ENVE 424 Anaerobic Treatment

Lecture 3 The Microbiology of Anaerobic Treatment

2012 – 2013 Fall 27 - 28 Sept 2012 Assist. Prof. A. Evren Tugtas

Anaerobic Digestion

Figure 1.1 Suspended growth anaerobic digesters are commonly used at municipal wastewater treatment plants for the degradation of primary and secondary sludges. These digesters produce several layers as a result of sludge degradation. These layers are from top to bottom: biogas, scum, supernatant, active biomass or sludge, and stabilized solids.

Process Microbiology

The consortia of microorganisms involved in the overall conversion of organic matter to methane

- Bacteria <u>hydrolyze</u> complex organic matter to simple carbohydrates, aminoacids, fatty acids.
- Simple carbohydrates and acids utilized by <u>fermenting</u>
 bacteria for energy and growth, producing organic acids and H₂.
- Organic acids are partially oxidized by other <u>fermentative</u>
 bacteria, which produce additional hydrogen and acetic acid
- Hydrogen and acetic acid are used by **archael methanoges**, which convert them into methane

Microbiology of Anaerobic Digestion

Üniversitesi

Ref: Pavlostathis, S.G.; Giraldo-Gomez, E. (1991) Kinetics of anaerobic treatment - A critical review. *Critical Reviews in Environmental Control, 21 (5-6): 411-490*.

Numbers indicate bacterial

<u>groups</u>

- 1. Fermentative bacteria
- 2. Hydrogen producing acetogenic bacteria
- 3. Hydrogen consuming acetogenic bacteria
- 4. CO2 reducing methanogens
- 5. Aceticlastic methanogens

Process Microbiology

- Microorganisms are divided into three groups according to their response to molecular oxygen
- 1) Strict aerobes
- 2) Facultative anaerobes
- 3) Anaerobes (methanogens)

Response to free molecular O_2

Group	Example	Significance
Strict aerobes	Haliscomenobacter hydrossis	Degrades soluble organic compounds; contributes to filamentous sludge bulking
	Nitrobacter sp.	Oxidizes NO ₂ to NO ₃
	Nitrosomonas sp.	Oxidizes NH ₄ ⁺ to NO ₂ ⁻
	Sphaerotilus natans	Degrades soluble organic compounds; contributes to filamentous sludge bulking
	Zoogloea ramigera	Degrades soluble organic compounds; contributes to floc formation
Facultative anaerobes	Escherichia coli	Degrades soluble organic compounds; contributes to floc formation; contributes to denitrification or clumping
	Bacillus sp.	Degrades soluble organic compounds; contributes to denitrification or clumping
Anaerobes	Desulfovibrio sp.	Reduces SO ₄ ²⁻ to H ₂ S
	Methanobacterium formicium	Produces CH ₄

TABLE 2.1 Groups of Bacteria According to Their Response to Free Molecular Oxygen

Process Microbiology

TABLE 2.2 Groups of Anaerobic Bacteria

Group	Example	Significance
Oxygen tolerant	Desulfovibrio sp.	Reduces SO ₄ ²⁻ to H ₂ S
	Desulfomarculum sp.	Reduces SO ₄ ²⁻ to H ₂ S
Oxygen intolerant	Methanobacterium formicium	Produces CH ₄
	Methanobacterium propionicium	Produces CH ₄

Electron transport

Operational Condition	Transport Molecule	Biological Process
Aerobic	O ₂	Aerobic degradation of substrate
Anoxic	NO ₃ ⁻ , NO ₂ ⁻	Anoxic degradation of substrate
Anaerobic	SO4 ²⁻	Sulfate reduction and degradation of substrate
Anaerobic	CO_2	Methanogenesis
Anaerobic	Organic molecule	Fermentation and degradation of substrate

•Electron transport molecules (e⁻ acceptors) used in degradation of soluble

substrate

Electron transport

Depending upon the molecule used $(O_2, NO_3^-, SO_4^{2-}, CO_2, or$ soluble cBOD) by bacteria to remove electrons from the cell, a variety of substrates are produced.

