ENVE 301 Environmental Engineering Unit Operations

Lecture 7 Mixing

SPRING 2014 Assist. Prof. A. Evren Tugtas

- Mixing liquids is used to:
 - Blending of two immiscible liquids (ethyl alcohol/water)
 - Dissolving solids in liquids
 - Dispersing a gas in a liquid as fine bubbles
 - Agitation of the fluid to increase heat transfer
- Mixing in water treatment is used to: achieve coagulation
 - achieve flocculation

Mixing Chemicals in Water Treatment

- Coagulation
 - Coagulants
- Disinfection
 - Chlorine contact chamber (Chlorine is mixed with water)
 - Ozone contact chamber (Ozone is mixed with water)

- Mixing can occur in following locations;
 - Water intake (Pumps, pipes)
 - Flash mix tanks
 - Flocculation tanks
 - Other

- Three phenomena contribute to mixing;
- 1) Molecular diffusion

Ref:

- <u>Diffusion</u>: Random motion of molecules from high concentration to low conentration
- <u>Molecular Diffusion</u>: Moving molecules self propelled by thermal energy, not affected by concentration (Brownian motion)

Marr http://webworld.unesco.org/water/ihp/db/glossary/glu/EN/GF0330EN.HTM

- Three phenomena contribute to mixing;
- Eddy Current (Circular flow): Water flows opposite to the original flow (whirlpools function of a degree of turbulance)

http://ohiodnr.com/water/pubs/fs_st/stfs20/tabid/4 175/Default.aspx

Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid Mechanics. 1998.ISBN: 0-471-17024-0

3) Non-uniform flow: At any given time, velocity is not same at every point of the flow.

Ref: http://en.engormix.com/MA-aquaculture/articles/aquafeedextrusion-t1669/p0.htm

7

Factors that affect mixing

- Number of particles
- Size of particles
- Mixing time
- Water temperature
- Chemical dosage

- Power input per unit volume of liquid can be used as a rough measure of mixing effectiveness.
- More input power creates more turbulence, and greater turbulence leads to better mixing
- Power imparted to the water can also be measured by the Velocity Gradient (Camp, 1955)

Velocity Gradient (G) for mechanical or pneumatic mixing

Velocity gradient \rightarrow Ratio of relative velocity of two particles to the distance between the particles

- Rate of particulate collision is proportional to G
- G must be sufficient enough to achieve desired rate of collisions
- P: Power imparted to the water (Nm/s OR W)
- μ : Absolute viscosity of water (Ns/m²)
- V: Basin volume (m³)
- G: Velocity gradient (s⁻¹)

Example -1

 Two particles moving 1.5 m/sec relative to eachother at a distance of 0.05 m would have a velocity gradient of :

$$G = \frac{1.5 \ m/s}{0.05 \ m} = 30 \ s^{-1}$$

Velocity Gradient (G) for baffle basin

$$G = \sqrt{\frac{\gamma h_L}{\mu T}}$$

- γ : specific weight of water (kgm²/s² OR kN/m³) μ : Absolute viscosity of water (Ns/m²) h_L : head loss (m)
- T: detention time (s)
- G: Velocity gradient (s⁻¹)

Mixers

1) Hydraulic mixing devices

- a) Venturi sections, Orifices
- b) Hydraulic jumps
- c) Parshall flume
- d) Weirs
- e) Baffled mixing devices
- f) Static mixers

2) Mechanical mixing devices

- a) Propeller mixer
- b) Turbine mixer
- c) Paddle mixer

3) Pneumatic mixers

Hydraulic Mixers

- Principally identified by their lack of moving parts.
- In-line mixers are commonly used for the mixing of chemicals
- Over and under baffle channels are used for flocculation
- Degree of turbulence is measured by the loss in head

Power dissipation in a hydraulic mixer;

$$P = \gamma Q h_L = \rho g Q \Delta h_L$$

 γ =specific weight of water (kgm²/s² OR kN/m³) ρ =density of water (kg/m³) g=gravitational acceleration (m/s²) Q=flow rate (m³/s) hL=headloss (m)

