ENVE 424 Anaerobic Treatment

Lecture 4 Stoichiometry

2012 – 2013 Fall 11 Oct 2012 Assist. Prof. A. Evren Tugtas

- Microorganisms obtain their energy from oxidation – reduction reactions
- Oxidation-reduction reactions always involve an <u>electron donor</u> and an <u>electron acceptor</u>
- Depending on the electron acceptor, the energy gained from 1 mole of electron donor may vary greatly

	Free Energy (kJ/mol glucose)
Aerobic Oxidation	
$C_6 H_{12} O_6 + 6 O_2 \to 6 C O_2 + 6 H_2 O$	-2880
Denitrification	
$5C_6H_{12}O_6 + 24NO_3^- + 24H^+ \rightarrow 30CO_2 + 42H_2O + 12N_2$	-2720
Sulfate Reduction	
$2C_6H_{12}O_6 + 6SO_4^{2-} + 9H^+ \rightarrow 12CO_2 + 12H_2O + 3H_2S + 3HS^-$	-492
Methanogenesis	
$C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4$	-428
Ethanol Fermentation	
$C_6H_{12}O_6 \rightarrow 2CO_2 + 2CH_3CH_2OH$	-244
Marmara	
Üniversitesi	3

- Microorganisms would like to obtain as much energy from a reaction as possible; therefore, they would prefer to use oxygen as an electron acceptor
- However, some microorganisms cannot use oxygen as an electron acceptor.

Marmara Üniversitesi Ref:Rittmann, B. E., McCarty P. Environmental Biotechnology: Principles and Applications. McGraw Hill. 2001.

Re=Ra-Rd Rs=Rc-Rd

- Rd: Electron donor half reaction
- Ra: Electron acceptor half reaction
- Rc: Cell half reaction
- Re: Energy reaction
- Rs: Synthesis reaction

<u>Overall reaction</u>: $R = f_e(R_a - R_d) + f_s(R_c - R_d)$

where: f_e : fraction of electron donor used for <u>energy</u> production f_s : fraction of electron donor used for cell <u>synthesis</u>

By definition: $f_s + f_e = 1$

Then: $\mathbf{R} = \mathbf{f}_{e} \mathbf{R}_{a} + \mathbf{f}_{s} \mathbf{R}_{c} - \mathbf{R}_{d}$

- In fermentation, an organic compound serves as electron donor and electron acceptor
- Ethanol fermentation from glucose
- 1 mole of glucose → 2 mols ethanol + 2 mols
 CO₂
- All the electrons starting in glucose must end up in ethanol
- Donor: Glucose Half Reaction
- Acceptor: Ethanol Half Reaction

