ENVE 301
 Environmental Engineering Unit Operations

Lecture 7
Mixing

SPRING 2014
Assist. Prof. A. Evren Tugtas

Marmara
Üniversitesi

Mixing

- Mixing liquids is used to:
- Blending of two immiscible liquids (ethyl alcohol/water)
- Dissolving solids in liquids
- Dispersing a gas in a liquid as fine bubbles
- Agitation of the fluid to increase heat transfer
- Mixing in water treatment is used to: achieve coagulation
- achieve flocculation

Mixing Chemicals in Water Treatment

- Coagulation
- Coagulants
- Disinfection
- Chlorine contact chamber (Chlorine is mixed with water)
- Ozone contact chamber (Ozone is mixed with water)

Mixing

- Mixing can occur in following locations;
- Water intake (Pumps, pipes)
- Flash mix tanks
- Flocculation tanks
- Other

Mixing

- Three phenomena contribute to mixing;

1) Molecular diffusion

Diffusion: Random motion of molecules from high concentration to low conentration

Molecular Diffusion: Moving molecules self propelled by thermal energy, not affected by concentration (Brownian motion) Ref:

Marr http://webworld.unesco.org/water/ihp/db/glossary/glu/EN/GF0330EN.HTM

Mixing

- Three phenomena contribute to mixing;

2) Eddy Current (Circular flow): Water flows opposite to the original flow (whirlpools - function of a degree of turbulance)

Mixing

3) Non-uniform flow: At any given time, velocity is not same at every point of the flow.

Ref: http://en.engormix.com/MA-aquaculture/articles/aquafeed-

Factors that affect mixing

- Number of particles
- Size of particles
- Mixing time
- Water temperature
- Chemical dosage

Mixing

- Power input per unit volume of liquid can be used as a rough measure of mixing effectiveness.
- More input power creates more turbulence, and greater turbulence leads to better mixing
- Power imparted to the water can also be measured by the Velocity Gradient (Camp, 1955)

Velocity Gradient (G) for mechanical or pneumatic mixing
$G=\sqrt{\frac{P}{\mu V}}$
Velocity gradient \rightarrow Ratio of relative velocity of two particles to the distance between the particles

- Rate of particulate collision is proportional to G
- G must be sufficient enough to achieve desired rate of collisions

P: Power imparted to the water (Nm / s OR W)
μ : Absolute viscosity of water ($\mathrm{Ns} / \mathrm{m}^{2}$)
V : Basin volume (m^{3})
G: Velocity gradient $\left(\mathrm{s}^{-1}\right)$
Marmara
Üniversitesi

Example -1

- Two particles moving $1.5 \mathrm{~m} / \mathrm{sec}$ relative to eachother at a distance of 0.05 m would have a velocity gradient of :

$$
G=\frac{1.5 \mathrm{~m} / \mathrm{s}}{0.05 \mathrm{~m}}=30 \mathrm{~s}^{-1}
$$

Velocity Gradient (G) for baffle basin

$$
G=\sqrt{\frac{\gamma h_{L}}{\mu T}}
$$

γ : specific weight of water $\left(\mathrm{kgm}^{2} / \mathrm{s}^{2}\right.$ OR $\left.\mathrm{kN} / \mathrm{m}^{3}\right)$
μ : Absolute viscosity of water $\left(\mathrm{Ns} / \mathrm{m}^{2}\right)$
h_{L} : head loss (m)
T : detention time (s)
G : Velocity gradient $\left(\mathrm{s}^{-1}\right)$
Marmara
Üniversitesi

Mixers

1) Hydraulic mixing devices

a) Venturi sections, Orifices
b) Hydraulic jumps
c) Parshall flume
d) Weirs
e) Baffled mixing devices
f) Static mixers
2) Mechanical mixing devices
a) Propeller mixer
b) Turbine mixer
c) Paddle mixer
3) Pneumatic mixers