Marmara

Üniversitesi

Oxidation-Reduction Potential vs Cellular activity

Approximate ORP, mV	Final Electron Acceptor (carrier)	Condition	Respiration
>+50	O ₂	Oxic	Aerobic
+50 to -50	NO₃ or NO₂	Anaerobic	Anoxic
<-50	SO ₄ ²⁻	Anaerobic	Fermentation, sulfate reduction
<-100	Organic Compound	Anaerobic	Fermentation, mixed acid production
<-300	CO ₂	Anaerobic	Fermentation, methane production

Energy yield and sludge production

Final Electron Carrier Molecule	Form of Respiration	Energy Yield Rank	kg VSS Produced per kg COD Degraded
O ₂	Aerobic or oxic	1	~0.4–0.6
NO ₃	Anaerobic or anoxic	2	~0.4
SO ₄ ²⁻	Anaerobic: sulfate reduction	3	0.04–0.1
Organic molecule	Anaerobic: mixed acids and alcohol	4	0.04–0.1
CO ₂	Anaerobic: methane production	5	0.02-0.04

Bacterial Group	Yield (kg VSS/kg COD)
Volatile acid-forming bacteria	0.15
Methane producing archaea	0.03

Three steps of Anaerobic Digestion

Ma

Three steps of Anaerobic Digestion

Hydrolysis Ref: Gerardi M. H. Complex carbohydrates ----- > Simple sugars Complex lipids ----- > Fatty acids The Microbiology of Complex proteins ----- > Amino acids Anaerobic Digesters. Wiley Interscience. Acid Production 2003 Simple sugars + fatty acids + amino acids ----- > organic acids, including acetate + alcohols Acetogenesis (acetate production) Organic acids + alcohols ----- > acetate Methane production: acetoclastic methanogenesis $CH_4 + CO_2$ Acetate Methane production: hydogenotrophic methanogenesis $H_2 + CO_2$ CH₄ Methane production: methyltrophic methanogenesis Methanol CH4 + H2O Universitesi

Extracellular (exo)enzymes

Substrate to be Degraded	Exoenzyme Needed	Example	Bacterium	Product
Polysaccharides	Saccharolytic	Cellulase	Cellulomonas	Simple sugar
Proteins	Proteolytic	Protease	Bacillus	Amino acids
Lipids	Lipolytic	Lipase	Mvcobacterium	Fatty acids

Enzymes used in AD

•Stage of AD	•Enzymes
Hydrolysis:	Exoenzymes
Solubilization of particulate and colloidal wastes	-
Acid forming:	Endoenzymes
Conversion of soluble organic acids and alcohols to	
acetate, carbon dioxide, and hydrogen	
Methanogenesis:	Endoenzymes
Production of methane and carbon dioxide	

Step 1 - Hydrolysis

Ref: http://bealbio.wikispaces.com/Period+3+ch+5+Q

Hydrolysis

(b) Hydrolysis

Ref:http://student.biology.arizona.edu/honors20 03/group15/BackgroundTrans.htm

Hydrolysis

Hydrolysis of cellulose

Glucose

Ref:http://www.biotek.com/resources/articles/e nzymatic-digestion-of-polysaccharides-2.html

Figure 7.3 Cellulose is an insoluble starch or particulate organic waste. Cellulose must be hydrolyzed before it can be degraded. Exoenzymes releases by specific hydrolytic bacteria such as Cellulomonas add water to the chemical bonds between the glucose units that make up cellulose. Once the chemical bonds are hydrolyzed, glucose goes into solution and is absorbed by numerous bacteria and degraded inside the bacterial cells.