Reaction Number	Reduced-oxidized Compounds		Half-reaction	∆G ^{0′} kJ/e eq
1-1	Ammonium- Nitrate:	$\frac{1}{8}$ NO ₃ ⁻ + $\frac{5}{4}$ H ⁺ + e ⁻	$= \frac{1}{8} \text{ NH}_4^+ + \frac{3}{8} \text{H}_2 \text{O}$	-35.11
1-2	Ammonium- Nitrite:	$\frac{1}{6}$ NO ₂ ⁻ + $\frac{4}{3}$ H ⁺ + e ⁻	$= \frac{1}{6} \text{ NH}_4^+ + \frac{1}{3} \text{ H}_2 \text{O}$	-32.93
I-3	Ammonium- Nitrogen:	$\frac{1}{6}$ N ₂ + $\frac{4}{3}$ H ⁺ + e ⁻	$=\frac{1}{3}$ NH ⁺ ₄	26.70
I-4	Ferrous-Ferric:	$Fe^{3+} + e^{-}$	$= Fe^{2+}$	-74.27
1-5	Hydrogen-H+:	H ⁺ +e ⁻	$=\frac{1}{2}H_2$	39.87
1-6	Nitrite-Nitrate:	$\frac{1}{2}$ NO ₃ ⁻ + H ⁺ + e ⁻	$=\frac{1}{2}NO_{2}^{-}+\frac{1}{2}H_{2}O$	-41.65
1-7	Nitrogen- Nitrate:	$\frac{1}{5}$ NO ₃ ⁻ + $\frac{6}{5}$ H ⁺ + e ⁻	$=\frac{1}{10}N_2+\frac{3}{5}H_2O$	-72.20
1-8	Nitrogen- Nitrite:	$\frac{1}{3}$ NO ₂ ⁻ + $\frac{4}{3}$ H ⁺ + e ⁻	$=rac{1}{6}N_2+rac{2}{3}H_2O$	-92.56
1-9	Sulfide-Sulfate:	$\frac{1}{8}$ SO ₄ ²⁻ + $\frac{19}{16}$ H ⁺ + e ⁻	$= \frac{1}{16} H_2 S + \frac{1}{16} H S^- + \frac{1}{2} H_2 O$	20.85
I-10	Sulfide-Sulfite:	$\frac{1}{6}SO_3^{2-}+\frac{5}{4}H^++e^-$	$= \frac{1}{12} H_2 S + \frac{1}{12} H S^- + \frac{1}{2} H_2 O$	11.03
ы	Sulfite-Sulfate:	$\frac{1}{2}$ SO ₄ ²⁻ + H ⁺ + e ⁻	$= \frac{1}{2} \operatorname{SO}_3^{2-} + \frac{1}{2} \operatorname{H}_2 \operatorname{O}$	50.30
I-12	Sulfur-Sulfate:	$\frac{1}{6}$ SO ₄ ²⁻ + $\frac{4}{3}$ H ⁺ + e ⁻	$=\frac{1}{6}S+\frac{2}{3}H_2O$	19.15
I-13	Thiosulfate- Sulfate:	$\frac{1}{4}$ SO ₄ ²⁻ + $\frac{5}{4}$ H ⁺ + e ⁻	$= \frac{1}{8} S_2 O_3^{2-} + \frac{5}{8} H_2 O$	23.58
I-14	Water-Oxygen:	$\frac{1}{4}$ O ₂ + H ⁺ + e ⁻	$=\frac{1}{2}$ H ₂ O	-78.72

Table 2.2Inorganic half-reactions and their Gibb's standard free energy at pH = 7.0

Reaction Number	Reduced Compounds		Half-reaction	∆ <i>G^{0′} kJ/e− e</i> q
O-1	Acetate:	$\frac{1}{8}$ CO ₂ + $\frac{1}{8}$ HCO ₃ ⁻ + H ⁺ + e ⁻	$=\frac{1}{8}$ CH ₃ COO ⁻ + $\frac{3}{8}$ H ₂ O	27.40
0-2	Alanine:	$\frac{1}{6} \operatorname{CO}_2 + \frac{1}{12} \operatorname{HCO}_3^- + \frac{1}{12} \operatorname{NH}_4^+ + \frac{11}{12} \operatorname{H}^+ + e^-$	$= \frac{1}{12} \text{ CH}_3 \text{CHNH}_2 \text{COO}^- + \frac{5}{12} \text{ H}_2 \text{O}$	31.37
O -3	Benzoate:	$\frac{1}{5}$ CO ₂ + $\frac{1}{30}$ HCO ₃ ⁻ + H ⁺ + e ⁻	$= \frac{1}{30} C_6 H_5 COO^- + \frac{13}{30} H_2 O$	27.34
0-4	Citrate:	$\frac{1}{6}$ CO ₂ + $\frac{1}{6}$ HCO ₃ ⁻ + H ⁺ + e ⁻	$= \frac{1}{18} (COO^{-})CH_2COH(COO^{-})CH_2COO^{-} + \frac{4}{9} H_2O$	33.08
0-5	Ethanol:	$\frac{1}{6}$ CO ₂ + H ⁺ + e ⁻	$=\frac{1}{12}$ CH ₃ CH ₂ OH $+\frac{1}{4}$ H ₂ O	31.18
O-6	Formate:	$\frac{1}{2}$ HCO ₃ ⁻ + H ⁺ + e ⁻	$=\frac{1}{2}$ HCOO ⁻ + $\frac{1}{2}$ H ₂ O	39.19
0-7	Glucose:	$\frac{1}{4}$ CO ₂ + H ⁺ + e ⁻	$= \frac{1}{24} C_6 H_{12} O_6 + \frac{1}{4} H_2 O$	41.35
O-8	Glutamate:	$\frac{1}{6} \text{CO}_2 + \frac{1}{9} \text{HCO}_3^- + \frac{1}{18} \text{NH}_4^+ + \text{H}^+ + \text{e}^-$	$= \frac{1}{18} \operatorname{COOHCH}_2 \operatorname{CH}_2 \operatorname{CHNH}_2 \operatorname{COO}^- + \frac{4}{9} \operatorname{H}_2 \operatorname{O}$	30.93
0-9	Glycerol:	$\frac{3}{14}$ CO ₂ + H ⁺ + e ⁻	$= \frac{1}{14} \operatorname{CH}_2 \operatorname{OHCHOHCH}_2 \operatorname{OH} + \frac{3}{14} \operatorname{H}_2 \operatorname{O}$	38.88
O-10	Glycine:	$\frac{1}{6} \text{ CO}_2 + \frac{1}{6} \text{ HCO}_3^- + \frac{1}{6} \text{ NH}_4^+ + \text{H}^+ + \text{e}^-$	$=\frac{1}{6} \operatorname{CH}_2 \operatorname{NH}_2 \operatorname{COOH} + \frac{1}{2} \operatorname{H}_2 \operatorname{O}$	39.80