Üniversitesi

Hydraulic Mixers

- Principally identified by their lack of moving parts.
- In-line mixers are commonly used for the mixing of chemicals
- Over and under baffle channels are used for flocculation
- Degree of turbulence is measured by the loss in head

Power dissipation in a hydraulic mixer;

$$
P=\gamma Q h_{L}=\rho g Q \Delta h_{L}
$$

$\gamma=$ specific weight of water $\left(\mathrm{kgm}^{2} / \mathrm{s}^{2}\right.$ OR $\left.\mathrm{kN} / \mathrm{m}^{3}\right)$
$\rho=$ density of water $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{g}=$ gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{Q}=$ flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$\mathrm{hL}=$ headloss (m)

Hydraulic Mixers Venturi Sections

- Turbulance is generated at the throat, which causes mixing

$$
h_{L}=C_{D} \frac{V_{2}^{2}}{2 g}
$$

C_{D} : coefficient of discharge

Ref: Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid
Marr Mechanics. 1998.ISBN: 0-471-17024-0
Üniv.........

Hydraulic Mixers Hydraulic Jumps

Ref: http:/ / www.philip-
lutzak.com/weather/GRAVITY WAVES -
GOM/GRAVITY WAVES - GOM HOME.htm

Q: flow rate
B: channel width
h_{1} : upstrearn depth
v_{1} : upstream velocity
h_{2}. downstream depth
v_{2} : downstream velocity
Ref:
http:/ /einstein.atmos.colostate.edu/~m cnoldy/HydraulicJump.html

- Water flow creates supercritical flow
- Turbulence generated in the jump, which causes effective mixing
Marmara
Üniversitesi

Hydraulic Mixers Hydraulic Jumps

- Jump caused by a change in channel slope
-Submerged jump

Marmara Üniversitesi

Ref: Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid Mechanics. 1998.ISBN: 0-471-17024-0

Hydraulic Mixers

Parshall Flume

- Parshall flumes are devices used to measure flow of water in open channels. They are modified versions of venturi meters.
- The flume consists of a converging section with a level floor, a throat section with a downward sloping floor, and a diverging section with an upward sloping floor.
- Effective mixing occurs when hydraulic jump is followed by downstream of a flume
- On the basis of throat width partial flumes can be:
- Very small - 25.4 mm to 76.2 mm .
- (Small 152.40 mm to 2438.4 mm .
- Large 3048 mm to 15240 mm .

Hydraulic Mixers
 Parshall Flume

Ref: http:/ /www.fao.org/docrep/T0848E/t0848e09.htm

Hydraulic Mixers
 Weirs

- A weir is an obstruction on a channel bottom over which the fluid

Ref: Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid
Mechanics. 1998.ISBN: 0-471-17024-0

(a)
(b)
(c)

- A sudden drop in a hydraulic level over a weir induces the turbulence in water \rightarrow causes mixing
- Vertical fall over the weir should be at least 0.1 m to ensure sufficient mixing
- The height of the coagulant diffused over the weir should be at least 0.3 m to penetrate the nappe thickness.

Hydraulic Mixers
 Weirs

Both pictures are the courtesy of Assist. Prof. Bilge Alpaslan Kocamemi

Üniversitesi

Hydraulic Mixers
 Baffled Mixing Chambers

Figure 6.2. Ilorizontal-flow baffled channel flocculator (plan). Source: IRC, 1981b.

Figure 6.3. Vertical-flow baffled channel floceulator teross-section). Source: IRC, 1981b.

- Mixing achieved by reversing the flow through the openings
- Around the end: Horizontal-flow baffles
- Over and Under: Vertical-flow baffles
- Baffles mainly used for flocculation

Marmara
Üniversitesi Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

Hydraulic Mixers

Static Mixers

- Static mixers are principally identified by their lack of moving parts.
- Static mixers contain elements that bring about sudden changes in the velocity patterns as well as momentum reversals
- Mixing occurs in a plug flow regime: the longer the mixer, the better the mixing \rightarrow higher headloss
- Mixing time is quite short; typically less than 1 sec .
- In-line mixers are commonly used for the mixign of chemicals

Hydraulic Mixers Static Mixers

Ref: Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid
Mechanics. 1998.ISBN: 0-471-17024-0

In-line turbine mixer

- Metcalf \& Eddy, Inc. (2003). Wastewater EngineeringTreatment and Reuse, $4^{\text {th }}$ ed., McGraw-Hill, New York, NY.

