ENVE 424 Anaerobic Treatment

Course Outline and Lecture 1

2012 – 2013 Fall Assist. Prof. A. Evren Tugtas

Course Content

- Introduction to anaerobic treatment
- The biochemistry of anaerobic treatment
- The microbiology of anaerobic treatment
- Stoichiometry
- Influence of environmental factors
- Toxic substances in anaerobic treatment
- Process monitoring and control in anaerobic treatment
- Low-rate anaerobic reactor technologies
- High-rate anaerobic reactor technologies
- Start-up and operation of anaerobic reactors
- Anaerobic sludge digestion
- Types of anaerobic sludge digesters
- Mixing and heating anaerobic sludge digesters

Grading

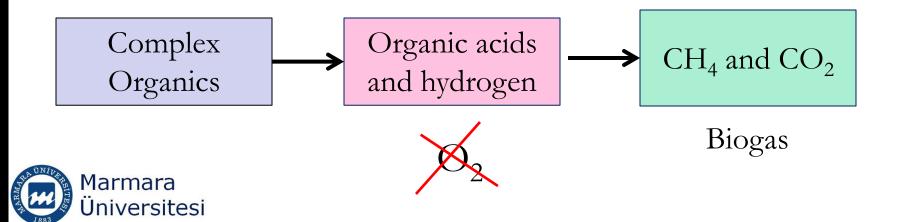
Evaluation Tool	Weigh in total (%)
Midterm Exam I	30
Midterm Exam II	30
Final	40

ENVE 424 Anaerobic Treatment

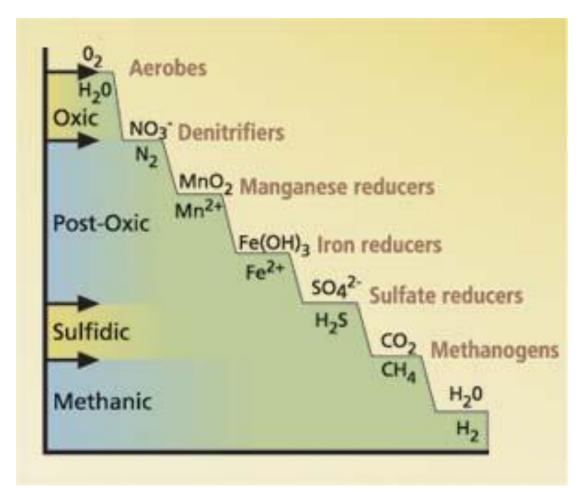
Lecture 1 Introduction to Anaerobic Treatment

2012 – 2013 Fall Assist. Prof. A. Evren Tugtas

Lecture notes are prepared by Prof. Dr. B. Calli and Assist. Prof. Dr. A. E. Tugtas


Anaerobic Digestion

 Anaerobic digestion/treatment is a natural process in which a variety of different species from two entirely different biological kingdoms, <u>Bacteria</u> and <u>Archaea</u>, work together to <u>convert</u> <u>organic wastes</u> through a variety of intermediates <u>into methane gas</u>



Anaerobic Digestion (AD)

 Complex organic matters are converted to onecarbon compounds representing the <u>most</u> <u>oxidized (CO₂) and most reduced (CH₄) via</u> anaerobic digestion in the <u>absence of oxygen</u>

Redox Ladder

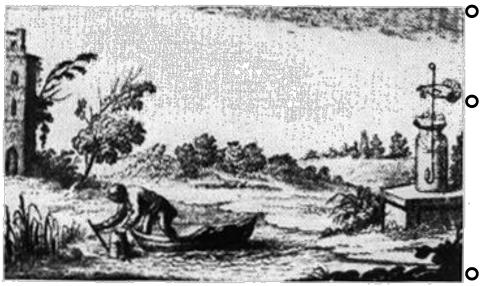
Ref:

http://ucce.ucdavis.edu/files/repository/calag/fig5702p56a.jpg

Anaerobic Digestion (AD)

 For CH₄ formation to occur, there should not be any electron acceptors in the environment (O₂, NO₃⁻, SO₄²⁻) dacceptor.

• Swamps, soil, river sediments, lakes, seas and digestive tracks of ruminant animals are natural environments of CH₄ production.



Composition of Biogas

Component	Percentage (%)
Methane (CH ₄)	50-80
Carbondioxide (CO ₂)	20-40
Nitrogen (N ₂)	0-5
Hydrogen (H ₂)	<1
Oxygen (O ₂)	<0.4
Hydrogen sulfide (H ₂ S)	0.1-3

History

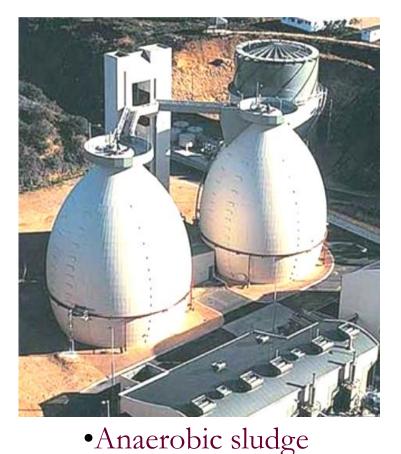
•Lake Maggiore

Methane was discovered by Alessandro Volta in **1776**.

Volta began to poke the muddybottom of the water with a stick andsaw lots of gassy bubbles floating upto burst on the surface.