Table 2.3 Organic half-reactions and their Gibb's free energy

Table 2.3 (Continued)				
0-11	Lactate:	$\frac{1}{6}CO_2 + \frac{1}{12}HCO_3^- + H^+ + e^-$	$=\frac{1}{12}$ CH ₃ CHOHCOO ⁻ + $\frac{1}{3}$ H ₂ O	32.29
0-12	Methane:	$\frac{1}{8} \operatorname{CO}_2 + \mathrm{H}^+ + \mathrm{e}^-$	$=\frac{1}{8}$ CH ₄ + $\frac{1}{4}$ H ₂ O	23.53
O-13	Methanol:	$\frac{1}{6}$ CO ₂ + H ⁺ + e ⁻	$=\frac{1}{6}$ CH ₃ OH + $\frac{1}{6}$ H ₂ O	36.84
0-14	Palmitate:	$\frac{15}{19}CO_2 + \frac{1}{92}HCO_3^- + H^+ + e^-$	$= \frac{1}{92} \operatorname{CH}_3(\operatorname{CH}_2)_{14} \operatorname{COO}^- + \frac{31}{92} \operatorname{H}_2 \operatorname{O}$	27.26
O-15	Propionate:	$\frac{1}{7}CO_2 + \frac{1}{14}HCO_3^- + H^+ + e^-$	$= \frac{1}{14} \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{COO}^- + \frac{5}{14} \operatorname{H}_2 \operatorname{O}$	27.63
0-16	Pyruvate:	$\frac{1}{5}$ CO ₂ + $\frac{1}{10}$ HCO ₃ ⁻ + H ⁺ + e ⁻	$=\frac{1}{10}$ CH ₃ COCOO ⁻ + $\frac{2}{5}$ H ₂ O	35.09
0-17	Succinate:	$\frac{1}{7}$ CO ₂ + $\frac{1}{7}$ HCO ₃ ⁻ + H ⁺ + e ⁻	$= \frac{1}{14} (CH_2)_2 (COO^-)_2 + \frac{3}{7} H_2O$	29.09
O-18	Domestic Wastewater:	$\frac{9}{50} \operatorname{CO}_2 + \frac{1}{50} \operatorname{NH}_4^+ + \frac{1}{50} \operatorname{HCO}_3^- + \operatorname{H}^+ + \operatorname{e}^-$	$= \frac{1}{50} C_{10} H_{19} O_3 N + \frac{9}{25} H_2 O$	•
0-19	Custom Organic Half Reaction:	$\frac{(n-c)}{d}\operatorname{CO}_2 + \frac{c}{d}\operatorname{NH}_4^+ + \frac{c}{d}\operatorname{HCO}_3^- + \operatorname{H}^+ + e^-$	$= \frac{1}{d} C_n H_a O_b N_c + \frac{2n - b + c}{d} H_2 O$ where, $d = (4n + a - 2b - 3c)$	•
O-20	Cell Synthesis:	$\frac{1}{5} \operatorname{CO}_2 + \frac{1}{20} \operatorname{NH}_4^+ + \frac{1}{20} \operatorname{HCO}_3^- + \operatorname{H}^+ + \operatorname{e}^-$	$= \frac{1}{20} C_5 H_7 O_2 N + \frac{9}{20} H_2 O$	·