Mechanical Mixers Turbine or Propeller Mixers

- Mechanical mixing is reliable, very effective and flexible in operation
- Mechanical mixing basins are not affected to any extent by variation in the flowrate.
- Mechanical mixing basins have low head losses.

Turbine or Propeller Mixers Vortexing

- Vortexing may occur: Liquid to be mixed may rotate with the impeller
- Vortexing causes the difference between the impeller velocity and water velocity to decrease, which decreases effectivenes of mixing

Mechanical Mixers

Turbine or Propeller Mixers Vortexing

To eliminate vortexing:

- Four baffles can be placed vertically at the tank wall. Each baffle width $=10 \%-12 \%$ of the tank diameter

Baffle width $=1 / 10 \mathrm{D}$
Baffle width $=1 / 10 \sqrt{W L}$

Marmara
Üniversitesi

Turbine or Propeller Mixers Vortexing

- To prevent vortexing in small tanks
- Impeller should be mounted off-center
- Impeller can be mounted at an angle
- Impeller can be mounted to the side of basins at angle

Turbine or propeller mixers are usually constructed with a vertical shaft driven by a speed reducer and electric motor

Types of impellers:

1. Radial flow impellers

Generally have flat or curved blades located parallel to the axis of shaft
2. Axial flow impellers
3. Make an angle of less than 90° with drive shaft

Marmara
Üniversitesi

Turbine or Propeller Mixers Power Requirement

- Laminar Flow;
- $\mathrm{Re}<10$ to 20

Power imparted by baffled or unbaffled tank

$$
P=K_{L} \mu n^{2} D_{i}^{3}
$$

$$
P=K_{T} \rho n^{3} D_{i}^{5}
$$

Power imparted by baffled tank

- Turbulent Flow;
- $\mathrm{Re}>10000$
$\mathrm{P}=$ Power requirement $(\mathrm{Nm} / \mathrm{s})$
$\mathrm{K}_{\mathrm{L}}=$ Impeller constant for laminar flow
$\mathrm{K}_{\mathrm{T}}=$ Impeller constant for turbulent flow
$\mathrm{n}=$ rotational speed (rps)
$\mathrm{D}_{\mathrm{i}}=$ Impeller diameter (m)
$\rho=$ density of the liquid $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$R e=\frac{D_{i}^{2} n \rho}{\mu}$
$\gamma=$ Specific weight of the liquid $\left(\mathrm{N} / \mathrm{m}^{3}\right)$
$\mu \mu=$ dynamic viscosity $\left(\mathrm{Ns} / \mathrm{m}^{2}\right)$

Mechanical Mixers

Turbine or Propeller Mixers Power Requirement

In laminar flow \rightarrow power imparted is independent of the

 presence of baffles
In turbulent flow \rightarrow

Power imparted in $=1 / 6$ of the power imparted in the an unbaffled tank same tank with baffles

Power imparted in $=75 \%$ of the power imparted in a an unbaffled square baffled square or a baffled circular tank

Power in a baffled $=$ Power in a baffled vertical circular vertical square tank tank

Üniversitesi

Mechanical Mixers

Turbine or Propeller Mixers Power Requirement

mounter
TABLE 8.2 Values of Constants K_{L} and K_{T} in Eqs. (8.11) and (8.12) for Baffled Tanks Having Four Baffles at Tank Wall, with Width Equal to 10% of ther