He collected some of this gas and discovered it was inflammable. He called it *inflammable air from marshlands*. It was what we nowadays call methane.

Ref: http://ppp.unipv.it/volta/pages/eavus3.htm


History, cont.

- In 1808, Sir Humphrey Davy determined that CH₄ was present in the gases produced by cattle manure
- First AD was built in Bombay, India in 1859.
- The technology then moved to England in 1895, when biogas was recovered from a sewage system and used to fuel street lamps.

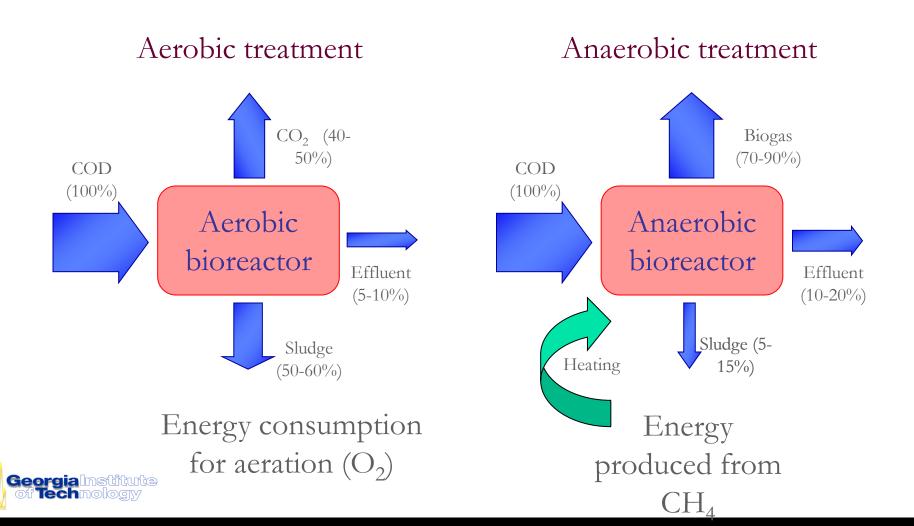
History, cont.

- In the 1930's, developments in microbiology identified the anaerobic bacteria and the conditions needed to promote CH₄ production
- In 1970s, the energy crisis renewed interest in AD
- In 1970s 80s, the lack of understanding and overconfidence resulted in numerous failures in ADs

digesters

Currently

- Hundreds of farm-based digesters operating in Europe plus several centralized AD systems
- Danish systems co-digest manure, organic industrial wastes and municipal solid waste
- Large numbers of family-sized, low technology digesters in developing world provide biogas for cooking and lighting
- Renewed interest in U.S. because of high oil & natural gas prices.



Suitable Wastes

- Domestic wastewaters (black water)
- Industrial wastewaters
 - Bakeries
 - Beverage production
 - Breweries and Wineries
 - Chemical plants
 - Dairies
 - Food processing plants
 - Meat and poultry processing
 - Pharmaceutical plants
 - Pulp and paper mills
 - Rendering plants
- June Jextile mills

- Biosolids
 - Household food waste
 - Animal manure
 - Farm wastes
 - Waste paper
 - Green waste
 - Sewage sludges

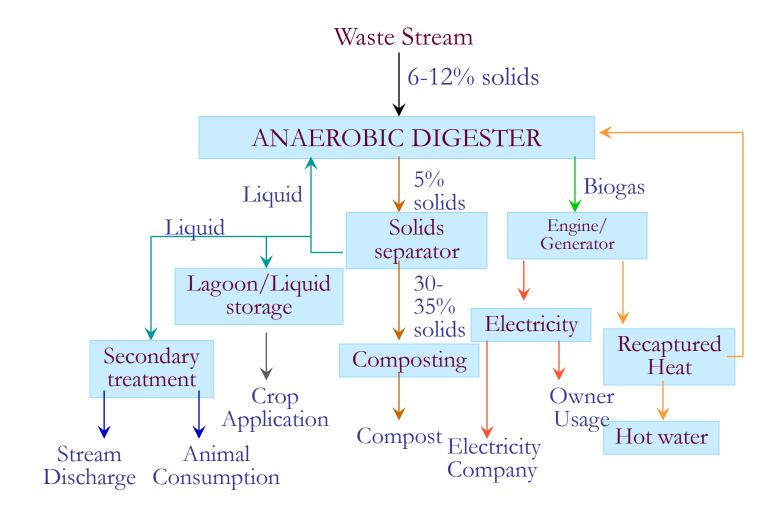
Carbon and Energy Balance

Advantages: Anaerobic vs Aerobic

- Less energy required
- Less biological sludge production
- Fewer nutrients required
- CH₄ production, a potential energy source
- Smaller reactor volume required
- Elimination of off-gas air pollution
- Rapid response to substrate addition after long periods w/o feeding

Disadvantages: Anaerobic vs Aerobic

- Longer start-up time
- May require alkalinity addition
- May require further treatment with an aerobic process to meet discharge requirements
- Biological N and P removal is possible to certain extent
- Much more sensitive to the adverse effect of lower temperatures on reaction rates
- May be more susceptible to upsets due to toxic substances
- Potential for production of odor and corrosive gasses



Environmental Benefits

- Reduces odor from land application
- Protects water resources
- Reduces pathogens (High temperatures)
- Weed seed reduction
- Fly control after digestion (stabilized waste)
- Greenhouse gas reduction

Materials flow in AD