^{*}Equations O-18 to O-20 do not have $\triangle G^{0'}$ values because the reduced species is not chemically defined.

÷

Reaction Number		Half-reaction	$\Delta G^{0'}$ kJ/e ⁻ eq
Cell Synthesis Equations (R _c)			
C-1	$\frac{1}{5}$ CO ₂ + $\frac{1}{20}$ HCO ₃ ⁻ + $\frac{1}{20}$ NH ₄ ⁺ + H ⁺ + e ⁻	$= \frac{1}{20} C_5 H_7 O_2 N + \frac{9}{20} H_2 O$	
Nitrate as Nitrogen Source C-2	$\frac{1}{28}$ NO ₃ ⁻ + $\frac{5}{28}$ CO ₂ + $\frac{29}{28}$ H ⁺ + e ⁻	$= \frac{1}{28} C_5 H_7 O_2 N + \frac{11}{28} H_2 O$	
Nitrite as Nitrogen Source C-3	$\frac{5}{26}$ CO ₂ + $\frac{1}{26}$ NO ₂ ⁻ + $\frac{27}{26}$ H ⁺ + e ⁻	$= \frac{1}{26} C_5 H_7 O_2 N + \frac{10}{26} H_2 O$	
Dinitrogen as Nitrogen Source C-4	$\frac{5}{23}$ CO ₂ + $\frac{1}{46}$ N ₂ + H ⁺ + e ⁻	$= \frac{1}{23} C_5 H_7 O_2 N + \frac{8}{23} H_2 O$	
Common Electron-Acceptor Equations (Ra)			
I-14 Oxygen	$\frac{1}{4}$ O ₂ + H ⁺ + e ⁻	$=\frac{1}{2}$ H ₂ O	-78.72
I-7 Nitrate	$\frac{1}{5}$ NO ₃ ⁻ + $\frac{6}{5}$ H ⁺ + e ⁻	$=\frac{1}{10}N_2+\frac{3}{5}H_2O$	-72.20
I-9 Sulfate	$\frac{1}{8}$ SO ₄ ²⁻ + $\frac{19}{16}$ H ⁺ + e ⁻	$= \frac{1}{16} H_2 S + \frac{1}{16} HS^- + \frac{1}{2} H_2 O$	20.85
O-12 CO ₂	$\frac{1}{8}$ CO ₂ + H ⁺ + e ⁻	$=\frac{1}{8}$ CH ₄ + $\frac{1}{4}$ H ₂ O	23.53
I-4 Iron (III)	$Fe^{3+}+e^{-}$	= Fe ²⁺	-74.27

Table 2.4Cell formation (R_c) and common electron acceptor half-reactions (R_σ)