Having Four Baffles	$\boldsymbol{K}_{\mathbf{L}}$	$\boldsymbol{K}_{\mathbf{T}}$
TYPE OF IMPELLER	41.0	0.32
Propeller, pitch of 1, 3 blades	43.5	1.00
Propeller, pitch of 2, 3 blades	60.0	5.31
Turbine, 4 flat blades, vaned disc	65.0	5.75
Turbine, 6 flat blades, vaned disc	70.0	4.80
Turbine, 6 curved blades	70.0	1.65
Fan turbine, 6 blades at 45°	97.5	1.08
Shrouded turbine, 6 curved blades	172.5	1.12
Shrouded turbine, with stator, no baffles	43.0	2.25
Flat paddles, 2 blades (single paddle), $D_{i} / W_{i}=4$	36.5	1.70
Flat paddles, 2 blades, $D_{i} / W_{i}=6$	33.0	1.15
Flat paddles, 2 blades, $D_{i} / W_{i}=8$	49.0	2.75
Flat paddles, 4 blades, $D_{i} / W_{i}=6$	71.0	3.82
Flat paddles, 6 blades, $D_{i} / W_{i}=6$		

-Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental
Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Mechanical Mixers

Turbine or Propeller Mixers Power Requirement

FIGURE 12.9 Ref: Tchabanoglous and Scroeder, 1985, Addison-Wesley Publishing Company
Mixing power function curve for standard tank configuration shown in Fig. 12,8.
Source: Adopted from Ref. [12.23].
$\phi=$ Power function dimensionless $=\frac{P}{\rho N^{3} D^{5}}$
$\phi=k R_{e}^{p}$
$\mathrm{k}=$ constant of an impeller atank geometry $\mathrm{P}=-1$ (for laminar)
$\mathrm{P}=0$ (for turbulent)
Üniversitesi

Prof. Bilge Alpaslan Kocamemi

(a) In-Line Mixer

(b) Turbine Chamber

(c) Double Compartment Turbine Chamber
(d) Double Compartment Turbine Chamber

(e) Paddle Chamber

Rapid mixing devices

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Propeller Impellers

(a) Standard

Three Blade

(b) Weedless

(c) Guarded

Ref: Reynolds, T. D., and P. A.
Richards. Unit Operations and Processes in Environmental
Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Figure 3.4-1. Baffled tank and three-blade propeller agitator with axial-flow pattern: (a) side view, (b) bottom view.

Propeller Mixer

Propeller Mixer

Submerged propeller mixers used to mix the contents of an anoxic reactor.
ief. Metcalf Eddy, 1991, McGraw Hill.

Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi (a)

Turbine Impellers

Ref: Reynolds, T. D., and P. A.
Richards. Unit Operations and
Processes in Environmental
Engineering. 2nd ed. Boston, MA:
PWS Publishing Company, 1996.

Turbine Impellers

Figure 5-15

Typical impellers used for mixing in wastewatertreatment facilities: (a) disk-lype radial-flow impeller, (b) axial-flow pitched (typically 45°) blade impeller, (c) axialflow hydrofoil-lype impeller, and (d) propeller mixer. Note: The flat blade radiol-flow turbine mixer looks like the axial-flow impeller (b) with the exception thot the blades are set parallel to the axis of the shafy.

Ref-Metcalf Eddy,1991, McGrzw Hill

Table 5-11
Typical types of mixing impellers used in wastewater treatment ${ }^{\circ}$ Ref. Metalf edob, 1991, McGraw Hill

Type of impeller	Flow	Shear	Pumping capacity
Vertical flat blade turbine (VFBT)	Radial	High	Low
Disk turbine	Radial	High	Low
Surface impeller Pitched-blade turbine (45 or 32° PBT)	Radial	High	Moderate
Low-shear hydrofoil (LS)	Axial	Moderate	Moderate
Propeller	Axial	Very low	High

Applications

Vertical-flow flash mixing, suspension of solids, gas dispersion
Mixing, gas dispersion
Gas transfer
Horizontal flash mixing, suspension of solids
Horizontal-flow flash mixing, suspension of solids, blending. Flocculation
Horizontal-flow flash mixing, suspension of solids, blending. Plocculation

Turbine impeller in a baffled tank

- Metcalf \& Eddy, Inc. (2003). Wastewater EngineeringTreatment and Reuse, $4^{\text {th }}$ ed., McGraw-Hill, New York, NY.