Hydraulic Mixers Venturi Sections

• Turbulance is generated at the throat, which causes mixing

$$h_L = C_D \frac{V_2^2}{2g}$$

C_D: coefficient of discharge

Hydraulic Mixers Hydraulic Jumps

Ref: <u>http://www.philip-</u> <u>lutzak.com/weather/GRAVITY</u> WAVES -GOM/GRAVITY WAVES - GOM HOME.htm

http://einstein.atmos.colostate.edu/~m

cnoldy/HydraulicJump.html

- Water flow creates supercritical flow
- Turbulence generated in the jump, which causes effective mixing

Hydraulic Mixers Hydraulic Jumps

•Jump caused by a change in channel slope

•Submerged jump

Ref: Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid Mechanics. 1998.ISBN: 0-471-17024-0

Hydraulic Mixers Parshall Flume

- Parshall flumes are devices used to measure flow of water in open channels. They are modified versions of venturi meters.
- The flume consists of a converging section with a level floor, a throat section with a downward sloping floor, and a diverging section with an upward sloping floor.
- Effective mixing occurs when hydraulic jump is followed by downstream of a flume
- On the basis of throat width partial flumes can be:
 - Very small 25.4 mm to 76.2 mm.
 - (Small 152.40 mm to 2438.4 mm.
 - Large 3048 mm to 15240 mm.

Ref:http://www.flowmeterdirectory.com/pa Marmara rshall.html Üniversitesi

Hydraulic Mixers Parshall Flume

Ref: http://www.fao.org/docrep/T0848E/t0848e-09.htm 19

Hydraulic Mixers Weirs

A weir is an obstruction on a channel bottom over which the fluid must flow.

Hydraulic Mixers Weirs

- A sudden drop in a hydraulic level over a weir induces the turbulence in water → causes mixing
- <u>Vertical fall over the weir should be at least 0.1 m</u> to ensure sufficient mixing
- <u>The height of the coagulant diffused over the</u> weir should be at least **0.3 m** to penetrate the nappe thickness.

Hydraulic Mixers Weirs

Both pictures are the courtesy of Assist. Prof. Bilge Alpaslan Kocamemi

Hydraulic Mixers **Baffled Mixing Chambers**

- Mixing achieved by reversing the flow through the openings
 - Around the end: Horizontal-flow baffles
 - Over and Under: Vertical-flow baffles

Baffles mainly used for flocculation

Marmara Üniversitesi Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

Hydraulic Mixers Static Mixers

- Static mixers are principally identified by their lack of moving parts.
- Static mixers contain elements that bring about sudden changes in the velocity patterns as well as momentum reversals
- Mixing occurs in a plug flow regime: the longer the mixer, the better the mixing → higher headloss
- Mixing time is quite short; typically less than 1 sec.
- In-line mixers are commonly used for the mixign of chemicals

Hydraulic Mixers Static Mixers

•Metcalf & Eddy, Inc. (2003). Wastewater Engineering-Treatment and Reuse, 4th ed., McGraw-Hill, New York, NY.

Ref: Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid Mechanics. 1998.ISBN: 0-471-17024-0

In-line turbine mixer

Mechanical Mixers Turbine or Propeller Mixers

- Mechanical mixing is reliable, very effective and flexible in operation
- Mechanical mixing basins are not affected to any extent by variation in the flowrate.
- Mechanical mixing basins have low head losses.