Hydrolysis of Proteins

Ref:http://chempaths.chemeddl.org/services/ch empaths/?q=book/General%20Chemistry%20T extbook/Chemical%20Kinetics/1789/enzymes

Hydrolysis of proteins

Step 2 – Acid Forming Phase (Fermentation)

Fermentative Pathway	Products	Representative Bacterial Genus
Acetone-butanol	Acetone, butanol, ethanol,	Clostridium
Butanediol	Acetate,2,3-butanediol, butylene, ethanol, gylcol, lactate, CO ₂ , H ₂	Enterobacter
Butyrate	Acetate, butyrate, CO ₂ , H ₂	Clostridium
Lactate	Lactate	Lactobacillus
Mixed acid	Acetate, ethanol, lactate, CO_2 , H_2	Escherichia
Propionate	Propionate	Propionibacterium

Fermentative bacteria

Aeromonas Bacteroides Bifidobacteria Citrobacter Clostridium Enterobacter Erwinia Escherichia Klebsiella

Lactobacillus Pasteurella Propionobacterium Proteus Providencia Salmonella Serratia Shigella

TABLE 7.1 Major Acids and Alcohols Produced Through Fermentation Processes in Anaerobic Digesters		
Name	Formula	
Acetate	CH3COOH	
Butanol	CH ₃ (CH ₂) ₂ CH ₂ OH	
Butyrate	CH ₃ (CH ₂) ₂ CH ₂ COOH	
Caproic acid	CH ₃ (CH ₂) ₄ COOH	
Formate	HCOOH	
Ethanol	CH ₃ CH ₂ OH	
Lactate	CH3CHOHCOOH	
Methanol	CH ₃ OH	
Propanol	CH ₃ CH ₂ CH ₂ OH	
Propionate	CH ₃ CH ₂ COOH	
Succinate	HOOCCH2CH2COOH	
Ret	f: Gerardi M. H. The Microbiology of	

Anaerobic Digesters. Wiley Interscience. 2003

Step 3 – Methane Forming Phase (Methanogenesis)

• Methane is mostly formed from acetate, H_2 , and CO_2

Substrate	Chemical Formula
Acetate	CH₃COOH
Carbon dioxide	CO_2
Carbon monoxide	CO
Formate	HCOOH
Hydrogen	H_2
Methanol	CH₃OH
Methylamine	CH_3NH_2
Acetateacetoclastic methan	$\rightarrow CH_4 + CO_2$

H₂ + CO₂ $\xrightarrow{\text{hydrogenotrophic methanogens}} CH_4 + CO_2$ $H_2 + CO_2 \xrightarrow{\text{hydrogenotrophic methanogens}} CH_4 + 2H_2O$ Methanol $\xrightarrow{\text{methyltrophic methanogens}} 2CH_4 + 2H_2O$ Ref: Gerardi M. H. The Microbiology of Anaerobic Digesters. Wiley Interscience. 2003

27

Habitats of methanogens

Acetoclastic Methanogens

•Methanosarcina acetivorans

•Methanosaeta concilii

•Methanosaeta sp.

Methanogens

Methanosaeta Substrate: Acetate

Mixed culture Substrate: Sucrose

Competition: SRB vs Methanogens

Competition: SRB vs Methanogens

•Model of kinetic and thermodynamic competition among sulfate reducing bacteria and methanogenic archaea

Minimum doubling times of major microbial groups in AD (Mosey, 1989)

Sugar-fermenting, acid forming bacteria	30	Min
Methanogens growing on hydrogen	6	Hours
Acetogenic bacteria fermenting butyrate	1.4	Days
Acetogenic bacteria fermenting propionate	2.5	Days
Methanogens growing on acetate	2.6	Days

Sludge Granulation

Millimeter paper indicating the size of the granules.

Gas vents in the granules, where biogas is released

Anaerobic sludge granules from a UASB reactor treating effluent from a recycle paper mill (Roermond, The Netherlands).

Arhael Biofilm

Ref: 1. Sossa, K.; Alarcón, M.; Aspé, E.; Urrutia, H. (2004) Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm. *Anaerobe, 10 (1): 13-18.*

Archael Biofilm

Marmara Üniversitesi

Ref:

http://commtechlab.msu.edu/sites/dlcme/ zoo/microbes/media/biofilm.jpg

Spaghetti theory of granulation

- I) Disperse methanogens (filamentous Methanosaeta)
- II) Floc formation via entanglement
- III) Pellet formation (spaghetti balls) and

IV) Mature granules, with attachment of other

Marmara Üniversitesi anaerobic microorganisms onto the pellet.