[^0]
Turbine - Impeller

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Turbine Impeller

Lecture notes of Assist. Prof. Bilge Alpaslan Kocamemi

Paddle Mixers

- Paddle mixers consists of series of appropriately spaced paddles mounted on either a horizontal or vertical shaft
- Generally rotate slowly
- Paddles are commonly used as flocculation devices

-Ref: http://www.myersequipment.com/jms_gallery_hpwf_12.html

Paddle Mixers

- The diameter of a paddle impeller is usually 50 80% of the tank diameter or width
- Width of a paddle is usually $1 / 6$ to $1 / 10$ of the diameter
- Paddles are mounted $1 / 2$ of a paddle diameter above the tank bottom
- The paddle speeds range from 20 to 150 rpm
- Paddles do not produce turbulance
- Paddle tip speed is generally 0.6 to $0.9 \mathrm{~m} / \mathrm{s}$

Marmara
Üniversitesi

Paddle Mixers

Four blade paddle

FIGURE 8.12 Types of Paddle Impellers

(a) Two Blades

(b) Six Blades

Ref: Geankoplis C.J. Transport Processes and Separation Process Principles. 4th ed. New Jersey. Prentice Hall. 2003. Rezime in a Paddle-

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston, MA: PWS Publishing Company, 1996.

Power imparted to water by a paddle impeller

$$
F_{D}=\frac{C_{D} A \rho V_{p}^{2}}{2}
$$

$\mathrm{F}_{\mathrm{D}}=$ Drag force (N)
$C_{D}=$ Coefficient of drag of paddle moving perpendicular to fluid $A=$ Cross sectional area of paddles $\left(\mathrm{m}^{2}\right)$
$\rho=$ density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{V}_{\mathrm{p}}=$ Relative velocity of paddles with respect to the fluid (m / s), usually assumed to be 0.6 to 0.75 times the paddle tip speed $\mathrm{P}=$ Power requirement (W)

Power imparted to water by a paddle impeller

Velocity of paddle (paddle tip velocity)
$1 \mathrm{~min} / 60 \mathrm{sec}$

Distance from shaft to paddle center(m)
$\mathrm{A}=$ Cross-sectional area of paddle $\quad\left(\mathrm{ft}^{2}\right.$ or m^{2}) (paddle-blade area at night angle to the direction of

Power Force Velocity movement)
$\rho=$ Density of fluid ($\frac{\text { slug }}{\mathrm{ft}^{3}}$ or $\frac{\mathrm{kg}}{\mathrm{m}^{3}}$)
$\mathrm{V} p=$ Relative velocity of paddles with respect to water.

$$
\mathrm{C}_{\mathrm{d}}=\text { Drag coeff. }
$$

Lecture notes of Assist. Prof. Bilge
Üniversitesi
Alpaslan Kocamemi

Power imparted to water by a paddle impeller

THE DRAG COEFFICIENT (Cd) \longrightarrow depends basically on the geometry of the paddle

L / W ratio	$C D$
5	1.20
20	1.5
∞	1.90

Pneumatic Mixers

- When air injected in mixing or flocculation tanks or channels, the power dissipated by the rising air bubbles can be estimated by the following equation
$P=1.689 Q_{a} \ln \left(\frac{h+10.33}{10.33}\right)$
$\mathrm{P}=$ Power dissipated (kW)
$\mathrm{Q}_{\mathrm{a}}=$ Air flow rate at atmospheric pressure ($\mathrm{m}^{3} / \mathrm{min}$)
$\mathrm{h}=$ air pressure at the point of discharge (m)

Ref: Reynolds, T. D., and P. A. Richards. Unit Operations and Processes in Environmental

- Problems

Marmara
Üniversitesi

[^0]: UIIVEI >ILESI