Mechanical Mixers Turbine or Propeller Mixers *Vortexing*

- Vortexing may occur: Liquid to be mixed may rotate with the impeller
- Vortexing causes the difference between the impeller velocity and water velocity to decrease, which decreases effectivenes of mixing

27

Ref:

http://www.flickr.com/photos/esaruoho/favorites/?view=lg

Mechanical Mixers Turbine or Propeller Mixers *Vortexing*

To eliminate vortexing:

 Four baffles can be placed vertically at the tank wall. Each baffle width = 10% - 12% of the tank diameter

Mechanical Mixers Turbine or Propeller Mixers Vortexing

- To prevent vortexing in small tanks
 - Impeller should be mounted off-center
 - Impeller can be mounted at an angle
 - Impeller can be mounted to the side of basins at angle

Turbine or propeller mixers are usually constructed with a vertical shaft driven by a speed reducer and electric motor

<u>Types of impellers:</u>

1. Radial flow impellers

Generally have flat or curved blades located parallel to the axis of shaft

- 2. Axial flow impellers
- 3. Make an angle of less than 90° with drive shaft

Mechanical Mixers

Turbine or Propeller Mixers Power Requirement

Laminar Flow;

■ Re<10 to 20

$$P = K_L \mu n^2 D_i^3$$

 $P = K_T \rho n^3 D_i^5$

Power imparted by <u>baffled</u> or <u>unbaffled</u> tank

Power imparted

by **<u>baffled</u>** tank

- Turbulent Flow;
- Re>10000

P=Power requirement (Nm/s) K_L =Impeller constant for laminar flow K_T =Impeller constant for turbulent flow n=rotational speed (rps) D_i =Impeller diameter (m) ρ =density of the liquid (kg/m³) γ =Specific weight of the liquid (N/m³) μ =dynamic viscosity (Ns/m²)

$$Re = \frac{D_i^2 n\rho}{\mu}$$

30

Mechanical Mixers

Turbine or Propeller Mixers Power Requirement

In laminar flow \rightarrow power imparted is independent of the presence of baffles

In turbulent flow \rightarrow

Üniversitesi

Power imparted in	=	1/6 of the power imparted in the
an unbaffled tank		same tank with baffles

Power imparted in
an unbaffled square= 75% of the power imparted in a
baffled square or a baffled circular
tanktanktank

Power in a baffled <u>—</u> Power in a baffled vertical circular vertical square tank tank having D=width of square tank

Mechanical Mixers

Turbine or Propeller Mixers **Power Requirement**

TABLE 8.2 Values of Control Wall, with Width Equal to T Having Four Baffles at Tank Wall, with Width Equal to T	KL	KT
TYPE OF IMPELLER	41.0	0.32
Propeller pitch of 1, 3 blades	43.5	1.00
Propeller, pitch of 2, 3 blades	60.0	5.31
Turbine, 4 flat blades, vaned disc	65.0	5.75
Turbine, 6 flat blades, vaned disc	70.0	4.80
Turbine, 6 curved blades	70.0	1.65
Fan turbine, 6 blades at 45°	97.5	1.08
Shrouded turbine, 6 curved blades	172.5	1.12
Shrouded turbine, with stator, no barries $D/W = 4$	43.0	2.25
Flat paddles, 2 blades (single paddle), $D_i/W_i = 4$	36.5	1.70
Flat paddles, 2 blades, $D_i/W_i = 6$	33.0	1.15
Flat paddles, 2 blades, $D_i/W_i = 8$	49.0	2.75
Flat paddles, 4 blades, $D_i/W_i = 6$ Flat paddles, 6 blades, $D_i/W_i = 6$	71.0	3.82

Nay 1883

•Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Mechanical Mixers Turbine or Propeller Mixers *Power Requirement*

Mixing power function curve for standard tank configuration shown in Fig. 12.8. Source: Adopted from Ref. [12.23].

$$\phi$$
 = Power function dimensionless =

 $\frac{P}{\rho N^3 D^5}$

 $\phi = k R_{P}^{p}$

k= constant of an impeller atank geometry

P= -1 (for laminar)

P= 0 (for turbulent) Üniversitesi Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Propeller Impellers

Propeller Mixer

Propeller Mixer

Submerged propeller mixers used to mix the contents of an anoxic reactor.

