gases that are very soluble in water/liquid, the rate limiting step is the diffusion of the solute gas through the gas film (GASFILM CONTROLLED)
- Ammonia
- For gases that are slightly soluble in water $\left(\mathrm{O}_{2}\right.$ in water $)$, the rate limiting step is the diffusion of solute gas through the liquid film (LIQUID FILM CONTROLLED)
- For gases with intermediate solubility, equal resistance from both films (MIXED FILM CONTROLLED)

Mass Transfer

$$
\frac{d C}{d t}=K_{L} a\left(C_{s}-C_{L}\right)
$$

$\mathbf{d C} / \mathrm{dt}$: rate of oxygen transfer, mass/volume.time \mathbf{K}_{L} : diffusion transfer coefficient
a: interfecial bubble area per unit volume of water
$\mathbf{K}_{\mathrm{L}} \mathbf{a}$: overall liquid mass transfer coefficient, time ${ }^{-1}$
Cs: Saturation dissolved oxygen concentration, mass/volume
$\mathbf{C}_{\mathbf{L}}$: dissolved oxygen concentration in the liquid, mass/volume

$$
K_{L}=\frac{D}{\delta_{l}}
$$

D: Diffusivity coefficient of oxygen in water δ_{1} : Film thickness

Absorption of Gas

Unsteady state gas transfer

$$
\begin{gathered}
\frac{d C}{d t}=K_{L} a\left(C_{s}-C_{L}\right) \\
\int_{C_{o}}^{C_{t}} \frac{-d C}{C_{s}-C}=K_{L} a \int_{0}^{t}-d t
\end{gathered}
$$

$$
\ln \left(C_{s}-C_{t}\right)=\ln \left(C_{s}-C_{o}\right)-K_{L} a t
$$

Absorption of gas into a solution $\mathrm{C}<\mathrm{Cs}$

Desorption of Gas

Unsteady state gas transfer

$$
\begin{gathered}
\frac{d C}{d t} h=-K_{L}\left(C-C_{S}\right) \\
\int_{C_{o}}^{C_{t}} \frac{d C}{C-C_{s}}=\frac{K_{L}}{h} \int_{0}^{t}-d t \\
\ln \left(C_{t}-C_{s}\right)=\ln \left(C_{0}-C_{s}\right)-\frac{K_{L}}{h} t
\end{gathered}
$$

Desorption of gas out of a solution $\mathrm{C}>\mathrm{Cs}$