• Ethanol fermentation from glucose (biomass synthesis is not included) $Ra: \frac{1}{6}CO_2 + H^+ + e^- \rightarrow \frac{1}{12}CH_3CH_2OH + \frac{1}{4}H_2O$

$$-Rd: \frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O \to \frac{1}{4}CO_2 + H^+ + e^-$$

$$Re: \frac{1}{24}C_6H_{12}O_6 \to \frac{1}{12}CH_3CH_2OH + \frac{1}{12}CO_2$$

- Ethanol fermentation from glucose (biomass synthesis is included)
- Assume fs=0.22, fe=0.78

$$\begin{aligned} feRa: 0.78\frac{1}{6}CO_2 + 0.78H^+ + 0.78e^- &\rightarrow 0.78\frac{1}{12}CH_3CH_2OH + 0.78\frac{1}{4}H_2O \\ -Rd: \frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O &\rightarrow \frac{1}{4}CO_2 + H^+ + e^- \\ fsRc: 0.22\frac{1}{5}CO_2 + 0.22\frac{1}{20}HCO_3^- + 0.22\frac{1}{20}NH_4^+ + 0.22H^+ + 0.22e^- \\ &\rightarrow 0.22\frac{1}{20}C_5H_7O_2N + 0.22\frac{9}{20}H_2O \end{aligned}$$

- Ethanol fermentation from glucose (biomass synthesis is included)
- Assume fs=0.22, fe=0.78

$$\begin{aligned} &feRa: 0.78\frac{1}{6}CO_2 + 0.78H^+ + 0.78e^- \to 0.78\frac{1}{12}CH_3CH_2OH + 0.78\frac{1}{4}H_2O \\ &-Rd: \frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O \to \frac{1}{4}CO_2 + H^+ + e^- \end{aligned}$$

 $0.22 Rc: 0.044 CO_2 + 0.011 HCO_3^- + 0.011 NH_4^+ + 0.22 H^+ + 0.22 e^-$

 $\rightarrow 0.011C_5H_7O_2N + 0.099H_2O$

 $R: 0.0417 C_6 H_{12} O_6 + 0.011 N H_4^+ + 0.011 H C O_3^-$

 $\rightarrow 0.011 C_5 H_7 O_2 N + 0.065 C H_3 C H_2 O H + 0.076 C O_2 + 0.044 H_2 O$

Methanogenic Reactions

Acetate to Methane

$$CH_3 : COO^- + H_2O \rightarrow CH_4 + HCO_3^-$$

$$-Rd: \frac{1}{8}CH_3COO^- + \frac{3}{8}H_2O \to \frac{1}{8}CO_2 + \frac{1}{8}HCO_3^- + H^+ + e^-$$
$$Ra: \frac{1}{8}CO_2 + H^+ + e^- \to \frac{1}{8}CH_4 + \frac{1}{4}H_2O$$

$$R: \frac{1}{8}CH_3COO^- + \frac{1}{8}H_2O \to \frac{1}{8}CH_4 + \frac{1}{8}HCO_3^-$$

Methanogenic Reactions

- Each g of BOD_L generates 0.35 L CH₄ at STP (0°C, 1 atm)
- The energy value of methane is 35.8 kJ/L at STP

- Typical loading to anaerobic digestors, 5 10 kg COD/d.m³
- Typical loading for an aerobic treatment < 1 kg COD/d.m³

Properties of Methane

Colorless Odorless Non-poisonous (simple asphyxiant) Flammable

Explosive mixture: 1 vol. CH₄ /10 vol. Air (or 2 vol. O₂)

Air with < 5.5% CH_4 : no explosion

Air with > 14% CH₄ : burns without noise

Heat of combustion = 978 BTU/ft³ @ 25°C (1 kg CH_4 = 13,300 kcal)

Example 1

 Industrial wastewater with a flow of 10⁴ m³/d and a BODL of 20,000 mg/L is being treated. Assuming the waste stabilization is 90%, please calculate the methane content. Please calculate the energy value of the produced methane

Example 2

• A wastewater from food processing contains 1.0 M glucose. For operation of an anaerobic treatment processes for this wastewater, estimate the methane production, the mass of biological cells produced, and the concentration of ammonia-N required for cell growth for m³ of wastewater treated. Assume that fs=0.2 and glucose is completely consumed.