Ref: Metcalf Eddy, 1991, McGraw Hill

Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

Turbine Impellers

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Turbine Impellers

Ref: Metcalf Eddy, 1991, McGraw Hill

C-10010100 000 00011

(c)

(d)

(b)

Table 5-11

ARMAR

1883

Typical types of mixing impellers used in wastewater treatment^a Ref: Metcall Eddy, 1991, McGraw Hill

Type of impeller	Flow	Shear	Pumping capacity	Applications
Vertical flat blade turbine (VFBT)	Radial	High	Low	Vertical-flow flash mixing, suspension of solids, gas dispersion
Disk turbine	Radial	High	Low	Mixing, gas dispersion
Surface impeller	Radial	High	Moderate	Gas transfer
Pitched-blade turbine (45 or 32° PBT)	Axial	Moderate	Moderate	Horizontal flash mixing, suspension of solids
Low-shear hydrofoil (LS)	Axial	Low	High	Horizontal-flow flash mixing, suspension of solids, blending, flocculation
Propeller	Axial	Very low	High	Horizontal-flow flash mixing, suspension of solids, blending, flocculation

Figure 5-15

Turbine impeller in a baffled tank

•Metcalf & Eddy, Inc. (2003). *Wastewater Engineering-Treatment and Reuse*, 4th ed., McGraw-Hill, New York, NY.

- Notes: 1. The agitator is a six-blade flat turbine impeller
 - 2. Impeller diameter, $d_i = 1/3$ tank diameter
 - 3. Impeller height from bottom, $H_i = 1.0$ impeller diameter
 - 4. Impeller blade width, q = 1/5 impeller diameter
 - 5. Impeller blade length, r = 1/4 impeller diameter
 - 6. Length of impeller blade mounted on the central disk =
 - r/2 = 1/8 impeller diameter
 - 7. Liquid height, H_L = 1.0 tank diameter
 - Number of baffles = 4 mounted vertically at tank wall and extending from the tank bottom to above the liquid surface
 - 9. Baffle width, $W_b = 1/10$ tank diameter
 - 10. Central disk diameter, s = 1/4tank diameter

Turbine - Impeller

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Turbine Impeller

Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

Paddle Mixers

- Paddle mixers consists of series of appropriately spaced paddles mounted on either a horizontal or vertical shaft
- Generally rotate slowly
- Paddles are commonly used as flocculation devices

•Ref: http://www.myersequipment.com/jms_gallery_hpwf_12.html

Paddle Mixers

- The diameter of a paddle impeller is usually 50-80% of the tank diameter or width
- Width of a paddle is usually 1/6 to 1/10 of the diameter
- Paddles are mounted ¹/₂ of a paddle diameter above the tank bottom
- The paddle speeds range from 20 to 150 rpm
- Paddles do not produce turbulance

Paddle Mixers

New Jersey. Prentice Hall. 2003.

Marmara

Üniversitesi

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Power imparted to water by a paddle impeller

$$F_D = \frac{C_D A \rho V_p^2}{2}$$

 F_D =Drag force (N)

 C_D =Coefficient of drag of paddle moving perpendicular to fluid A=Cross sectional area of paddles (m²)

 ρ =density (kg/m³)

 V_p =Relative velocity of paddles with respect to the fluid (m/s), usually assumed to be 0.6 t o0.75 times the paddle tip speed P=Power requirement (W)

Power imparted to water by a paddle impeller

Assist. Prof. Bilge

Alpaslan Kocamemi

Power imparted to water by a paddle impeller

THE DRAG COEFFICIENT (Cd) \longrightarrow depends basically on the geometry of the paddle

L/W ratio	CD
5	1.20
20	1.5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.90



Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

#### Pneumatic Mixers

 When air injected in mixing or flocculation tanks or channels, the power dissipated by the rising air bubbles can be estimated by the following equation

$$P = 1.689Q_a ln\left(\frac{h+10.33}{10.33}\right)$$

P=Power dissipated (kW) Q_a=Air flow rate at atmospheric pressure (m³/min) h=air pressure at the point of discharge (m)





Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.



